集合卡尔曼滤波方法的高时空分辨率山区地表反照率反演
Time series high-resolution albedo retrieval over a rugged terrain based on the ensemble kalman filter algorithm
- 2022年26卷第12期 页码:2568-2581
纸质出版日期: 2022-12-07
DOI: 10.11834/jrs.20210322
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-12-07 ,
扫 描 看 全 文
郑凯旋,林兴稳,闻建光,郝大磊.2022.集合卡尔曼滤波方法的高时空分辨率山区地表反照率反演.遥感学报,26(12): 2568-2581
Zheng K X,Lin X W,Wen J G and Hao D L. 2022. Time series high-resolution albedo retrieval over a rugged terrain based on the ensemble kalman filter algorithm. National Remote Sensing Bulletin, 26(12):2568-2581
高分辨率地表反照率遥感产品以其空间分辨率高的优点,目前正成为区域能量平衡和气候变化研究的重要数据源。现行的高分辨率地表反照率遥感反演算法及数据产品均假设地表平坦且均一,缺乏对地表异质性和地形复杂性的考虑,将适用于平坦地表的反演算法应用于山区将存在一定的误差。改进的直接算法将直接反演算法与山地辐射传输模型结合,为反演山区高分辨率地表反照率提供了可能,可以反演山区地表反照率产品。但该算法受到下垫面积雪、云污染等影响,反演的影像时域不连续,且存在着较多的缺失值,无法构建时空连续的地表反照率产品来支撑山区地表能量平衡相关研究。针对这一问题,本文以高分四号(GF-4)卫星数据为例,首先基于改进的直接反演算法反演山区高分辨率地表反照率,结合MODIS BRDF/Albedo产品构建先验知识背景场,采用集合卡尔曼滤波方法对反演的山区地表反照率进行时空填补,构建了时空连续的地表反照率反演方法,并生产了2016年—2017年的山区地表反照率产品。研究结果表明,反演的时空连续高分辨率地表反照率产品与地面站点观测数据的一致性较好。不同坡度地面站点的验证结果显示,反演的时空连续地表反照率产品在湿地、农田等平坦地表下RMSE小于0.01,坡度较大的站点下RMSE为0.0163。本文描述的山区地表反照率时空填补技术也可以应用到其他定量遥感产品,为这些产品在山区地表下的填补技术提供有效参考。
Land surface albedo is a key parameter to describe the surface energy budget. An increasing need for fine-scale albedo products is promoted in regional applications of radiative forcing and coarse-scale albedo product validation. However
the long-term fine-scale albedo products over mountainous areas are currently unavailable. The topographic slope
aspect
and land cover types make the sloping surface more heterogeneous than the flat surface. Existing fine-scale albedo estimation algorithms may carry the uncertainties due to the complex topography. Moreover
the fine-scale albedo observations are often unavailable due to cloud contamination
making it difficult to obtain time series albedo estimations.
To overcome these problems
we adopt the improved Angular Bin algorithm and Ensemble Kalman Filter Algorithm in this study to estimate a time-series fine-scale satellite-based albedo over a rugged terrain. The preliminary approach of the new built albedo estimation over mountainous areas was carried out in the Heihe River Basin by using the Chinese GF-4 satellite data.
Validation results against ground measurements over various land cover types and topographic slopes show that our algorithm is effective for the selected land surfaces and can achieve root mean square errors of not more than 0.03. When compared with the referenced albedo product retrieved by direct retrieval algorithm
the GF-4 albedo products show a good performance with the RMSE smaller than 0.02.
The retrieved long time series GF-4 albedo can improve the understanding of scale effects among different spatial resolution albedo products and help upscale in ground-based albedo measurements to coarse-scale during the multi-scale validation workflow. This algorithm also provides an example for other satellite-based remote sensing product retrieval over a rugged terrain.
地表反照率山区地表高分四号集合卡尔曼滤波算法长时间序列
land surface albedorugged terrainGF-4 satelliteEnKFlong time series
Cai J Y. 2019. Remote Sensing Image Spatial-Spectral and Spatial-Temporal Fusion based on Deep Learning. Wuhan: Wuhan University
蔡家骏. 2019. 基于深度学习的遥感图像空谱融合与时空融合. 武汉: 武汉大学
Combal B, Isaka H and Trotter C. 2000. Extending a turbid medium BRDF model to allow sloping terrain with a vertical plant stand. IEEE Transactions on Geoscience and Remote Sensing, 38(2): 798-810 [DOI: 10.1109/36.842009http://dx.doi.org/10.1109/36.842009]
Coops N C, Johnson M, Wulder M A and White J C. 2006. Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 103(1): 67-80 [DOI: 10.1016/j.rse.2006.03.012http://dx.doi.org/10.1016/j.rse.2006.03.012]
Dickinson R E. 1995. Land processes in climate models. Remote Sensing of Environment, 51(1): 27-38 [DOI: 10.1016/0034-4257(94)00062-rhttp://dx.doi.org/10.1016/0034-4257(94)00062-r]
Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5): 10143-10162 [DOI: 10.1029/94JC00572http://dx.doi.org/10.1029/94JC00572]
Feng Z M, Wen J G, Xiao Q, You D Q, Lin X W and Wu X D. 2018. Comparison of global albedo products of MODIS V006 and V005 based on FLUXNET. Journal of Remote Sensing, 22(1): 97-109
冯智明, 闻建光, 肖青, 游冬琴, 林兴稳, 吴小丹. 2018. MODIS V006和V005全球反照率产品精度对比分析. 遥感学报, 22(1): 97-109 [DOI: 10.11834/jrs.20186427http://dx.doi.org/10.11834/jrs.20186427]
Gao F, He T, Masek J G, Shuai Y M, Schaaf C B and Wang Z S. 2014. Angular effects and correction for medium resolution sensors to support crop monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11): 4480-4489 [DOI: 10.1109/JSTARS.2014.2343592http://dx.doi.org/10.1109/JSTARS.2014.2343592]
Gao F, Masek J G, Schwaller M and Hall F. 2006. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2207-2218 [DOI: 10.1109/tgrs.2006.872081http://dx.doi.org/10.1109/tgrs.2006.872081]
Guan Y H, Zhou G Q, Lu W S and Chen J P. 2007. Theory development and application of data assimilation methods. Meteorology and Disaster Reduction Research, 30(4): 1-8
官元红, 周广庆, 陆维松, 陈建萍. 2007. 资料同化方法的理论发展及应用综述. 气象与减灾研究, 30(4): 1-8 [DOI: 10.3969/j.issn.1007-9033.2007.04.001http://dx.doi.org/10.3969/j.issn.1007-9033.2007.04.001]
He T, Liang S L, Wang D D, Cao Y F, Gao F, Yu Y Y and Feng M. 2018. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM+, and OLI data based on the unified direct estimation approach. Remote Sensing of Environment, 204: 181-196 [DOI: 10.1016/j.rse.2017.10.031http://dx.doi.org/10.1016/j.rse.2017.10.031]
Holben B N. 1986. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11): 1417-1434 [DOI: 10.1080/01431168608948945http://dx.doi.org/10.1080/01431168608948945]
Huang B and Song H H. 2012. Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 50(10): 3707-3716 [DOI: 10.1109/TGRS.2012.2186638http://dx.doi.org/10.1109/TGRS.2012.2186638]
Justice C O, Townshend J R G, Holben B N and Tucker C J. 1985. Analysis of the phenology of global vegetation using meteorological satellite data. International Journal of Remote Sensing, 6(8): 1271-1318 [DOI: 10.1080/01431168508948281http://dx.doi.org/10.1080/01431168508948281]
Kalman R E. 1960. A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82(1): 35-45 [DOI: 10.1115/1.3662552http://dx.doi.org/10.1115/1.3662552]
Lacaze R, Smets B, Trigo I, Calvet J C, Jann A, Camacho F, Baret F, Kidd R, Defourny P, Tansey K. The Copernicus Global Land Service: Present and future. In Proceedings of the EGU General Assembly, Vienna, Austria, 7-12 April 2013
Li J, Li Y F, He L, Chen J and Plaza A. 2020. Spatio-temporal fusion for remote sensing data: an overview and new benchmark. Science China Information Sciences, 63(4): 140301 [DOI: 10.1007/s11432-019-2785-yhttp://dx.doi.org/10.1007/s11432-019-2785-y]
Li X, Liu S M, Ma M G, Xiao Q, Liu Q H, Jin R, Che T, Wang W Z, Qi Y, Li H Y, Zhu G F, Guo J W, Ran Y H, Wen J G, Wang S G. HiWATER: an integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin. Advances in Earth Science, 27(5): 481-498
李新,刘绍民,马明国,肖青,柳钦火,晋锐,车涛,王维真,祁元,李弘毅,朱高峰,郭建文,冉有华,闻建光,王树果.黑河流域生态—水文过程综合遥感观测联合试验总体设计. 地球科学进展,27(5): 481-498 [DOI: 10.11867/j.issn.1001-8166.2012.05.0481http://dx.doi.org/10.11867/j.issn.1001-8166.2012.05.0481]
Li Z, Zhao L F and Fu Z. 2012. Estimating net radiation flux in the Tibetan Plateau by assimilating MODIS LST products with an ensemble Kalman filter and particle filter. International Journal of Applied Earth Observation and Geoinformation, 19: 1-11 [DOI: 10.1016/j.jag.2012.04.003http://dx.doi.org/10.1016/j.jag.2012.04.003]
Liang S L, Wang K C, Zhang X T and Wild M. 2010. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 225-240 [DOI: 10.1109/JSTARS.2010.2048556http://dx.doi.org/10.1109/JSTARS.2010.2048556]
Liang S L, Zhao X, Liu S H, Yuan W P, Cheng X, Xiao Z Q, Zhang X T, Liu Q, Cheng J, Tang H R, Qu Y H, Bo Y C, Qu Y, Ren H Z, Yu K and Townshend J. 2013. A long-term global land surface satellite (GLASS) data-set for environmental studies. International Journal of Digital Earth, 6(S1): 5-33 [DOI: 10.1080/17538947.2013.805262http://dx.doi.org/10.1080/17538947.2013.805262]
Lin X W. 2018a. Land Surface Albedo Remote Sensing Products Validation Over Rugged Terrain. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (林兴稳. 2018a. 山区地表反照率遥感产品真实性检验方法研究. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所)
Lin X W, Wen J G, Liu Q H, Xiao Q, You D Q, Wu S B, Hao D L and Wu X D. 2018b. A multi-scale validation strategy for albedo products over rugged terrain and preliminary application in Heihe River Basin, China. Remote Sensing, 10(2): 156 [DOI: 10.3390/rs10020156http://dx.doi.org/10.3390/rs10020156]
Lin X W, Wen J G, Wu S B, Hao D L, Xiao Q and Liu Q H. 2020. Advances in topographic correction methods for optical remote sensing imageries. Journal of Remote Sensing, 24(8): 958-974
林兴稳, 闻建光, 吴胜标, 郝大磊, 肖青, 柳钦火. 2020. 地表反射率地形校正物理模型与效果评价方法研究进展. 遥感学报, 24(8): 958-974 [DOI: 10.11834/jrs.20209167http://dx.doi.org/10.11834/jrs.20209167]
Liu Q, Wang L Z, Qu Y, Liu N F, Liu S H, Tang H R and Liang S L. 2013. Preliminary evaluation of the long-term GLASS albedo product. International Journal of Digital Earth, 6(S1): 69-95 [DOI: 10.1080/17538947.2013.804601http://dx.doi.org/10.1080/17538947.2013.804601]
Liu S M, Li X, Xu Z W, Che T, Xiao Q, Ma M G, Liu Q H, Jin R, Guo J W, Wang L X, Wang W Z, Qi Y, Li H Y, Xu T R, Ran Y H, Hu X L, Shi S J, Zhu Z L, Tan J L, Zhang Y and Ren Z G. 2018. The Heihe integrated observatory network: a basin-scale land surface processes observatory in China. Vadose Zone Journal, 17(1): 1-21 [DOI: 10.2136/vzj2018.04.0072http://dx.doi.org/10.2136/vzj2018.04.0072]
Lü C C, Wang Z W and Qian S M. 2003. A Review of Pixel Unmixing Models. Remote Sensing Information, 3: 55-58,60
吕长春, 王忠武, 钱少猛. 混合像元分解模型综述. 遥感信息, (3): 55-58,60 [DOI: 10.3969/j.issn.1000-3177.2003.03.016http://dx.doi.org/10.3969/j.issn.1000-3177.2003.03.016]
Qu Y, Liang S L, Liu Q, He T, Liu S H and Li X W. 2015. Mapping surface broadband albedo from satellite observations: a review of literatures on algorithms and products. Remote Sensing, 7(1): 990-1020 [DOI: 10.3390/rs70100990http://dx.doi.org/10.3390/rs70100990]
Schaaf C B, Gao F, Strahler A H, Lucht W, Li X W, Tsang T, Strugnell N C, Zhang X Y, Jin Y F, Muller J P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, D'Entremont R P, Hu B X, Liang S L, Privette J L and Roy D. 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83(1-2): 135-148 [DOI: 10.1016/S0034-4257(02)00091-3http://dx.doi.org/10.1016/S0034-4257(02)00091-3]
Schaaf C B, Li X W and Strahler A H. 1994. Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model. IEEE Transactions on Geoscience and Remote Sensing, 32(6): 1186-1193 [DOI: 10.1109/36.338367http://dx.doi.org/10.1109/36.338367]
Shuai Y M, Masek J G, Gao F and Schaaf C B. 2011. An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF. Remote Sensing of Environment, 115(9): 2204-2216 [DOI: 10.1016/j.rse.2011.04.019http://dx.doi.org/10.1016/j.rse.2011.04.019]
Shuai Y M, Masek J G, Gao F, Schaaf C B and He T. 2014. An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge. Remote Sensing of Environment, 152: 467-479 [DOI: 10.1016/j.rse.2014.07.009http://dx.doi.org/10.1016/j.rse.2014.07.009]
Sun C K, Liu Q, Wen J G, Li D, Yu K and Zhang Z G. 2013. An algorithm for retrieving land surface albedo from HJ-1 CCD data. Remote Sensing for Land and Resources, 25(4): 58-63
孙长奎, 刘强, 闻建光, 李丹, 于坤, 张宗贵. 2013. 基于HJ-1 CCD数据的地表反照率反演. 国土资源遥感, 25(4): 58-63 [DOI: 10.6046/gtzyyg.2013.04.10http://dx.doi.org/10.6046/gtzyyg.2013.04.10]
Sun Y J, Wang Z H, Qin Q M, Han G H, Ren H Z and Huang J F. 2018. Retrieval of surface albedo based on GF-4 geostationary satellite image data. Journal of Remote Sensing, 22(2): 220-233
孙越君, 汪子豪, 秦其明, 韩谷怀, 任华忠, 黄敬峰. 2018. 高分四号静止卫星数据的地表反照率反演. 遥感学报, 22(2): 220-233 [DOI: 10.11834/jrs.20186428http://dx.doi.org/10.11834/jrs.20186428]
Trenberth K E, Fasullo J T and Kiehl J. 2009. Earth’s global energy budget. Bulletin of the American Meteorological Society, 90(3): 311-324 [DOI: 10.1175/2008BAMS2634.1http://dx.doi.org/10.1175/2008BAMS2634.1]
Wu M Q, Niu Z, Wang C Y, Wu C Y and Wang L. 2012. Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model. Journal of Applied Remote Sensing, 6(1): 1-13 [DOI: 10.1117/1.JRS.6.063507http://dx.doi.org/10.1117/1.JRS.6.063507]
Wu S B, Wen J G, Gastellu-Etchegorry J E, Jean P, Liu Q H, You D Q, Xiao Q, Hao D L, Lin X W and Yin T G. 2019. The definition of remotely sensed reflectance quantities suitable for rugged terrain. Remote Sensing of Environment, 225: 403-415 [DOI: 10.1016/j.rse.2019.01.005http://dx.doi.org/10.1016/j.rse.2019.01.005]
Wu X D, Wen J G, Xiao Q, Yu Y Y, You D Q and Hueni A. 2017. Assessment of NPP VIIRS albedo over heterogeneous crop land in Northern China. Journal of Geophysical Research: Atmospheres, 122(24): 13138-13154 [DOI: 10.1002/2017JD027262http://dx.doi.org/10.1002/2017JD027262]
Xue J, Leung Y and Fung T. 2017. A Bayesian data fusion approach to spatio-temporal fusion of remotely sensed images. Remote Sensing, 9(12): 1-23 [DOI: 10.3390/rs9121310http://dx.doi.org/10.3390/rs9121310]
Yao T and Zhang Q. 2014. Study on land-surface albedo over different types of underlying surfaces in North China. Acta Physica Sinica, 63(8): 460-468
姚彤, 张强. 2014. 我国北方不同类型下垫面地表反照率特征. 物理学报, 63(8): 460-468 [DOI: 10.7498/aps.63.089201http://dx.doi.org/10.7498/aps.63.089201]
Yin G F, Li A N, Wu S B, Fan W L, Zeng Y L, Yan K, Xu B D, Li J and Liu Q H. 2018. PLC: a simple and semi-physical topographic correction method for vegetation canopies based on path length correction. Remote Sensing of Environment, 215: 184-198 [DOI: 10.1016/j.rse.2018.06.009http://dx.doi.org/10.1016/j.rse.2018.06.009]
Zhang G D, Zhou H M, Wang C J, Xue H Z, Wang J D and Wan H W. 2019. Time series high-resolution land surface albedo estimation based on the ensemble Kalman filter algorithm. Remote Sensing, 11(7): 753 [DOI: 10.3390/rs11070753http://dx.doi.org/10.3390/rs11070753]
Zhang M H, Li X. 2020. Drone-Enabled Internet-of-Things Relay for Environmental Monitoring in Remote Areas Without Public Networks. IEEE Internet of Things Journal, 7(8):7648-7662 [DOI: 10.1109/JIOT.2020.2988249http://dx.doi.org/10.1109/JIOT.2020.2988249]
Zhao X J. 2012.Study on the Spatio-temporal Characteristics of Oasisization in the reaches of Heihe River Basin from 1949 to 2009. Lanzhou: Lanzhou University (赵晓冏. 2012. 近60年黑河流域绿洲时空变化特征研究. 兰州: 兰州大学)
Zhu L. 2007. Study of Ensemble Kalman Filter. Nanjing:NanJing University of Information Science & Technology
朱琳. 2007. 集合卡尔曼滤波同化方法的研究. 南京:南京信息工程大学
Zhu X L, Chen J, Gao F, Chen X H and Masek J G. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11): 2610-2623 [DOI: 10.1016/j.rse.2010.05.032http://dx.doi.org/10.1016/j.rse.2010.05.032]
Zhu X L, Helmer E H, Gao F, Liu D S, Chen J and Lefsky M A. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172: 165-177 [DOI: 10.1016/j.rse.2015.11.016http://dx.doi.org/10.1016/j.rse.2015.11.016]
Zhukov B, Oertel D, Lanzl F and Reinhackel G. 1999. Unmixing-based multisensor multiresolution image fusion. IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1212-1226 [DOI: 10.1109/36.763276http://dx.doi.org/10.1109/36.763276]
相关作者
相关机构