面向实时应用的遥感服务技术
Application-oriented real-time remote sensing service technology
- 2021年25卷第1期 页码:15-24
纸质出版日期: 2021-01-07
DOI: 10.11834/jrs.20210260
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-01-07 ,
扫 描 看 全 文
李德仁,丁霖,邵振峰.2021.面向实时应用的遥感服务技术.遥感学报,25(1): 15-24
Li D R,Ding L and Shao Z F. 2021. Application-oriented real-time remote sensing service technology. National Remote Sensing Bulletin, 25(1):15-24
当前中国卫星事业正面临着难得的发展机遇,以应用需求为牵引,着力提升卫星遥感的服务能力,充分发挥卫星的应用效益,突破通信、导航、遥感卫星的系统壁垒,构建通导遥一体化的天基信息实时服务系统,提供全天时、全天候、全地域的面向实时应用的服务。本文首先分析了天空地海对地观测传感网实时服务能力,接着阐述了遥感技术实时应用服务需求(抗震救灾遥感高时效性服务需求、地表形变遥感监测需求、大众实景服务需求等),剖析了基于人工智能的遥感在轨处理技术,最后论述了遥感技术从最初提供数据和信息向提供实时服务的转变趋势。
The aerospace industry in China has developed rapidly over the past 40 years. Remote sensing satellites have grown and gradually developed
and this situation has formed a variety of various satellite series. The communication satellite series
navigation satellite series
Earth observation satellite series
and science and technology test satellite series constitute the current application satellite system in China
which is used in national land and resources survey
meteorological services
environmental monitoring
ocean remote sensing
and other fields. This system provides the foundation for the development of satellite applications.
At present
the satellite systems of communication
navigation
and remote sensing are separate and independent. Thus
they cannot meet the real-time
intelligent
and diversified requirements in the era of big data. In addition to the application of land
surveying and mapping
planning
geology and mining
agriculture
transportation
marine
and other industries
the government
enterprises
and the public have shown a large and urgent need for satellite remote sensing navigation data and services
especially high-resolution satellite remote sensing data and services. The demand of users in different industries and fields for remote sensing data products has gradually changed from singularity and standardization to diversification and specialization; from static investigation to dynamic monitoring
forecasting
and forecasting; from qualitative analysis to quantitative research; and from general application to batch business. Therefore
with the application requirements as the traction
focusing on improving the service capabilities of satellite remote sensing
the communication-navigation-remote sensing integrated space-based information service system with integrated communication
navigation
and remote sensing can be built to provide all-day
all-weather
all-region application-oriented services. This system fully utilizes the benefits of satellite applications. Thus
it breaks the barriers of satellites of communication
navigation
and remote sensing.
Building a space-based information real-time service system (positioning
navigation
timing
remote sensing
communication
PNTRC) based on “one-satellite multitasking
multi-satellite networking
multi-network integration
and intelligent services” that integrates communication
navigation
and remote sensing
has become an important direction for the development of contemporary aerospace information technology. In the era of 5G
Internet of Things
big data and artificial intelligence
it is inevitable to study remote sensing service technologies for real-time applications in the era of 5G
Internet of Things
big data
and artificial intelligence is important to meet people’s strong demand for “fast
accurate
and flexible” remote sensing information services with the way of B2B
B2G
or B2C.
This paper first studied the real-time service capabilities of space-air-ground-sea integrated Earth observation network. Then
the real-time application service requirements of remote sensing technology (requirements for high-efficiency remote sensing services for earthquake and disaster relief
remote sensing monitoring requirements for land surface deformation
and demand for public real-world services) were elaborated. Finally
the on-orbit processing technology based on artificial intelligence was analyzed
and the trend of remote sensing technology transformed from remote sensing information to real-time services was discussed.
遥感天空地海对地观测传感网实时应用服务人工智能在轨处理
remote sensingspace-air-ground-sea integrated earth observation networkreal-time application servicesartificial intelligence on-orbit processing
Chen B Y, Li X Y, Zhang G X, Guo Q, Wu Y P, Wang B Y and Chen F S. 2020. On-orbit installation matrix calibration and its application on AGRI of FY-4A. Journal of Applied Remote Sensing, 14(2): 024507 [DOI: 10.1117/1.JRS.14.024507http://dx.doi.org/10.1117/1.JRS.14.024507]
Chen M, Tomás R, Li Z H, Motagh M, Li T, Hu L Y, Gong H L, Li X J, Yu J and Gong X L. 2016. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sensing, 8(6): 468 [DOI: 10.3390/rs8060468http://dx.doi.org/10.3390/rs8060468]
Dong Y, Fan D Z, Ma Q H, Ji S and Ouyang H. 2019. Automatic on-orbit geometric calibration framework for geostationary optical satellite imagery using open access data. International Journal of Remote Sensing, 40(16): 6154-6184 [DOI: 10.1080/01431161.2019.1587206http://dx.doi.org/10.1080/01431161.2019.1587206]
Feng W Q, Sui H G, Tu J H, Sun K M and Huang W M. 2017. Change detection method for high resolution remote sensing images using random forest. Acta Geodaetica et Cartographica Sinica, 46(11): 1880-1890
冯文卿, 眭海刚, 涂继辉, 孙开敏, 黄伟明. 2017. 高分辨率遥感影像的随机森林变化检测方法. 测绘学报, 46(11): 1880-1890 [DOI: 10.11947/j.AGCS.2017.20170074http://dx.doi.org/10.11947/j.AGCS.2017.20170074]
Goodchild M F. 2007. Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4): 211-221 [DOI: 10.1007/s10708-007-9111-yhttp://dx.doi.org/10.1007/s10708-007-9111-y]
Jiao T Z, Hu Y X, Lv P, Zhang K and Tai X Q. 2020. A method of multi-ship target detection and tracking by on-orbit satellite. Journal of University of Chinese Academy of Sciences, 37(3): 368-378
矫腾章, 胡玉新, 吕鹏, 张凯, 台宪青. 2020. 一种在轨海上多运动舰船目标检测和跟踪方法. 中国科学院大学学报, 37(3): 368-378 [DOI: 10.7523/j.issn.2095-6134.2020.03.010http://dx.doi.org/10.7523/j.issn.2095-6134.2020.03.010]
Li D R. 2012. On Space-air-ground integrated earth observation network. Journal of Geo-information Science, 14(4): 419-425
李德仁. 2012. 论空天地一体化对地观测网络. 地球信息科学学报, 14(4): 419-425 [DOI: 10.3724/SP.J.1047.2012.00419http://dx.doi.org/10.3724/SP.J.1047.2012.00419]
Li D R. 2016a. Towards geo-spatial information science in Big Data Era. Acta Geodaetica et Cartographica Sinica, 45(4): 379-384
李德仁. 2016a. 展望大数据时代的地球空间信息学. 测绘学报, 45(4): 379-384 [DOI: 10.11947/j.AGCS.2016.20160057http://dx.doi.org/10.11947/j.AGCS.2016.20160057]
Li D R. 2016b. The “Internet Plus” space-based information services. Journal of Remote Sensing, 20(5): 708-715
李德仁. 2016b. 论“互联网+”天基信息服务. 遥感学报, 20(5): 708-715 [DOI: 10.11834/jrs.20166222http://dx.doi.org/10.11834/jrs.20166222]
Li D R. 2017. Construction of space-based information real-time service system. People’s Tribune, (18): 26-27
李德仁. 2017. 建设天基信息实时服务系统的设想. 人民论坛, (18): 26-27 [DOI: 10.16619/j.cnki.rmlt.2017.18.012]
Li D R. 2018. Brain cognition and spatial cognition: on integration of geo-spatial big data and artificial intelligence. Geomatics and Information Science of Wuhan University, 43(12): 1761-1767
李德仁. 2018. 脑认知与空间认知——论空间大数据与人工智能的集成. 武汉大学学报(信息科学版), 43(12): 1761-1767 [DOI: 10.13203/j.whugis20180411http://dx.doi.org/10.13203/j.whugis20180411]
Li D R. 2019. Towards geospatial information technology in 5G/6G era. Acta Geodaetica et Cartographica Sinica, 48(12): 1475-1481
李德仁. 2019. 展望5G/6G时代的地球空间信息技术. 测绘学报, 48(12): 1475-1481 [DOI: 10.11947/j.AGCS.2019.20190437http://dx.doi.org/10.11947/j.AGCS.2019.20190437]
Li D R, Shao Z F, Yu W B, Zhu X Y and Zhou S H. 2020. Public epidemic prevention and control services based on big data of spatiotemporal location make cities more smart. Geomatics and Information Science of Wuhan University, 45(4): 475-487, 556
李德仁, 邵振峰, 于文博, 朱欣焰, 周素红. 2020. 基于时空位置大数据的公共疫情防控服务让城市更智慧. 武汉大学学报(信息科学版), 45(4): 475-487, 556 [DOI: 10.13203/j.whugis20200145http://dx.doi.org/10.13203/j.whugis20200145]
Li D R, Tong Q X, Li R X, Gong J Y and Zhang L P. 2012. Current issues in high-resolution Earth observation technology. Science China Earth Sciences, 55(7): 1043-1051 [DOI: 10.1007/s11430-012-4445-9http://dx.doi.org/10.1007/s11430-012-4445-9]
Li D R, Wang M, Shen X and Dong Z P. 2017. From earth observation satellite to earth observation brain. Geomatics and Information Science of Wuhan University, 42(2): 143-149
李德仁, 王密, 沈欣, 董志鹏. 2017. 从对地观测卫星到对地观测脑. 武汉大学学报(信息科学版), 42(2): 143-149 [DOI: 10.13203/j.whugis20160526http://dx.doi.org/10.13203/j.whugis20160526]
Li D R, Zhang G, Shen X, Zhong X, Jiang Y H, Wang T Y, Tu J G and Li Z J. 2019. Design and processing night light remote sensing of LJ-1 01 satellite. Journal of Remote Sensing, 23(6): 1011-1022
李德仁, 张过, 沈欣, 钟兴, 蒋永华, 汪韬阳, 涂建光, 李治江. 2019. 珞珈一号01星夜光遥感设计与处理. 遥感学报, 23(6): 1011-1022 [DOI: 10.11834/jrs.20199327http://dx.doi.org/10.11834/jrs.20199327]
Shao Z F, Pan Y, Diao C Y and Cai J J. 2019. Cloud detection in remote sensing images based on multiscale features-convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 57(6): 4062-4076 [DOI: 10.1109/TGRS.2018.2889677http://dx.doi.org/10.1109/TGRS.2018.2889677]
Sui H G, Liu C X, Huang L H and Hua L. 2019. Application of remote sensing technology in earthquake-induced building damage detection. Geomatics and Information Science of Wuhan University, 44(7): 1008-1019
眭海刚, 刘超贤, 黄立洪, 华丽. 2019. 遥感技术在震后建筑物损毁检测中的应用. 武汉大学学报(信息科学版), 44(7): 1008-1019 [DOI: 10.13203/j.whugis20190070http://dx.doi.org/10.13203/j.whugis20190070]
Sui H G, Liu C X, Liu J Y, Zheng X C, Li H F, Yu S H and Li Q Y. 2020. Reflection and exploration of rapid remote sensing emergency response for typical natural disasters. Geomatics and Information Science of Wuhan University, 45(8): 1137-1145
眭海刚, 刘超贤, 刘俊怡, 郑晓翠, 李海峰, 于树海, 李器宇. 2020. 典型自然灾害遥感快速应急响应的思考与实践. 武汉大学学报(信息科学版), 45(8): 1137-1145 [DOI: 10.13203/j.whugis20200065http://dx.doi.org/10.13203/j.whugis20200065]
Tang Y, Wang L J, Ma G C, Jia H J and Jin X. 2019. Emergency monitoring of high-level landslide disasters in Jinsha River using domestic remote sensing satellites. Journal of Remote Sensing, 23(2): 252-261
唐尧, 王立娟, 马国超, 贾虎军, 靳晓. 2019. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测. 遥感学报, 23(2): 252-261 [DOI: 10.11834/jrs.20198405http://dx.doi.org/10.11834/jrs.20198405]
Wang M, Cheng Y F, Chang X L, Jin S Y and Zhu Y. 2017. On-orbit geometric calibration and geometric quality assessment for the high-resolution geostationary optical satellite GaoFen4. ISPRS Journal of Photogrammetry and Remote Sensing, 125: 63-77 [DOI: 10.1016/j.isprsjprs.2017.01.004http://dx.doi.org/10.1016/j.isprsjprs.2017.01.004]
Wang M, Cheng Y F, Tian Y, He L X and Wang Y L. 2018. A new on-orbit geometric self-calibration approach for the high-resolution geostationary optical satellite GaoFen4. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5): 1670-1683 [DOI: 10.1109/JSTARS.2018.2814205http://dx.doi.org/10.1109/JSTARS.2018.2814205]
Wang M and Yang F. 2019. Intelligent remote sensing satellite and remote sensing image real-time service. Acta Geodaetica et Cartographica Sinica, 48(12): 1586-1594
王密, 杨芳. 2019. 智能遥感卫星与遥感影像实时服务. 测绘学报, 48(12): 1586-1594 [DOI: 10.11947/j.AGCS.2019.20190454http://dx.doi.org/10.11947/j.AGCS.2019.20190454]
Wang Y L, Wang M and Zhu Y. 2020. On-Orbit Calibration of installation parameter of multiple star sensors system for optical remote sensing satellite with ground control points. Remote Sensing, 12(7): 1055 [DOI: 10.3390/rs12071055http://dx.doi.org/10.3390/rs12071055]
Yu S H, Yu Y B, He X J, Lu M, Wang P, An X D and Fang X C. 2020. On-board fast and intelligent perception of ships with the “Jilin-1” spectrum 01/02 satellites. IEEE Access, 8: 48005-48014 [DOI: 10.1109/ACCESS.2020.2979476http://dx.doi.org/10.1109/ACCESS.2020.2979476]
Zhang G, Wang J Y, Jiang Y H, Zhou P, Zhao Y B and Xu Y. 2019. On-orbit geometric calibration and validation of Luojia 1-01 night-light satellite. Remote Sensing, 11(3): 264 [DOI: 10.3390/rs11030264http://dx.doi.org/10.3390/rs11030264]
相关作者
相关机构