机载LiDAR测深中海底地形坡度的影响及改正
Analysis and correction in the airborne LiDAR bathymetric error caused by the effect of seafloor topography slope
- 2022年26卷第12期 页码:2642-2654
纸质出版日期: 2022-12-07
DOI: 10.11834/jrs.20210285
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-12-07 ,
扫 描 看 全 文
亓超,宿殿鹏,阳凡林,马跃,王贤昆,杨安秀.2022.机载LiDAR测深中海底地形坡度的影响及改正.遥感学报,26(12): 2642-2654
Qi C,Su D P,Yang F L,Ma Y,Wang X K and Yang A X. 2022. Analysis and correction in the airborne LiDAR bathymetric error caused by the effect of seafloor topography slope. National Remote Sensing Bulletin, 26(12):2642-2654
机载LiDAR测深ALB (Airborne LiDAR Bathymetry)是测量沿海地区地形图和水深图的最有效的技术之一,其通常是利用ALB海面和海底反射回波的峰值位置来计算水深值。然而,当绿色(532 nm)激光光束到达海底时,光斑范围内的具有坡度的海底地形会导致海底反射回波波形展宽、峰值位置偏移等现象,从而产生海底位置的不确定性,进而直接影响海底地形测量的准确性。为了减小这种影响,本文提出了一种机载LiDAR测深的海底地形坡度影响改正方法。通过考虑ALB激光光斑内海底地形的连续性,基于ALB激光光斑范围内局部地形参数模型FTPM (Footprint-scale Topography Parameters Model)构建ALB海底反射回波模型,通过定量分析不同水深、不同海底地形坡度所引起的海底反射回波峰值位置变化,以确定海底地形坡度对ALB测深的影响规律,进而构建ALB测深误差方程针对性地改正海底地形坡度引起的测深误差。本文采用中国南海甘泉岛附近海域所测ALB和多波束测深数据对所提方法进行了验证。结果表明,海底地形坡度影响改正后,平均绝对误差MAE (Mean Absolute Error)和中误差RMSE (Root Mean Square Error)分别减小到9.4 cm和12.3 cm,较改正前分别降低了35.6%和33.5%,对ALB测深数据处理具有参考意义。
The airborne LiDAR bathymetry (ALB) is one of the most effective technologies to retrieve the topographic and bathymetric maps of coastal zones. The water depth is typically calculated from the sea surface and seafloor peak positions of the ALB waveforms. However
the seafloor topography slope within the footprint scale causes the seafloor waveform stretching and peak shifting when the blue-green laser beam reaches the seafloor
which induces the timing uncertainly to influence the accuracy of the measured seafloor topography. In this work
a correction method in the airborne LiDAR bathymetric error caused by the effect of seafloor topography slope at the footprint scale is proposed to reduce the influence.
In this method
the ALB seafloor waveform simulation model is achieved based on the footprint-scale topography parameters model
taking into account the effect of seafloor topography. The ALB error correction equation is obtained based on the quantitative relationship between seafloor topography slope and peak timing of echo waveforms. The developed method is used to correct the ALB data collected near Ganquan Island in the South China Sea and verified by the topography data captured by a ship-borne multi-beam echo sounder.
Results show that the mean absolute error and root mean square error are reduced to 9.4 and 12.3 cm after the correction
respectively. Specifically
MAE and RMSE decreased by 35.6% and 33.5%
respectively.
遥感机载LiDAR测深海底地形海底坡度水深改正海底光斑
remote sensingairborne LiDAR bathymetry (ALB)seafloor topographyseafloor slopedepth correctionlaser beam footprint at the seafloor
Abdallah H, Baghdadi N, Bailly J S, Pastol Y and Fabre F. 2012. Wa-LiD: a new LiDAR simulator for waters. IEEE Geoscience and Remote Sensing Letters, 9(4): 744-748 [DOI: 10.1109/LGRS.2011.2180506http://dx.doi.org/10.1109/LGRS.2011.2180506]
Bouhdaoui A, Bailly J S, Baghdadi N and Abady L. 2014. Modeling the water bottom geometry effect on peak time shifting in LiDAR bathymetric waveforms. IEEE Geoscience and Remote Sensing Letters, 11(7): 1285-1289 [DOI: 10.1109/LGRS.2013.2292814http://dx.doi.org/10.1109/LGRS.2013.2292814]
Doneus M, Doneus N, Briese C, Pregesbauer M, Mandlburger G and Verhoeven G. 2013. Airborne laser bathymetry-detecting and recording submerged archaeological sites from the air. Journal of Archaeological Science, 40(4): 2136-2151 [DOI: 10.1016/j.jas.2012.12.021http://dx.doi.org/10.1016/j.jas.2012.12.021]
Guenther G C. 2007. Airborne LIDAR bathymetry//Digital Elevation Model Technologies and Applications: The Dem User’s Manual 2nd Edition. Bethesda: American Society for Photogrammetry and Remote Sensing: 253-320
Hu S J, He Y, Yu J Y, Lü D L, Hou C H and Chen W B. 2019. Method for Solving echo time of pulse laser ranging based on deep learning. Chinese Journal of Lasers, 46(10): 302-311
胡善江, 贺岩, 俞家勇, 吕德亮, 侯春鹤, 陈卫标. 2019. 基于深度学习的脉冲激光测距回波时刻解算方法. 中国激光, 46(10): 302-311 [DOI: 10.3788/CJL201946.1010001http://dx.doi.org/10.3788/CJL201946.1010001]
Huang R Y, Yu K F, Wang Y H, Liu J L and Zhang H Y. 2019. Progress of the study on coral reef remote sensing. National Remote Sensing Bulletin, 23(6): 1091-1112
黄荣永, 余克服, 王英辉, 刘嘉鎏, 张惠雅. 2019. 珊瑚礁遥感研究进展. 遥感学报, 23(6): 1091-1112 [DOI: 10.11834/jrs.20198110http://dx.doi.org/10.11834/jrs.20198110]
IHO. 2020. IHO Standards for Hydrographic Surveys S-44 6th Edition. Monaco: International Hydrographic Organization. [2022-10-11]. https://iho.int/uploads/user/pubs/standards/s-44/S-44_Edition_6.0.0_EN.pdfhttps://iho.int/uploads/user/pubs/standards/s-44/S-44_Edition_6.0.0_EN.pdf
Jutzi B and Stilla U. 2006. Range determination with waveform recording laser systems using a Wiener filter. ISPRS Journal of Photogrammetry and Remote Sensing, 61(2): 95-107 [DOI: 10.1016/j.isprsjprs.2006.09.001http://dx.doi.org/10.1016/j.isprsjprs.2006.09.001]
Li H P, Li G Y, Cai Z J and Wu G H. 2019. Full-waveform LiDAR echo decomposition method. National Remote Sensing Bulletin, 23(1): 89-98
李洪鹏, 李国元, 蔡志坚, 吴冠豪. 2019. 全波形激光雷达回波分解方法. 遥感学报, 23(1): 89-98 [DOI: 10.11834/jrs.20197518http://dx.doi.org/10.11834/jrs.20197518]
Liu J L, Huang R Y and Yu K F. 2020. Analysis on the geomorphic changes of Huangyan Island based on satellite images over the past 40 years. Quaternary Sciences, 40(3): 775-790
刘嘉鎏, 黄荣永, 余克服. 2020. 黄岩岛环礁地貌近40年变化的遥感分析. 第四纪研究, 40(3): 775-790 [DOI: 10.11928/j.issn.1001-7410.2020.03.15http://dx.doi.org/10.11928/j.issn.1001-7410.2020.03.15]
Li K, Tong X C, Zhang Y S, Ha C L and Shen E H. 2015. Inversion of diffuse attenuation coefficient spectral in the yellow sea/East China Sea and evaluation of laser bathymetric performance. National Remote Sensing Bulletin, 19(5): 761-769
李凯, 童晓冲, 张永生, 哈长亮, 申二华. 2015. 黄海、东海区域漫衰减系数光谱遥感反演及激光测深性能评估. 遥感学报, 19(5): 761-769 [DOI: 10.11834/jrs.20154276http://dx.doi.org/10.11834/jrs.20154276]
Li Y M, Guo Q H, Wan B, Qin H N, Wang D Z, Xu K X, Song S L, Sun Q H, Zhao X X, Yang M H, Wu X Y, Wei D J, Hu T Y and Su Y J. 2021. Current status and prospect of three-dimensional dynamic monitoring of natural resources based on LiDAR. National Remote Sensing Bulletin, 25(1): 381-402
李玉美, 郭庆华, 万波, 秦宏楠, 王德智, 徐可心, 宋师琳, 孙千惠, 赵晓霞, 杨默含, 吴晓永, 魏邓杰, 胡天宇, 苏艳军. 2021. 基于激光雷达的自然资源三维动态监测现状与展望. 遥感学报, 25(1): 381-402 [DOI: 10.11834/jrs.20210351http://dx.doi.org/10.11834/jrs.20210351]
Li Q Q, Zhu J S, Wang C S, Guan M L, Ding K and Zou Y J. 2017. Shipborne combined laser and bathymetric surveying technique in coastal zone: an overview. Journal of Geomatics, 42(5):1-6
李清泉, 朱家松, 汪驰升, 管明雷, 丁凯, 邹亚靖. 2017. 海岸带区域船载水岸一体综合测量技术概述. 测绘地理信息, 42(5): 1-6 [DOI:10.14188/j.2095-6045.2017309http://dx.doi.org/10.14188/j.2095-6045.2017309]
Liu Y M, Deng R R, Qin Y and Liang Y H. 2017. Data processing methods and applications of airborne LiDAR bathymetry. National Remote Sensing Bulletin, 21(6): 982-995
刘永明, 邓孺孺, 秦雁, 梁业恒. 2017. 机载激光雷达测深数据处理与应用. 遥感学报, 21(6): 982-995 [DOI: 10.11834/jrs.20176395http://dx.doi.org/10.11834/jrs.20176395]
Ma H C and Li Q. 2009. Modified EM algorithm and its application to the decomposition of laser scanning waveform data. National Remote Sensing Bulletin, 13(1): 35-41
马洪超, 李奇. 2009. 改进的EM模型及其在激光雷达全波形数据分解中的应用. 遥感学报, 13(1): 35-41 [DOI: 10.11834/jrs.20090104http://dx.doi.org/10.11834/jrs.20090104]
Maas H G, Mader D, Richter K and Westfeld P. 2019. Improvements in LiDAR bathymetry data analysis. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W10: 113-117 [DOI: 10.5194/isprs-archives-XLII-2-W10-113-2019http://dx.doi.org/10.5194/isprs-archives-XLII-2-W10-113-2019]
Optech Incorporated. 2010. Optech LMS Software. [2022-10-11]. http://www.teledyneoptech.com/index.php/product/optech-lmshttp://www.teledyneoptech.com/index.php/product/optech-lms
Peeri S, Gardner J V, Ward L G, Ward L G and Morrison J R. 2011. The seafloor: a key factor in LiDAR bottom detection. IEEE Transactions on Geoscience and Remote Sensing, 49(3): 1150-1157 [DOI: 10.1109/TGRS.2010.2070875http://dx.doi.org/10.1109/TGRS.2010.2070875]
Philpot W. 2019. Airborne Laser Hydrography II. Cornell: eCommons. [2022-10-04]. https://ecommons.cornell.edu/handle/1813/66666https://ecommons.cornell.edu/handle/1813/66666 [DOI: 10.7298/4sb5-8434http://dx.doi.org/10.7298/4sb5-8434]
Qi C, Su D P, Wang X K, Wang M W, Shi B and Yang F L. 2019. Fitting algorithm for airborne laser bathymetric waveforms based on layered heterogeneous model. Infrared and Laser Engineering, 48(2): 114-121
亓超, 宿殿鹏, 王贤昆, 王明伟, 石波, 阳凡林. 2019. 基于分层异构模型的机载激光测深波形拟合算法. 红外与激光工程, 48(2): 114-121 [DOI: 10.3788/IRLA201948.0206004http://dx.doi.org/10.3788/IRLA201948.0206004]
Steinvall O K and Koppari K R. 1996. Depth sounding lidar: an overview of Swedish activities and future prospects//Proceedings of SPIE 2964, CIS Selected Papers: Laser Remote Sensing of Natural Waters: From Theory to Practice. St. Petersburg: SPIE: 2-25 [DOI: 10.1117/12.258342http://dx.doi.org/10.1117/12.258342]
Su D P. 2018. Key Technologies for Processing Airborne LiDAR Bathymetry. Qingdao: Shandong University of Science and Technology
宿殿鹏. 2018. 机载LiDAR测深数据处理关键技术研究. 青岛: 山东科技大学
Su D P, Yang F L, Ma Y, Wang X H, Yang A X and Qi C. 2020. Propagated uncertainty models arising from device, environment, and target for a small laser spot airborne LiDAR bathymetry and its verification in the South China Sea. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 3213-3231 [DOI: 10.1109/TGRS.2019.2951144http://dx.doi.org/10.1109/TGRS.2019.2951144]
Su D P, Yang F L, Ma Y, Zhang K, Huang J and Wang M W. 2019. Classification of coral reefs in the South China Sea by combining airborne LiDAR bathymetry bottom waveforms and bathymetric features. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 815-828 [DOI: 10.1109/TGRS.2018.2860931http://dx.doi.org/10.1109/TGRS.2018.2860931]
Tang J W, Chen G, Chen W B, Zhao C F, He Y, Wu S H, Liu B Y, Mao Z H, He H X, Yang J, Chen S G, Hu L B, He X D, Shi J L, Zheng Y C, Liu J Q, Lin M S, Wu L X, Guo H D, Jiang X W, Pan D L and Gu Y D. 2021. Three dimensional remote sensing for oceanography and the Guanlan ocean profiling Lidar. National Remote Sensing Bulletin, 25(1): 460-500
唐军武, 陈戈, 陈卫标, 赵朝方, 贺岩, 吴松华, 刘秉义, 毛志华, 何惠馨, 杨杰, 陈树果, 胡连波, 何兴道, 史久林, 郑永超, 刘建强, 林明森, 吴立新, 郭华东, 蒋兴伟, 潘德炉, 顾逸东. 2021. 海洋三维遥感与海洋剖面激光雷达. 遥感学报, 25(1): 460-500 [DOI: 10.11834/jrs.20210495http://dx.doi.org/10.11834/jrs.20210495]
Theberge A E. 2013. A note on fifty years of multi-beam. Hydro International. [2020-07-10]. https://www.hydro-international.com/content/article/a-note-on-fifty-years-of-multi-beamhttps://www.hydro-international.com/content/article/a-note-on-fifty-years-of-multi-beam
Tuell G H, Feygels V, Kopilevich Y, Weidemann A D, Cunningham A G, Mani R, Podoba V, Ramnath V, Park J Y and Aitken J. 2005. Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne Lidar survey (SHOALS): Ⅱ. Practical results and comparison with independent data//Proceedings of SPIE 5885, Remote Sensing of the Coastal Oceanic Environment. San Diego: SPIE: 58850E [DOI: 10.1117/12.619215http://dx.doi.org/10.1117/12.619215]
Tuell G H and Park J Y. 2004. Use of SHOALS bottom reflectance images to constrain the inversion of a hyperspectral radiative transfer model//Proceedings of SPIE 5412, Laser Radar Technology and Applications IX. Orlando: SPIE: 185-193 [DOI: 10.1117/12.564929http://dx.doi.org/10.1117/12.564929]
Wang C K and Philpot W D. 2002. Using SHOALS LiDAR system to detect bottom material change//IEEE International Geoscience and Remote Sensing Symposium. Toronto: IEEE: 2690-2692 [DOI: 10.1109/IGARSS.2002.1026743http://dx.doi.org/10.1109/IGARSS.2002.1026743]
Wang C K and Philpot W D. 2007. Using airborne bathymetric lidar to detect bottom type variation in shallow waters. Remote Sensing of Environment, 106(1): 123-135 [DOI: 10.1016/j.rse.2006.08.003http://dx.doi.org/10.1016/j.rse.2006.08.003]
Wang X K, Yang F L, Zhang H D, Su D P, Wang Z L, Xu F Z. 2021. Registration of Airborne LiDAR Bathymetry and Multibeam Echo Sounder Point Clouds. IEEE Geoscience and Remote Sensing Letters, 19: 1-5 [DOI: 10.1109/LGRS.2021.3076462http://dx.doi.org/10.1109/LGRS.2021.3076462]
Wu Z Y, et al. 2017. High-resolution submarine topography--Theory and technology for surveying and post-processing. Beijing: Science Press: 3-35
吴自银, 等. 2017. 高分辨率海底地形地貌——探测处理理论与技术. 北京: 科学出版社: 3-35
Yang A X, Wu Z Y, Yang F L, Su D P, Ma Y, Zhao D N and Qi C. 2020. Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation. ISPRS Journal of Photogrammetry and Remote Sensing, 163: 49-61 [DOI: 10.1016/j.isprsjprs.2020.03.004http://dx.doi.org/10.1016/j.isprsjprs.2020.03.004]
Yang F L, Li J B, Wu Z Y, Jin X L and Chu F Y. 2008. The methods of high quality post-processing for shallow multibeam data. Acta Geodaetica et Cartographica Sinica, 37(4): 444-450, 457
阳凡林, 李家彪, 吴自银, 金翔龙, 初凤友. 2008. 浅水多波束勘测数据精细处理方法. 测绘学报, 37(4): 444-450, 457
Zhai G J, Wang K P and Liu Y H. 2014. Technology of airborne laser bathymetry. Hydrographic Surveying and Charting, 34(2): 72-75
翟国君, 王克平, 刘玉红. 2014. 机载激光测深技术. 海洋测绘, 34(2): 72-75 [DOI: 10.3969/j.issn.1671-3044.2014.02.021http://dx.doi.org/10.3969/j.issn.1671-3044.2014.02.021]
Zhao J H, Ouyang Y Z and Wang A X. 2017. Status and development tendency for seafloor terrain measurement technology. Acta Geodaetica et Cartographica Sinica, 46(10): 1786-1794
赵建虎, 欧阳永忠, 王爱学. 2017. 海底地形测量技术现状及发展趋势. 测绘学报, 46(10): 1786-1794 [DOI: 10.11947/j.AGCS.2017.20170276http://dx.doi.org/10.11947/j.AGCS.2017.20170276]
相关作者
相关机构