GF-5 AIUS切高校正算法研究与反演验证
Algorithm research on the atmospheric infrared ultraspectral sounder tangent height adjustment aboard on GF-5 and inversion validation
- 2021年25卷第9期 页码:1932-1945
纸质出版日期: 2021-09-07
DOI: 10.11834/jrs.20210255
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-09-07 ,
扫 描 看 全 文
王红梅,李小英,张玉贵,白贵祥,陈良富.2021.GF-5 AIUS切高校正算法研究与反演验证.遥感学报,25(9): 1932-1945
Wang H M,Li X Y,Zhang Y G,Bai G X and Chen L F. 2021. Algorithm research on the Atmospheric Infrared Ultraspectral Sounder tangent height adjustment aboard on GF-5 and inversion validation. National Remote Sensing Bulletin, 25(9):1932-1945
利用红外掩星获取温压及其大气成分廓线,需要获得精确的指向信息,针对高分五号大气环境甚高分辨率探测仪(GF-5 AIUS)一级光谱信息,本文首先分析了不同切高的光谱变化情况,在此基础上,利用查找表方法进行切高校正。在低切高段(10—20 km),选取N
2
吸收波段,模拟6—40 km高度上的透过率光谱,通过查找表校正方法对一级数据中的低层切高进行校正。在高切高段(20—100 km),模拟6—90 km切高上的透过率光谱,利用O
3
吸收波段(20—90 km)进行校正。校正算法采取全局最小均方根误差的方法进行统计实验,确定最小校正半径为15 km。最后选取O
3
、HCl、N
2
O共3种大气成分的反演波段,进行校正后的透过率数据对比验证与反演产品精度的验证。结果表明:在O
3
、HCl、N
2
O共3种成分的反演通道上,校正后的观测透过率与模拟的透过率数据一致性较好,两者最大偏差小于0.1,切高校正算法得到的结果与模拟透过率吻合度较好;同时基于Aura MLS(Microwave Limb Sounder)、ACE-FTS(Atmospheric Chemistry Experiment Fourier-Transform Spectrometer)Level 2产品进行了O
3
、HCl、N
2
O单廓线交叉验证。结果表明:GF-5 AIUS反演的单廓线O
3
与MLS、ACE-FTS相对偏差在30 km以下小于50%,在30—60 km小于20%;单廓线HCl与MLS、ACE-FTS相对偏差整体小于20%;单廓线N
2
O与MLS、ACE-FTS相对偏差30 km以下小于20%,30—60 km相对偏差较大。
To obtain the temperature
pressure and trace gas profiles by infrared occultation sounding needs accurate pointing information. For the first-level spectral data of Atmospheric Infrared Ultraspectral Sounder aboard on satellite GF-5 (GF-5 AIUS)
the spectral changes at different tangent heights at the full effective bands are analyzed in this paper. Then
a method for tangent height correction using look-up tables is used based on empirical statistics. Look-up tables are established using forward radiative transfer model
namely
Atmospheric Radiative Transfer Simulator (ARTS) with the atmospheric background profiles built using MLS and ACE-FTS Level 2 products for the last five years. The atmospheric transmittance background profiles represent the atmospheric state from 0 km to 120 km in the vertical direction with a grid width of 1 km. In the lower tangent height section (10—20 km)
the N
2
absorption band (2490—2520 cm
-1
) is selected to simulate the transmittance spectrum
and the low-level tangent height in the Level 1 data is corrected by a look-up table correction method. In the higher tangent height section (20—90 km)
the transmittance spectrum is also simulated
and the O
3
absorption band (1020—1150 cm
-1
) is used for correction. The correction algorithm adopts the method of global minimum root mean square error for statistical experiments and determines the minimum correction radius of 15 km. Finally
the inversion bands of the three atmospheric components of O
3
HCl
and N
2
O are selected
and corrected transmittance data are compared with simulated transmittance
and verification of inversion product accuracy are performed. Results show that on the inversion channels of O
3
HCl
and N
2
O
the corrected observed transmittance and simulated transmittance data are in good agreement
and the maximum observation deviation is less than 0.1
which shows that the tangent height correction algorithm can obtain a good effect. Meanwhile
based on Aura MLS and ACE-FTS Level 2 product
the cross-validation of O
3
HCl
and N
2
O single profile is performed. The results show that the single profile value of O
3
product is less than that of MLS product and higher than that of ACE-FTS product
with absolute deviation of less than 1 ppmv and relative deviation of less than 50% below 20 km and less than 20% above 20 km. The single profile value of HCl retrieved by GF5-AIUS is less than that of MLS and ACE-FTS products
with absolute deviation of less than 0.5 ppbv and relative deviation of less than 50% below 50 km. The single N
2
O profile value retrieved by GF5-AIUS is less than the ACE-FTS Level 2 product and higher than the MLS Level 2 below 25 km and above 40 km. In addition
the result is opposite in the range of 25—40 km; the absolute deviation between GF5-AIUS and ACE-FTS Level 2 products is less than 10 ppbv in the range of 30—60 km
and the relative deviation is approximately 200%. The absolute deviation is less than 25 ppbv
but the relative deviation is less than 25% below 30 km. Above 30 km
the content of N
2
O decreases
and the inversion error increases. Therefore
using N
2
absorption channel and O
3
absorption channel to establish look-up tables for GF-5 AIUS Level 1 data correction can satisfy the requirements of inversion. The disadvantage of this method is that the atmospheric background database requires regular updating to ensure a more accurate atmospheric transmittance look-up table.
掩星探测GF-5 AIUS切高校正N2吸收O3吸收
infrared occultation detectionGF-5 AIUStangent height correctionN2 absorption channelsO3 absorption channels
Bertaux J L, Kyrölä E, Fussen D, Hauchecorne A, Dalaudier F, Sofieva V, Tamminen J, Vanhellemont F, d'Andon O F, Barrot G, Mangin A, Blanot L, Lebrun J C, Pérot K, Fehr T, Saavedra L, Leppelmeier G W and Fraisse R. 2010. Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT. Atmospheric Chemistry and Physics, 10(24): 12091-12148 [DOI: 10.5194/acp-10-12091-2010http://dx.doi.org/10.5194/acp-10-12091-2010]
Boone C D and Bernath P F. 2019. Tangent height determination from the N2-continuum for the Atmospheric Chemistry Experiment Fourier transform spectrometer. Journal of Quantitative Spectroscopy and Radiative Transfer, 238: 106481 [DOI: 10.1016/j.jqsrt.2019.04.033http://dx.doi.org/10.1016/j.jqsrt.2019.04.033]
Boone C D, Nassar R, Walker K A, Rochon Y, McLeod S D, Rinsland C P and Bernath P F. 2005. Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer. Applied Optics, 44(33): 7218-7231 [DOI: 10.1364/AO.44.007218http://dx.doi.org/10.1364/AO.44.007218]
Bramstedt K, Noël S, Bovensmann H, Gottwald M and Burrows J P. 2012. Precise pointing knowledge for SCIAMACHY solar occultation measurements. Atmospheric Measurement Techniques, 5(11): 2867-2880 [DOI: 10.5194/amt-5-2867-2012http://dx.doi.org/10.5194/amt-5-2867-2012]
Brogniez C, Houet M, Siani A M, Weihs P, Allaart M, Lenoble J, Cabot T, Casiniere A and Kyro E. 2005. Ozone column retrieval from solar UV measurements at ground level: Effects of clouds and results from six European sites. Journal of Geophysical Research, 110, D24202. [DOI:10.1029/2005JD005992http://dx.doi.org/10.1029/2005JD005992]
Carleer M R, Boone C D, Walker K A, Bernath P F, Strong K, Sica R J, Randall C E, Vömel H, Kar J, Höpfner M, Milz M, von Clarmann T, Kivi R, Valverde-Canossa J, Sioris C E, Izawa M R M, Dupuy E, McElroy C T, Drummond J R, Nowlan C R, Zou J, Nichitiu F, Lossow S, Urban J, Murtagh D and Dufour D G. 2008. Validation of water vapour profiles from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics Discussion, 8(2): 4499-4559 [DOI: 10.5194/acpd-8-4499-2008http://dx.doi.org/10.5194/acpd-8-4499-2008]
Cao X F and Li X Y. 2020. Channel selection for AIUS temperature inversion based on GF-5. Journal of Remote Sensing, 24(10):1157-1167
曹西凤,李小英.2020.高分五号AIUS气温反演通道的选择.遥感学报,24(10):1157-1167[DOI: 10.11834/jrs.20209049http://dx.doi.org/10.11834/jrs.20209049]
De Mazière M, Vigouroux C, Bernath P F, Baron P, Blumenstock T, Boone C, Brogniez C, Catoire V, Coffey M, Duchatelet P, Griffith D, Hannigan J, Kasai Y, Kramer I, Jones N, Mahieu E, Manney G L, Piccolo C, Randall C, Robert C, Senten C, Strong K, Taylor J, Tétard C, Walker K A and Wood S. 2007. Validation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere. Atmospheric Chemistry and Physics, 8(9): 2421-2435 [DOI: 10.5194/acp-8-2421-2008http://dx.doi.org/10.5194/acp-8-2421-2008]
Dong X, Xu P M and Hou L Z. 2018. Design and implementation of atmospheric infrared ultra-spectral sounder. Spacecraft Recovery and Remote Sensing, 39(3): 29-37
董欣, 徐彭梅, 侯立周. 2018. 大气环境红外甚高光谱分辨率探测仪设计与实现. 航天返回与遥感, 39(3): 29-37 [DOI: 10.3969/j.issn.1009-8518.2018.03.004http://dx.doi.org/10.3969/j.issn.1009-8518.2018.03.004]
Eriksson P, Buehler S A, Davis C P, Emde C and Lemke O. 2011. ARTS, the atmospheric radiative transfer simulator, version 2. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(10): 1551-1558 [DOI: 10.1016/j.jqsrt.2011.03.001http://dx.doi.org/10.1016/j.jqsrt.2011.03.001]
Froidevaux L, Jiang Y B, Lambert A, Livesey N J, Read W G, Waters J W, Fuller R A, Marcy T P, Popp P J, Gao R S, Fahey D W, Jucks K W, Stachnik R A, Toon G C, Christensen L E, Webster C R, Bernath P F, Boone C D, Walker K A, Pumphrey H C, Harwood R S, Manney G L, Schwartz M J, Daffer W H, Drouin B J, Cofield R E, Cuddy D T, Jarnot R F, Knosp B W, Perun V S, Snyder W V, Stek P C, Thurstans R P and Wagner P A. 2008. Validation of Aura Microwave Limb Sounder HCl measurements. Journal of Geophysical Research: Atmospheres, 113(D15): D15S25 [DOI: 10.1029/2007JD009025http://dx.doi.org/10.1029/2007JD009025]
Gunson M R. 1993. The atmospheric trace molecule spectroscopy (ATMOS) experiment-The ATLAS-1 mission//Proceedings of SPIE 1715, Optical Methods in Atmospheric Chemistry. Berlin: SPIE: 2333-2336 [DOI: 10.1117/12.140203http://dx.doi.org/10.1117/12.140203]
Jiang C, Tao D X and He H Y. 2018. Digital modeling and Simulation of AIUS. Spacecraft Recover and Remote Sensing, 39(3): 94-103
江澄, 陶东兴, 何红艳. 2018. 大气环境红外甚高光谱分辨率探测仪数字建模与仿真. 航天返回与遥感, 39(3): 94-103 [DOI: 10.3969/j.issn.1009-8518.2018.03.011http://dx.doi.org/10.3969/j.issn.1009-8518.2018.03.011]
Jiang Y B, Froidevaux L, Lambert A, Livesey N J, Read W G, Waters J W, Bojkov B, Leblanc T, Mcdermid I S, Godin-Beekmann S, Filipiak M J, Harwood R S, Fuller R A, Daffer W H, Drouin B J, Cofield R E, Cuddy D T, Jarnot R F, Knosp B W, Perun V S, Schwartz M J, Snyder W V, Stek P C, Thurstans R P, Wagner P A, Allaart M, Andersen S B, Bodeker G, Calpini B, Claude H, Coetzee G, Davies J, Backer H D, Dier H, Fujiwara M, Johnson B, Kelder H, Leme N P, König-Langlo G, Kyro E, Laneve G, Fook L S, Merrill J, Morris G, Newchurch M, Oltmans S, Parrondos M C, Posny F, Schmidlin F, Skrivankova P, Stubi R, Tarasick D, Thompson A, Thouret V, Viatte P, Vömel H, Gathen P V D, Yela M and Zablocki G. 2007. Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements. Journal of Geophysical Research: Atmospheres, 112(D24): D24S34 [DOI: 10.1029/2007JD008776http://dx.doi.org/10.1029/2007JD008776]
Kerzenmacher T, Wolff M A, Strong K, Dupuy E, Walker K A, Amekudzi L K, Batchelor R L, Bernath P F, Berthet G, Blumenstock T, Boone C D, Bramstedt K, Brogniez C, Brohede S, Burrows J P, Catoire V, Dodion J, Drummond J R, Dufour D G, Funke B, Fussen D, Goutail F, Griffith D W T, Haley C S, Hendrick F, Höpfner M, Huret N, Jones N, Kar J, Kramer I, Llewellyn E J, López-Puertas M, Manney G, McElroy C T, McLinden C A, Melo S, Mikuteit S, Murtagh D, Nichitiu F, Notholt J, Nowlan C, Piccolo C, Pommereau J P, Randall C, Raspollini P, Ridolfi M, Richter A, Schneider M, Schrems O, Silicani M, Stiller G P, Taylor J, Tétard C, Toohey M, Vanhellemont F, Warneke T, Zawodny J M and Zou J. 2008. Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics, 8(19): 5801-5841 [DOI: 10.5194/acp-8-5801-2008http://dx.doi.org/10.5194/acp-8-5801-2008]
Kovalenko L J, Livesey N L, Salawitch R J, Camy-Peyret C, Chipperfield M P, Cofield R E, Dorf M, Drouin B J, Froidevaux L, Fuller R A, Goutail F, Jarnot R F, Jucks K, Knosp B W, Lambert A, MacKenzie I A, Pfeilsticker K, Pommereau J P, Read W G, Santee M L, Schwartz M J, Snyder W V, Stachnik R, Stek P C, Wagner P A and Waters J W. 2007, Validation of Aura Microwave Limb Sounder BrO observations in the stratosphere. Journal of Geophysical Research: Atmospheres, 112(D24): D24S41 [DOI: 10.1029/2007JD008817http://dx.doi.org/10.1029/2007JD008817]
Lambert A, Read W G, Livesey N J, Santee M L, Manney G L, Froidevaux L, Wu D L, Schwartz M J, Pumphrey H C, Jimenez C, Nedoluha G E, Cofield R E, Cuddy D T, Daffer W H, Drouin B J, Fuller R A, Jarnot R F, Knosp B W, Pickett H M, Perun V S, Snyder W V, Stek P C, Thurstans R P, Wagner P A, Waters J W, Jucks K W, Toon G C, Stachnik R A, Bernath P F, Boone C D, Walker K A, Urban J, Murtagh D, Elkins J W and Atlas E. 2007. Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. Journal of Geophysical Research: Atmospheres, 112(D24): D24S36 [DOI: 10.1029/2007JD008724http://dx.doi.org/10.1029/2007JD008724]
Li X Y, Xu J, Cheng T H, Shi H L, Zhang X Y, Ge S L, Wang H M, Zhu S Y, Miao J and Luo Q. 2019. Monitoring trace gases over the Antarctic using atmospheric infrared ultraspectral sounder onboard GaoFen-5: algorithm description and first retrieval results of O3, H2O, and HCl. Remote Sensing, 11(17): 1991 [DOI: 10.3390/rs11171991http://dx.doi.org/10.3390/rs11171991]
Livesey N J, Filipiak M J, Froidevaux L, Read W G, Lambert A, Santee M L, Jiang J H, Pumphrey H C, Waters J W, Cofield R E, Cuddy D T, Daffer W H, Drouin B J, Fuller R A, Jarnot R F, Jiang Y B, Knosp B W, Li Q B, Perun V S, Schwartz M J, Snyder W V, Stek P C, Thurstans R P, Wagner P A, Avery M, Browell E V, Cammas J P, Christensen L E, Diskin G S, Gao R S, Jost H J, Loewenstein M, Lopez J D, Nedelec P, Osterman G B, Sachse G W and Webster C R. 2008. Validation of aura microwave limb sounder O3 and CO observations in the upper troposphere and lower stratosphere. Journal of Geophysical Research: Atmospheres, 113(D15): D15S02 [DOI: 10.1029/2007JD008805http://dx.doi.org/10.1029/2007JD008805]
Mahieu E, Duchatelet P, Demoulin P, Walker K A, Dupuy E, Froidevaux L, Randall C, Catoire V, Strong K, Boone C D, Bernath P F, Blavier J F, Blumenstock T, Coffey M, De Mazière M, Griffith D W, Hannigan J, Hase F, Jones N, Jucks K W, Kagawa A, Kasai Y, Mebarki Y, Mikuteit S, Nassar R, Notholt J, Rinsland C P, Robert C, Schrems O, Senten C, Smale D, Taylor J, Tétard C, Toon G C, Warneke T, Wood S W, Zander R and Servais C. 2008. Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations. Atmospheric Chemistry and Physics, 8(20): 6199-6221 [DOI: 10.5194/acp-8-6199-2008http://dx.doi.org/10.5194/acp-8-6199-2008]
Nakajima H, Comeron A, Carleer M R, Sugita T, Yokota T, Picard R H, Sifakis N I and Sasano Y. 2004. Atmospheric environment monitoring by the ilas-ii onboard the adeos-ii satellite. Remote Sensing of Clouds and the Atmosphere IX, 5571, 293.[ DOI:10.1117/12.568048http://dx.doi.org/10.1117/12.568048]
Petelina S V, Llewellyn E J, Walker K A, Degenstein D A, Boone C D, Bernath P F, Haley C S, von Savigny C, Lloyd N D and Gattinger R L. 2005. Validation of ACE-FTS stratospheric ozone profiles against Odin/OSIRIS measurements. Geophysical Research Letters, 32(15): L15S06 [DOI: 10.1029/2005GL022377http://dx.doi.org/10.1029/2005GL022377]
Pickett H M, Drouin B J, Canty T, Salawitch R J, Fuller R A, Perun V S, Livesey N J, Waters J W, Stachnik R A, Sander S P, Traub W A, Jucks K W and Minschwaner K. 2008. Validation of aura microwave limb sounder OH and HO2 measurements. Journal of Geophysical Research: Atmospheres, 113(D26): D16S30 [DOI: 10.1029/2007JD008775http://dx.doi.org/10.1029/2007JD008775]
Schwartz M J, Lambert A, Manney G L, Read W G, Livesey N J, Froidevaux L, Ao C O, Bernath P F, Boone C D, Cofield R E, Daffer W H, Drouin B J, Fetzer E J, Fuller R A, Jarnot R F, Jiang J H, Jiang Y B, Knosp B W, Krüger K, Li J L F, Mlynczak M G, Pawson S, Russell J M, Santee M L, Snyder W V, Stek P C, Thurstans R P, Tompkins A M, Wagner P A, Walker K A, Waters J W and Wu D L . 2008. Validation of the aura microwave limb sounder temperature and geopotential height measurements. Journal of Geophysical Research: Atmospheres, 113(D15): D15S11 [DOI: 10.1029/2007JD008783http://dx.doi.org/10.1029/2007JD008783]
Sheese P E, Walker K A, Boone C D, McLinden C A, Bernath P F, Bourassa A E, Burrows J P, Degenstein D A, Funke B, Fussen D, Manney G L, McElroy C T, Murtagh D, Randall C E, Raspollini P, Rozanov A, Russell III J M, Suzuki M, Shiotani M, Urban J, von Clarmann T and Zawodny J M. 2016. Validation of ACE-FTS version 3.5 NOy species profiles using correlative satellite measurements. Atmospheric Measurement Techniques, 9(12): 5781-5810 [DOI: 10.5194/amt-9-5781-2016http://dx.doi.org/10.5194/amt-9-5781-2016]
SMILES Science Team. 2002. JEM/SMILES mission plan,Version 2.1[J/OL]. 1-120 [2012-08-25]. http://smiles.Tksc.jaxa.jp/document/SMILES_MP_ver2.11.pdfhttp://smiles.Tksc.jaxa.jp/document/SMILES_MP_ver2.11.pdf
Strong K, Wolff M A, Kerzenmacher T E, Walker K A, Bernath P F, Blumenstock T, Boone C, Catoire V, Coffey M, De Mazière M, Demoulin P, Duchatelet P, Dupuy E, Hannigan J, Höpfner M, Glatthor N, Griffith D W T, Jin J J, Jones N, Jucks K, Kuellmann H, Kuttippurath J, Lambert A, Mahieu E, McConnell J C, Mellqvist J, Mikuteit S, Murtagh D P, Notholt J, Piccolo C, Raspollini P, Ridolfi M, Robert C, Schneider M, Schrems O, Semeniuk K, Senten C, Stiller G P, Strandberg A, Taylor J, Tétard C, Toohey M, Urban J, Warneke T and Wood S. 2008. Validation of ACE-FTS N2O measurements. Atmospheric Chemistry and Physics, 8(16): 4759-4786 [DOI: 10.5194/acp-8-4759-2008http://dx.doi.org/10.5194/acp-8-4759-2008]
Wang H M, Li X Y, Xu J, Zhang X Y, Ge S L, Chen L F, Wang Y P, Zhu S Y, Miao J and Si Y D. 2018. Assessment of retrieved N2O, NO2, and HF profiles from the atmospheric infrared ultraspectral sounder based on simulated spectra. Sensors, 18(7): 2209 [DOI: 10.3390/s18072209http://dx.doi.org/10.3390/s18072209]
Wang Y P. 2017. Research on Temperature/Pressure and Ozone Retrieval Algorithm Based on Atmospheric Infrared Ultraspectral Spectrometer. Beijing: University of Chinese Academy of Sciences: 1-7
王雅鹏. 2017. 大气红外甚高分辨率掩星探测仪温压及臭氧廓线反演算法研究. 北京: 中国科学院大学: 1-7
Zeng Q C. 1974. Principle of atmospheric infrared telemetry. Beijing: Science Press: 37-40
曾庆存. 1974. 大气红外遥测原理. 北京: 科学出版社: 37-40
Zhu S Y. 2018. Research on spatiotemporal formaldehyde variation analysis and prediction, retrieval and occultation detection pointing information determination algorithms, University of Chinese Academy of Sciences 朱松岩,2018. 甲醛时空变化分析预测与反演以及掩星探测切高校正算法研究. 中国科学院大学)
相关作者
相关机构