珞珈一号夜间灯光数据的福建省人为热通量估算
Estimation of anthropogenic heat flux of Fujian Province (China) based on Luojia 1-01 nighttime light data
- 2022年26卷第6期 页码:1236-1246
纸质出版日期: 2022-06-07
DOI: 10.11834/jrs.20210295
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-06-07 ,
扫 描 看 全 文
林中立,徐涵秋,林从华.2022.珞珈一号夜间灯光数据的福建省人为热通量估算.遥感学报,26(6): 1236-1246
Lin Z L,Xu H Q and Lin C H. 2022. Estimation of anthropogenic heat flux of Fujian Province (China) based on Luojia 1-01 nighttime light data. National Remote Sensing Bulletin, 26(6):1236-1246
夜间灯光数据是估算人为热通量(AHF)的重要数据,但当前应用最广的DMSP/OLS和Suomi-NPP/VIIRS夜间灯光数据由于受限于粗糙的空间分辨率,而无法刻画城市内部的AHF分布细节。中国2018年6月发射的Luojia 1-01卫星所获取的130 m高空间分辨率夜间灯光数据,则有望解决这一问题。因此本文利用Luojia 1-01夜间灯光数据,通过将统计年鉴中的能源统计数据细化至福建省84个县(市、区),然后与3个夜间灯光指数(NTL
nor
、HSI、VANUI)进行回归分析,分别构建了基于这3个指数的福建省AHF空间估算模型,并采用交叉验证法对其进行筛选。结果显示:(1)在3个指数中,基于VANUI的乘幂估算模型的
R
2
最高,且RMSE最小,因此精度最高;(2)利用VANUI乘幂估算模型反演得到的2018年福建省年均AHF为0.88 W/m
2
,其中厦门市的年均AHF最高,达10.98 W/m
2
,泉州、莆田、福州、漳州等沿海城市次之,年均值在0.98—1.95 W/m
2
,而宁德、龙岩、三明、南平等城市的AHF则较低,均值在0.38—0.46 W/m
2
;(3)Luojia 1-01夜间灯光数据可以揭示城市内部的AHF分异细节。根据用地属性和功能的不同,AHF数值表现为:城市集中商业区
>
大型市政公共设施区
>
城市主干道
>
城市住宅区
>
近郊住宅区。研究表明,基于Luojia 1-01夜间灯光数据建立的AHF估算模型可以较好地揭示城市尺度AHF的空间分异情况。
Nighttime light (NTL) data are important for estimating Anthropogenic Heat Flux (AHF). However
the commonly used DMSP/OLS and Suomi-NPP/VIIRS NTL data are restricted by their coarse spatial resolution and therefore
cannot exhibit the spatial details of AHF at city scale.
The 130 m high-resolution NTL data obtained by the Luojia 1-01 satellite launched in June 2018 show potential to solve this problem. Therefore
this study aims to construct an AHF estimation model using the NTL data of Luojia 1-01 for Fujian Province based on three indexes
namely
normalized nighttime light data (NTL
nor
)
Human Settlement Index (HSI)
and Vegetation Adjusted NTL Urban Index (VANUI).
To determine the best estimation model of AHF
the AHF of 84 county-level cities of Fujian Province has also been calculated using energy-consumption statistics data and then correlated with the corresponding data of three indexes.
Results show that (1) based on a five-fold cross validation approach
VANUI power estimation model achieves the highest
R
2
along with the smallest RMSE; therefore
it has the highest accuracy among the three indexes; (2) according to the VANUI power estimation model
the average annual AHF of Fujian Province in 2018 is 0.88 W/m
2
of which Xiamen has the highest average annual AHF of 10.98 W/m
2
followed by Quanzhou
Putian
Fuzhou
and Zhangzhou
with the annual average of 0.98—1.95 W/m
2
whereas the figures of Ningde
Longyan
Sanming
and Nanping are relatively low
ranging from 0.38—0.46 W/m
2
; (3) Luojia 1-01 NTL data can reveal the AHF differentiation details at a city scale. The AHF values of different land properties and functions show the following order: urban commercial area
>
large municipal public facility area
>
urban main road
>
urban residential area
>
suburban residential area.
Studies have shown that the AHF estimation model developed by Luojia 1-01 NTL data can achieve high accuracy of the city-scale estimation of AHF.
遥感人为热AHF珞珈一号01星夜间灯光影像福建省
remote sensinganthropogenic heatAHFLuojia 1-01nighttime light imageryFujian Province
Block A, Keuler K and Schaller E. 2004. Impacts of anthropogenic heat on regional climate patterns. Geophysical Research Letters, 31(12): L12211 [DOI: 10.1029/2004GL019852http://dx.doi.org/10.1029/2004GL019852]
Bohnenstengel S I, Hamilton I, Davies M and Belcher S E. 2014. Impact of anthropogenic heat emissions on London's temperatures. Quarterly Journal of the Royal Meteorological Society, 140(679): 687-698 [DOI: 10.1002/qj.2144http://dx.doi.org/10.1002/qj.2144]
Cao Z Y, Wu Z F, Kuang Y Q and Huang N S. 2015. Correction of DMSP/OLS night-time light images and its application in China. Journal of Geo-information Science, 17(9): 1092-1102
曹子阳, 吴志峰, 匡耀求, 黄宁生. 2015. DMSP/OLS夜间灯光影像中国区域的校正及应用. 地球信息科学学报, 17(9): 1092-1102 [DOI: 10.3724/SP.J.1047.2015.01092http://dx.doi.org/10.3724/SP.J.1047.2015.01092]
Chander G and Markham B. 2003. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2674-2677 [DOI: 10.1109/TGRS.2003.818464http://dx.doi.org/10.1109/TGRS.2003.818464]
Chavez P S. 1996. Image-based atmospheric corrections revisited and improved. Photogrammetric Engineering and Remote Sensing, 62(9): 1025-1035
Chen B, Chen L F, Dong L and Shi G Y. 2016. Estimating the global distribution of anthropogenic heat release and exploring its possible climatic effect. Chinese Journal of Atmospheric Sciences, 40(2): 289-295
陈兵, 陈良富, 董理, 石广玉. 2016. 人为热释放: 全球分布的估算及其气候效应的探索. 大气科学, 40(2): 289-295 [DOI: 10.3878/j.issn.1006-9895.1504.14268http://dx.doi.org/10.3878/j.issn.1006-9895.1504.14268]
Chen B, Shi G Y, Wang B, Zhao J Q and Tan S C. 2012. Estimation of the anthropogenic heat release distribution in China from 1992 to 2009. Acta Meteorologica Sinica, 26(4): 507-515 [DOI: 10.1007/s13351-012-0409-yhttp://dx.doi.org/10.1007/s13351-012-0409-y]
Chen S S and Hu D Y. 2017. Parameterizing anthropogenic heat flux with an energy-consumption inventory and multi-source remote sensing data. Remote Sensing, 9(11): 1165 [DOI: 10.3390/rs9111165http://dx.doi.org/10.3390/rs9111165]
Chen Y B, Zheng Z H, Wu Z F and Qian Q L. 2019. Review and prospect of application of nighttime light remote sensing data. Progress in Geography, 38(2): 205-223
陈颖彪, 郑子豪, 吴志峰, 千庆兰. 2019. 夜间灯光遥感数据应用综述和展望. 地理科学进展, 38(2): 205-223 [DOI: 10.18306/dlkxjz.2019.02.005http://dx.doi.org/10.18306/dlkxjz.2019.02.005]
Elvidge C D, Baugh K E, Kihn E A, Kroehl H W and Davis E R. 1997. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogrammetric Engineering and Remote Sensing, 63(6): 727-734
Flanner M G. 2009. Integrating anthropogenic heat flux with global climate models. Geophysical Research Letters, 36(2): L02801 [DOI: 10.1029/2008GL036465http://dx.doi.org/10.1029/2008GL036465]
Fujian Province Bureau of Statistics and Fujian Survey Team of National Bureau of Statistics. 2019. Fujian Statistical Yearbook-2019. Beijing: China Statistics Press
福建省统计局, 国家统计局福建调查总队. 2019. 福建统计年鉴—2019. 北京: 中国统计出版社
Grimmond C S B. 1992. The suburban energy balance: methodological considerations and results for a mid-latitude west coast city under winter and spring conditions. International Journal of Climatology, 12(5): 481-497 [DOI: 10.1002/joc.3370120506http://dx.doi.org/10.1002/joc.3370120506]
He X F, Jiang W M, Chen Y and Liu G. 2007. Numerical simulation of the impacts of anthropogenic heat on the structure of the urban boundary layer. Chinese Journal of Geophysics, 50(1): 74-82
何晓凤, 蒋维楣, 陈燕, 刘罡. 2007. 人为热源对城市边界层结构影响的数值模拟研究. 地球物理学报, 50(1): 74-82 [DOI: 10.3321/j.issn:0001-5733.2007.01.010http://dx.doi.org/10.3321/j.issn:0001-5733.2007.01.010]
Iamarino M, Beevers S and Grimmond C S B. 2012. High-resolution (space, time) anthropogenic heat emissions: London 1970-2025. International Journal of Climatology, 32(11): 1754-1767 [DOI: 10.1002/joc.2390http://dx.doi.org/10.1002/joc.2390]
Ichinose T, Shimodozono K and Hanaki K. 1999. Impact of anthropogenic heat on urban climate in Tokyo. Atmospheric Environment, 33(24/25): 3897-3909 [DOI: 10.1016/S1352-2310(99)00132-6http://dx.doi.org/10.1016/S1352-2310(99)00132-6]
Imhoff M L, Lawrence W T, Stutzer D C and Elvidge C D. 1997. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sensing of Environment, 61(3): 361-370 [DOI: 10.1016/S0034-4257(97)00046-1http://dx.doi.org/10.1016/S0034-4257(97)00046-1]
Imhoff M L, Zhang P, Wolfe R E and Bounoua L. 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3): 504-513 [DOI: 10.1016/j.rse.2009.10.008http://dx.doi.org/10.1016/j.rse.2009.10.008]
Jiang W, He G J, Long T F, Guo H X, Yin R Y, Leng W C, Liu H C and Wang G Z. 2018. Potentiality of using Luojia 1-01 nighttime light imagery to investigate artificial light pollution. Sensors, 18(9): 2900 [DOI: 10.3390/s18092900http://dx.doi.org/10.3390/s18092900]
Li D R, Zhang G, Shen X, Zhong X, Jiang Y H, Wang T Y, Tu J G and Li Z J. 2019. Design and processing night light remote sensing of LJ-1 01 satellite. Journal of Remote Sensing, 23(6): 1011-1022
李德仁, 张过, 沈欣, 钟兴, 蒋永华, 汪韬阳, 涂建光, 李治江. 2019. 珞珈一号01星夜光遥感设计与处理. 遥感学报, 23(6): 1011-1022 [DOI: 10.11834/jrs.20199327http://dx.doi.org/10.11834/jrs.20199327]
Lu D S, Tian H Q, Zhou G M and Ge H L. 2008. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sensing of Environment, 112(9): 3668-3679 [DOI: 10.1016/j.rse.2008.05.009http://dx.doi.org/10.1016/j.rse.2008.05.009]
Ma P P, Wu J J, Yang X C and Qi J G. 2016. Spatialization of anthropogenic heat using multi-sensor remote sensing data: a case study of Zhejiang Province, East China. China Environmental Scienc, 36(1): 314-320
马盼盼, 吾娟佳, 杨续超, 齐家国. 2016. 基于多源遥感信息的人为热排放量空间化——以浙江省为例. 中国环境科学, 36(1): 314-320 [DOI: 10.3969/j.issn.1000-6923.2016.01.052http://dx.doi.org/10.3969/j.issn.1000-6923.2016.01.052]
Ma T, Zhou C H, Pei T, Haynie S and Fan J F. 2012. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: a comparative case study from China’s cities. Remote Sensing of Environment, 124: 99-107 [DOI: 10.1016/j.rse.2012.04.018http://dx.doi.org/10.1016/j.rse.2012.04.018]
Oke T R. 1976. The distinction between canopy and boundary-layer urban heat islands. Atmosphere, 14(4): 268-277 [DOI: 10.1080/00046973.1976.9648422http://dx.doi.org/10.1080/00046973.1976.9648422]
Pal S, Xueref-Remy I, Ammoura L, Chazette P, Gibert F, Royer P, Dieudonné E, Dupont J C, Haeffelin M, Lac C, Lopez M, Morille Y and Ravetta F. 2012. Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: an assessment of the impact of the urban heat island intensity. Atmospheric Environment, 63: 261-275 [DOI: 10.1016/j.atmosenv.2012.09.046http://dx.doi.org/10.1016/j.atmosenv.2012.09.046]
Quah A K L and Roth M. 2012. Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore. Atmospheric Environment, 46: 92-103 [DOI: 10.1016/j.atmosenv.2011.10.015http://dx.doi.org/10.1016/j.atmosenv.2011.10.015]
Rizwan A M, Dennis L Y C and Liu C. 2008. A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1): 120-128 [DOI: 10.1016/S1001-0742(08)60019-4http://dx.doi.org/10.1016/S1001-0742(08)60019-4]
Shi K F, Yu B L, Huang Y X, Hu Y J, Yin B, Chen Z Q, Chen L J and Wu J P. 2014. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data. Remote Sensing, 6(2): 1705-1724 [DOI: 10.3390/rs6021705http://dx.doi.org/10.3390/rs6021705]
Tong H, Liu H Z, Sang J G and Hu F. 2004. The impact of urban anthropogenic heat on Beijing heat environment. Climatic and Environmental Research, 9(3): 409-421
佟华, 刘辉志, 桑建国, 胡非. 2004. 城市人为热对北京热环境的影响. 气候与环境研究, 9(3): 409-421 [DOI: 10.3969/j.issn.1006-9585.2004.03.001http://dx.doi.org/10.3969/j.issn.1006-9585.2004.03.001]
Torrance K E and Shun J S W. 1976. Time-varying energy consumption as a factor in urban climate. Atmospheric Environment (1967), 10(4): 329-337 [DOI: 10.1016/0004-6981(76)90174-8http://dx.doi.org/10.1016/0004-6981(76)90174-8]
United Nations. 2019. The 2018 revision of World urbanization prospects[EB/OL]. [2020-06-22]. https://population.un.org/wup/Publications/Files/ WUP2018-Report.pdfhttps://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
USGS. 2019. Landsat 8 data users handbook (Version 2.0)[EB/OL]. [2020-06-22]. https://www.usgs.gov/media/files/landsat-8-data-users-handbookhttps://www.usgs.gov/media/files/landsat-8-data-users-handbook
Wang C X, Chen Z Q, Yang C S, Li Q X, Wu Q S, Wu J P, Zhang G and Yu B L. 2020. Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China: a comparison with NPP-VIIRS data. International Journal of Applied Earth Observation and Geoinformation, 85: 101989 [DOI: 10.1016/j.jag.2019.101989http://dx.doi.org/10.1016/j.jag.2019.101989]
Wang S S, Hu D Y, Chen S S and Yu C. 2019. A partition modeling for anthropogenic heat flux mapping in China. Remote Sensing, 11(9): 1132 [DOI: 10.3390/rs11091132http://dx.doi.org/10.3390/rs11091132]
Yang L J, Xu H Q and Jin Z F. 2018. Estimation of ground-level PM2.5 concentrations using MODIS satellite data in Fuzhou, China. Journal of Remote Sensing, 22(1): 64-75
杨立娟, 徐涵秋, 金致凡. 2018. MODIS卫星遥感估计福州地区近地面PM2.5浓度. 遥感学报, 22(1): 64-75 [DOI: 10.11834/jrs.20186501http://dx.doi.org/10.11834/jrs.20186501]
Yang L J, Xu H Q and Jin Z F. 2019. Estimating ground-level PM2.5 over a coastal region of China using satellite AOD and a combined model. Journal of Cleaner Production, 227: 472-482 [DOI: 10.1016/j.jclepro.2019.04.231http://dx.doi.org/10.1016/j.jclepro.2019.04.231]
Yue W Z, Gao J B and Yang X C. 2014. Estimation of gross domestic product using multi-sensor remote sensing data: a case study in Zhejiang Province, East China. Remote Sensing, 6(8): 7260-7275 [DOI: 10.3390/rs6087260http://dx.doi.org/10.3390/rs6087260]
Zhang Q L, Schaaf C and Seto K C. 2013. The vegetation adjusted NTL Urban Index: a new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sensing of Environment, 129: 32-41 [DOI: 10.1016/j.rse.2012.10.022http://dx.doi.org/10.1016/j.rse.2012.10.022]
Zhong L and Liu X S. 2019. Application potential analysis of LJ1-01 new nighttime light data. Bulletin of Surveying and Mapping, (7): 132-137
钟亮, 刘小生. 2019. 珞珈一号新型夜间灯光数据应用潜力分析. 测绘通报, (7): 132-137 [DOI: 10.13474/j.cnki.11-2246.2019.0235http://dx.doi.org/10.13474/j.cnki.11-2246.2019.0235]
相关作者
相关机构