气溶胶细粒子比偏振遥感最优化反演方法研究
Optimal estimation algorithm research for aerosol fine-mode fraction retrieval from polarimetric measurements
- 2022年26卷第12期 页码:2497-2506
纸质出版日期: 2022-12-07
DOI: 10.11834/jrs.20210276
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-12-07 ,
扫 描 看 全 文
郑逢勋,李正强,侯伟真,董晓刚,周志远.2022.气溶胶细粒子比偏振遥感最优化反演方法研究.遥感学报,26(12): 2497-2506
Zheng F X,Li Z Q,Hou W Z,Dong X G and Zhou Z Y. 2022. Optimal estimation algorithm research for aerosol fine-mode fraction retrieval from polarimetric measurements. National Remote Sensing Bulletin, 26(12):2497-2506
针对PM
2.5
遥感模型对气溶胶细粒子比FMF(Fine mode fraction)参数的需求,结合多光谱偏振传感器对大气探测的优势,基于最优估计OE(Optimal Estimation)反演框架,提出了一种基于线偏振度(Degree of Linear Polarization)测量的FMF最优化反演方法。采用矢量化的辐射传输模式UNL-VRTM进行地基天空光的线偏振度观测模拟,分析了线偏振度对FMF参数的波段敏感性,并基于仿真数据开展了算法的反演测试。研究结果表明:偏振测量在长波近红外波段对FMF的敏感性高于可见光波段;基于OE框架的FMF反演算法具有良好的闭合性;在地基天顶观测模式下,引入线偏振度测量参与反演能够有效提高FMF的反演精度,FMF反演误差从1.4%下降到了0.18%。最优化反演方法对于气溶胶遥感具有一定的潜力和可行性,有望成为提高PM
2.5
遥感监测能力的新途径。
Monitoring the atmospheric particle pollution is one of priorities for environmental protection. To infer the near-surface fine particulate matter (PM
2.5
) mass concentration
aerosol Fine-Mode Fraction (FMF) is an important parameter
which can separate contributions from smaller and bigger particles in Aerosol Optical Depth (AOD). However
there still have great challenges for the conversion between FMF and remotely sensed optical measurements. As one of the most promising methods of remote sensing
polarimetry is widely employed for atmospheric aerosol monitoring
and has a good potential for improving FMF inversion. In order to investigate the contribution of polarization to the for improved characterization of FMF
an algorithm for FMF retrieval from multispectral intensity and Degree Of Linear Polarization (DOLP) measurements is proposed in this paper.
The proposed algorithm is based on the Optimal Estimation (OE) inversion theory. The UNified Linearized Vector Radiative Transfer Model (UNL-VRTM) is adopted as the forward model
and the quasi-Newton approach implemented by the L-BFGS-B code is used to find the minimum of the cost function. In order to test the performance of the algorithm
synthetic data for ground-based measurements of sky light
in the conditions of different aerosol optical depth (AOD
from 0.1 to 3.0) and FMF (from 0.05 to 0.95)
are simulated. In addition
near-infrared (NIR) measurements at a wavelength of 1610 nm were introduced to improve the retrieval of coarse mode aerosol. Under the OE inversion framework
the AOD and FMF can be retrieved simultaneously after several iterations.
Based on the synthetic data
analysis shows that the DOLP is more sensitive to FMF in the NIR band (centered at 1610 nm) than in the visible band (centered at 490
550
670 and 870 nm). Numerical inversion test furtherly show that the algorithm has well self-consistency
the error of retrieved FMF caused by the algorithm itself is 0.014%. In the case of 5% observation error is considered
the average fitting residual
differences between the simulations with best inversion results and the measurements
is 5.2%
which is slightly higher than the intensity observation error (5%). By introducing DOLP measurements into the retrieval
the inversion accuracy improved significantly than only using the intensity measurements. The retrieval error of AOD has decreased from 1% to 0.3%
and the retrieval error of FMF has decreased from 1.4% to 0.18%.
These results strongly validate the feasibility and potentiality of the proposed OE inversion method in atmospheric aerosol polarimetric remote sensing. This mechanism is expected to be a new approach to improving the remote sensing capabilities of PM
2.5
monitoring.
遥感线偏振度气溶胶细粒子比最优估计反演
remote sensingdegree of linear polarizationaerosolfine mode fractionoptimal estimation retrieval
Che H Z, Qi B, Zhao H J, Xia X G, Thomas F, Goloub P, Dubovik O, Estelles V, Cuevas-Agulló E, Blarel L, Wu Y F, Zhu J, Du R G, Wang Y Q, Wang H, Gui K, Yu J, Zheng Y, Sun T Z, Chen Q L, Shi G Y and Zhang X Y. 2018. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in Eastern China. Atmospheric Chemistry and Physics, 18(1): 405-425 [DOI: 10.5194/acp-18-405-2018http://dx.doi.org/10.5194/acp-18-405-2018]
Chen X, Wang J, Liu Y, Xu X G, Cai Z N, Yang D X, Yan C and Feng L. 2017a. Angular dependence of aerosol information content in CAPI/TanSat observation over land: effect of polarization and synergy with A-train satellites. Remote Sensing of Environment, 196: 163-177 [DOI: 10.1016/j.rse.2017.05.007http://dx.doi.org/10.1016/j.rse.2017.05.007]
Chen X, Yang D X, Cai Z N, Liu Y and Spurr R J D. 2017b. Aerosol retrieval sensitivity and error analysis for the cloud and aerosol polarimetric imager on board TanSat: the effect of multi-angle measurement. Remote Sensing, 9(2): 183:1-18 [DOI: 10.3390/rs9020183http://dx.doi.org/10.3390/rs9020183]
Chen W, Li Y F, Wu T X and Guan G X. 2018. Preliminary research on sky polarization and influential factors. Journal of Remote Sensing. 22(6): 989-995
陈伟, 李延飞, 吴太夏, 关桂霞. 2018. 全天空偏振模式及其影响因素初探. 遥感学报, 22(6): 989-995 [DOI: 10.11834/jrs.20187378http://dx.doi.org/10.11834/jrs.20187378]
Cohen A J, Brauer M, Burnett R, Anderson H R, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H D, Knibbs L, Liu Y, Martin R, Morawska L, Pope C A, Shin H, Straif K, Shaddick G, Thomas M, Van Dingenen R, Van Donkelaar A, Vos T, Murray C J L and Forouzanfar M H. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082): 1907-1918 [DOI: 10.1016/S0140-6736(17)30505-6http://dx.doi.org/10.1016/S0140-6736(17)30505-6]
Diner D J, Hodos R A, Davis A B, Garay M J, Martonchik J V, Sanghavi S V, Allmen P, Kokhanovsky A A and Zhai P W. 2012. An optimization approach for aerosol retrievals using simulated MISR radiances. Atmospheric Research, 116: 1-14 [DOI: 10.1016/j.atmosres.2011.05.020http://dx.doi.org/10.1016/j.atmosres.2011.05.020]
Dubovik O and King M D. 2000. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research: Atmospheres, 105(D16): 20673-20696 [DOI: 10.1029/2000JD900282http://dx.doi.org/10.1029/2000JD900282]
Dubovik O, Herman M, Holdak A, Holdak A, Lapyonok T, Tanré D, Deuzé J L, Ducos F, Sinyuk A and Lopatin A. 2011. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmospheric Measurement Techniques, 4(5): 975-1018 [DOI: 10.5194/amt-4-975-2011http://dx.doi.org/10.5194/amt-4-975-2011]
Dubovik O, Li Z Q, Mishchenko M I, Tanré D, Karol Y, Bojkov B, Cairns B, Diner D J, Espinosa W R, Goloub P, Gu X F, Hasekamp O, Hong J, Hou W Z, Knobelspiesse K D, Landgraf J, Li L, Litvinov P, Liu Y, Lopatin A, Marbach T, Maring H, Martins V, Meijer Y, Milinevsky G, Mukai S, Parol F, Qiao Y L, Remer L, Rietjens J, Sano I, Stammes P, Stamnes S, Sun X B, Tabary P, Travis L D, Waquet F, Xu F, Yan C X and Yin D K. 2019. Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives. Journal of Quantitative Spectroscopy and Radiative Transfer, 224: 474-511 [DOI: 10.1016/j.jqsrt.2018.11.024http://dx.doi.org/10.1016/j.jqsrt.2018.11.024]
Fedarenka A, Dubovik O, Goloub P, Li Z Q, Lapyonok T, Litvinov P, Barel L, Gonzalez L, Podvin T and Crozel D. 2016. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis. Journal of Quantitative Spectroscopy & Radiative Transfer, 179:72-97[DOI: 10.1016/j.jqsrt.2016.03.021http://dx.doi.org/10.1016/j.jqsrt.2016.03.021]
Gu X F and Tong X D. 2015. Overview of China earth observation satellite programs [space agencies]. IEEE Geoscience and Remote Sensing Magazine, 3(3): 113-129 [DOI: 10.1109/MGRS.2015.2467172http://dx.doi.org/10.1109/MGRS.2015.2467172]
Hoek G, Krishnan R M, Beelen R, Peters A, Ostro B, Brunekreef B and Kaufman J D. 2013. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environmental Health, 12(1):43: 1-15 [DOI: 10.1186/1476-069X-12-43http://dx.doi.org/10.1186/1476-069X-12-43]
Hou W Z, Li Z Q, Song C Y, Lin J, Ma Y, Ge B Y and Zheng F X. 2019. Study on errors propagation in synchronous atmospheric correction for HJ-2 satellites//Proceedings of SPIE 11338, AOPC 2019: Optical Sensing and Imaging Technology. 113380V: 1-6 [DOI: 10.1117/12.2542736http://dx.doi.org/10.1117/12.2542736]
Hou W Z, Wang J, Xu X G, Reid J S and Han D. 2016. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework. Journal of Quantitative Spectroscopy and Radiative Transfer, 178: 400-415 [DOI: 10.1016/j.jqsrt.2016.01.019http://dx.doi.org/10.1016/j.jqsrt.2016.01.019]
Hou W Z, Wang J, Xu X G and Reid J S. 2017. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra. Journal of Quantitative Spectroscopy and Radiative Transfer, 192: 14-29 [DOI: 10.1016/j.jqsrt.2017.01.041http://dx.doi.org/10.1016/j.jqsrt.2017.01.041]
Hou W Z, Wang J, Xu X G, Reid J S, Janz S J and Leitch J W. 2020. An algorithm for hyperspectral remote sensing of aerosols: 3. Application to the GEO-TASO data in KORUS-AQ field campaign. Journal of Quantitative Spectroscopy and Radiative Transfer, 253(107161): 1-22 [DOI: 10.1016/j.jqsrt.2020.107161http://dx.doi.org/10.1016/j.jqsrt.2020.107161]
Jeong U, Kim J, Ahn C, Torres O, Liu X, Bhartia P K, Spurr R, Haffner D, Chance K and Holben B N. 2016. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations. Atmospheric Chemistry and Physics, 16(1): 177-193 [DOI: 10.5194/acp-16-177-2016http://dx.doi.org/10.5194/acp-16-177-2016]
Kim M J, Torres O, Ahn C, Kim W, Jeong U, Go S J, Liu X, Moon K J and Kim D R. 2018. Optimal estimation-based algorithm to retrieve aerosol optical properties for GEMS measurements over Asia. Remote Sensing, 10(2): 162 [DOI:10.3390/rs10020162http://dx.doi.org/10.3390/rs10020162]
Levy R C, Remer L A, Kleidman R G, Mattoo S, Ichoku C, Kahn R and Eck T F. 2010. Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21): 10399-10420 [DOI: 10.5194/acp-10-10399-2010http://dx.doi.org/10.5194/acp-10-10399-2010]
Li L, Che H Z, Derimian Y, Dubovik O, Luan Q Z, Li Q Y, Huang X Y, Zhao H J, Gui K, Zheng Y, An L C, Sun T Z and Liang Y X. 2020. Climatology of fine and coarse mode aerosol optical thickness over East and South Asia derived from POLDER/PARASOL Satellite. Journal of Geophysical Research: Atmospheres, 125(e2020JD032665): 1-30 [DOI: 10.1029/2020JD032665http://dx.doi.org/10.1029/2020JD032665]
Li Z Q, Goloub P, Devaux C, Gu X F, Deuzé J L, Qiao Y L and Zhao F S. 2006. Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements. Remote Sensing of Environment, 101(4): 519-533[DOI: 10.1016/j.rse.2006.01.012http://dx.doi.org/10.1016/j.rse.2006.01.012]
Li Z Q, Goloub P, Dubovik O, Blarel L, Zhang W X, Podvin T, Sinyuk A, Sorokin M, Chen H B, Holben B, Tanré D, Canini M and Buis J P. 2009. Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(17): 1954-1961 [DOI: 10.1016/j.jqsrt.2009.04.009http://dx.doi.org/10.1016/j.jqsrt.2009.04.009]
Li Z Q, Hou W Z, Hong J, Zheng F X, Luo D G, Wang J, Gu X F and Qiao Y L. 2018a. Directional Polarimetric Camera (DPC): monitoring aerosol spectral optical properties over land from satellite observation. Journal of Quantitative Spectroscopy and Radiative Transfer, 218: 21-37 [DOI: 10.1016/j.jqsrt.2018.07.003http://dx.doi.org/10.1016/j.jqsrt.2018.07.003]
Li Z Q, Li K T, Li L, Xu H, Xie Y S, Ma Y, Li D H, Goloub P, Yuan Y L and Zheng X B. 2018b. Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system. Applied Optics, 57(5): 1011-1018 [DOI: 10.1364/AO.57.001011http://dx.doi.org/10.1364/AO.57.001011]
Li Z Q, Zhang Y, Shao J, Li B S, Hong J, Liu D, Li D H, Wei P, Li W, Li L, Zhang F X, Guo J, Deng Q, Wang B X, Cui C L, Zhang W C, Wang Z Z, Lv Y, Xu H, Chen X F, Li L and Qie L. 2016. Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground: method validation using ground-based measurements. Remote Sensing of Environment, 173: 59-68 [DOI: 10.1016/j.rse.2015.11.019http://dx.doi.org/10.1016/j.rse.2015.11.019]
O'Neill N, Eck T, Smirnov A, Holben B N and Thulasiraman S. 2003. Spectral discrimination of coarse and fine mode optical depth. Journal of Geophysical Research: Atmospheres, 108(D17), 4559:1-15 [DOI: 10.1029/2002JD002975http://dx.doi.org/10.1029/2002JD002975]
Qie L, Li Z Q, Sun X B, Sun B, Li D H, Liu Z, Huang W, Wang H, Chen X F, Hou W Z and Qiao Y L. 2015. Improving remote sensing of aerosol optical depth over land by polarimetric measurements at 1640 nm: airborne test in North China. Remote Sensing, 7(5): 6240-6256[DOI: 10.3390/rs70506240http://dx.doi.org/10.3390/rs70506240]
Rodgers C D. 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. Singapore: World Scientific.
Román R, Benavent-Oltra J A, Casquero-Vera J A, Lopatin A, Cazorla A, Lyamani H, Denjean C, Fuertes D, Pérez-Ramírez D, Torres B, Toledano C, Dubovik O, Cachorro V E, Frutos A M, Olmo F J and Alados-Arboledas L. 2018. Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code. Atmospheric Research, 204:161-177 [DOI: 10.1016/j.atmosres.2018.01.021http://dx.doi.org/10.1016/j.atmosres.2018.01.021]
Song C B, He J J, Wu L, Jin T S, Chen X, Li R P, Ren P P, Zhang L and Mao H J. 2017. Health burden attributable to ambient PM2.5 in China. Environmental Pollution, 223: 575-586 [DOI: 10.1016/j.envpol.2017.01.060http://dx.doi.org/10.1016/j.envpol.2017.01.060]
Torres B, Dubovik O, Fuertes D, Schuster G, Cachorro V E, Lapyonok T, Goloub P, Blarel L, Barreto A, Mallet M, Toledano C and Tanré D. 2017. Advanced characterisation of aerosol size properties from measurements of spectral optical depth using the GRASP algorithm. Atmospheric Measurement Techniques, 10(10): 3743-3781 [DOI: 10.5194/amt-10-3743-2017http://dx.doi.org/10.5194/amt-10-3743-2017]
Wang H, Sun X B, Sun B, Liang T Q, Li C L and Hong J. 2014. Retrieval of aerosol optical properties over a vegetation surface using multi-angular, multi-spectral, and polarized data. Advances in Atmospheric Sciences, 31(4): 879-887 [DOI: 10.1007/s00376-013-3100-5http://dx.doi.org/10.1007/s00376-013-3100-5]
Wei Y Y, Li Z Q, Zhang Y, Chen C, Dubovik O, Zhang Y, Xu H, Li K T, Chen J, Wang H F, Ge B Y and Fan C. 2020. Validation of POLDER GRASP aerosol optical retrieval over China using SONET observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 246(106931):1-13[DOI: 10.1016/j.jqsrt.2020.106931http://dx.doi.org/10.1016/j.jqsrt.2020.106931]
Wu L, Hasekamp O, Van Diedenhoven B, Cairns B. 2015. Aerosol retrieval from multiangle, multispectral photopolarimetric measurements: importance of spectral range and angular resolution. Atmospheric Measurement Techniques, 8(6): 2625-2638 [DOI: 10.5194/amt-8-2625-2015http://dx.doi.org/10.5194/amt-8-2625-2015]
Xu X G and Wang J. 2015. Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 1. Information content analysis. Journal of Geophysical Research: Atmospheres, 120(14): 7059-7078 [DOI: 10.1002/2015JD023108http://dx.doi.org/10.1002/2015JD023108]
Xu X G, Wang J, Henze D K, Qu W J and Kopacz M. 2013. Constraints on aerosol sources using GEOS-Chem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data. Journal of Geophysical Research: Atmospheres, 118(12): 6396-6413[DOI: 10.1002/jgrd.50515http://dx.doi.org/10.1002/jgrd.50515]
Xu X G, Wang J, Zeng J, Spurr R, Liu X, Dubovik O, Li L, Li Z Q, Mishchenko M I, Siniuk A and Holben B. 2015. Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 2. A new research algorithm and case demonstration. Journal of Geophysical Research: Atmospheres, 120(14): 7079-7098 [DOI: 10.1002/2015JD023113http://dx.doi.org/10.1002/2015JD023113]
Yan L, Gu X F, Chu J H, You Z, Liu S Y, Motimor H and Chandrasekar V. 2018. Optical polarized effects for high-resolution quantitative remote sensing and new polarization remote sensing fields. Journal of Remote Sensing, 22(6):901-916
晏磊, 顾行发, 褚君浩, 尤政, 刘世元, Motimor H, Chandrasekar V. 2018. 高分辨率定量遥感的偏振光效应与偏振遥感新领域, 遥感学报, 22(6): 901-916 [DOI: 10.11834/jrs.20187380http://dx.doi.org/10.11834/jrs.20187380]
Yan X, Shi W Z, Li Z Q, Li Z Q, Luo N N, Zhao W J, Wang H F and Yu X. 2017a. Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China. Atmospheric Environment, 170:290-302 [DOI: 10.1016/j.atmosenv.2017.09.023http://dx.doi.org/10.1016/j.atmosenv.2017.09.023]
Yan X, Li Z Q, Shi W Z, Luo N N, Wu T X and Zhao W J. 2017b. An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness, part 1: algorithm development. Remote Sensing of Environment, 192: 87-97 [DOI: 10.1016/j.rse.2017.02.005http://dx.doi.org/10.1016/j.rse.2017.02.005]
Yan X, Li Z Q, Luo N N, Shi W Z, Zhao W J, Yang X C, Liang C, Zhang F and Cribb M. 2019. An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness. Part 2: Application and validation in Asia. Remote Sensing of Environment, 222: 90-103[DOI: 10.1016/j.rse.2018.12.012http://dx.doi.org/10.1016/j.rse.2018.12.012]
Yang H C, Hong J, Zou P, Song M X, Yang B Y and Liu Z H. 2019. Onboard Polarization Calibrators of Spaceborne Particulate Observing Scanning Polarimeter. Acta Optica Sinic. 39(9):205-213
杨洪春, 洪津, 邹鹏, 宋茂新, 杨本永, 刘振海. 2019. 星载偏振扫描仪星上偏振定标器, 光学学报, 39(9): 205-213 [DOI: 10.3788/AOS201939.0912005http://dx.doi.org/10.3788/AOS201939.0912005]
Zhang Y and Li Z Q. 2015. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sensing of Environment, 160: 252-262 [DOI: 10.1016/j.rse.2015.02.005http://dx.doi.org/10.1016/j.rse.2015.02.005]
Zhang Y, Li Z Q, Qie L, Zhang Y, Liu Z H, Chen X F, Hou W Z, Li K T, Li D H and Xu H. 2016a. Retrieval of aerosol fine-mode fraction from intensity and polarization measurements by PARASOL over East Asia. Remote Sensing, 8(5): 417 :1-18 [DOI: 10.3390/rs8050417http://dx.doi.org/10.3390/rs8050417]
Zhang Y, Li Z Q, Zhang Y H, Chen Y, Cuesta J and Ma Y. 2016b. Multi-peak accumulation and coarse modes observed from AERONET retrieved aerosol volume size distribution in Beijing. Meteorology and Atmospheric Physics, 128(4): 537-544 [DOI: 10.1007/s00703-016-0435-3http://dx.doi.org/10.1007/s00703-016-0435-3]
Zhao A M, Li Z Q, Zhang Y, Zhang Y and Li D. 2017. Merging MODIS and ground-based fine mode fraction of aerosols based on the geostatistical data fusion method. Atmosphere, 8(7): 117: 1-16 [DOI: 10.3390/atmos8070117http://dx.doi.org/10.3390/atmos8070117]
Zheng F X, Hou W Z and Li Z Q. 2019. Optimal estimation retrieval for directional polarimetric camera onboard Chinese Gaofen-5 satellite: an analysis on multi-angle dependence and a posteriori error. Acta Physica Sinica, 68(4): 192-207
郑逢勋, 侯伟真, 李正强. 2019. 高分五号卫星多角度偏振相机最优化估计反演: 角度依赖与后验误差分析. 物理学报, 68(4): 192-207 [DOI: 10.7498/aps.68.20181682http://dx.doi.org/10.7498/aps.68.20181682]
相关作者
相关机构