面向定量遥感的高分辨遥感综合定标场及其应用
A comprehensive calibration site for high resolution remote sensors dedicated to quantitative remote sensing and its applications
- 2021年25卷第1期 页码:198-219
纸质出版日期: 2021-01-07
DOI: 10.11834/jrs.20210326
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-01-07 ,
扫 描 看 全 文
李传荣,马灵玲,唐伶俐,高彩霞,钱永刚,王宁,王新鸿.2021.面向定量遥感的高分辨遥感综合定标场及其应用.遥感学报,25(1): 198-219
Li C R,Ma L L,Tang L L,Gao C X,Qian Y G,Wang N and Wang X H. 2021. A comprehensive calibration site for high resolution remote sensors dedicated to quantitative remote sensing and its applications. National Remote Sensing Bulletin, 25(1):198-219
蓬勃发展的信息化时代对于稳定精准的定量遥感信息获取提出了迫切需求。遥感对地物目标信息的精准获取,从根本上取决于对遥感载荷性能及其长期业务运行期间状态变化的综合定标。“十一五”以来,中国科学院定量遥感信息技术重点实验室牵头国内优势单位,系统性设计实现了面向定量遥感的高分辨遥感综合定标技术体系,研建形成“包头高分辨遥感综合定标场”(简称“包头场”)。该定标场具有集载荷严格航空校飞、卫星在轨定标与性能检测、产品真实性检验功能于一体的空天高分辨遥感载荷外场综合定标能力,所展现的综合定标与测试功能得到国际对地观测领域的广泛认可,并被科技部授牌为“国家高分辨遥感综合定标场”。本文从高分辨遥感发展趋势下的定标技术需求出发,阐述了包头场的系统构成和各项功能,及其在高分辨率遥感载荷定标和性能评价中的成功应用,以期为遥感科研人员提供参考。
The increasingly developing information age puts forward urgent need for stable and precise quantitative remote sensing information. The accuracy of ground object information retrieved by remote sensing technology is essentially decided by the sensor performance and timely evaluation of its variation occurred during long-term operational running. Since the “11th Five-Year Plan”
the Key Laboratory of Quantitative Remote Sensing Information Technology
Chinese Academy of Sciences
has organized relevant domestic advantageous institutions to design and realize the comprehensive calibration technical system for high resolution remote sensors which is dedicated to quantitative remote sensing
and built up the “Baotou Comprehensive Calibration Site for High Resolution Remote Sensors” (the Baotou site
for short). From the top-level viewing
the Baotou site consists of five main systems: (1) the standard test targets system
which contains a variety of permanent artificial optical targets
portable artificial optical targets
optical geometric control point targets
permanent bases for SAR corner reflector
SAR corner reflectors and natural scene targets. Within these miscellaneous targets
the knife-edge/greyscale dual functional target is a natural-material-paved permanent target for simultaneous evaluation of sensor radiometric/spatial/spectral characteristics
which is the first one in China and the largest one in the world; the microwave/optical dual functional artificial target is dedicated to directly detecting SAR/optical image resolution
which is the first one in the world. (2) the ground/atmospheric truth measurement system
which contains the automatic observation system for target characteristics
the automatic measurement system for atmospheric environment parameters
the surface flux automatic observation system
other ground feature measurement devices and the real-time monitoring system of automatic observation data. (3) the aerial flight test technical system
which contains the flight test standard sensors
the flight control & management system
the sensor ground calibration & testing system and the aerial flight data in-situ fast processing system. (4) the observation data processing and analysis system
which contains the RadCalNet automated radiometric calibration data processing system
the sensor performance analysis & evaluation system and the target characteristics knowledge base. (5) the basic guarantee facilities
which contains the test flight guarantee facilities
the ground test guarantee facilities and the logistical guarantee facilities. The rich types of optical/microwave targets and diverse environment measurement devices assure the polyfunctionality and flexibility of the site shown in various RS calibration/validation tasks. In general
the Baotou site can afford field comprehensive calibration for airborne/spaceborne high resolution remote sensors
which involves rigorous test flight for sensor performance
sensor on-orbit calibration and performance evaluation
and remote sensing product validation. Its powerful capability in comprehensive calibration and test has been widely acknowledged in the international earth observation community
and it was entitled the “National Calibration and Validation Site for High Resolution Remote Sensors” by the Ministry of Science and Technology of China. This paper will firstly point out the calibration requirements conforming to the trend of high resolution remote sensing
then describe in detail the system structure of the Baotou site and its miscellaneous functions
and finally show some successful applications based on the Baotou site in high resolution sensor calibration and performance evaluation
which can provide references for researchers in remote sensing field.
定标场高分辨遥感载荷包头场靶标
calibration sitehigh resolutionremote sensorthe Baotou sitetest target
Berthelot B and Santer R. 2008. Calibration Test Sites Selection and Characterisation[OL].[2008-03-18]. http://calvalportal.ceos.org/c/document_library/get_file?uuid=03407bb4-89e4-4271-be26-898298780ee7&groupId=10136http://calvalportal.ceos.org/c/document_library/get_file?uuid=03407bb4-89e4-4271-be26-898298780ee7&groupId=10136
Blonski S and Cao C. 2015. Suomi NPP VIIRS Reflective Solar Bands Operational Calibration Reprocessing. Remote Sensing, 7(12): 16131-16149 [DOI: 10.3390/rs71215823http://dx.doi.org/10.3390/rs71215823]
Bouvet M, Thome K, Berthelot B, Bialek A, Czapla-Myers J, Fox N P, Goryl P, Henry P, Ma L L, Marcq S, Meygret A, Wenny B N and Woolliams E R. 2019. RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range. Remote Sensing, 11(20): 2401 [DOI: 10.3390/rs11202401http://dx.doi.org/10.3390/rs11202401]
Cramer M. 2005. 10 years ifp test site Vaihingen/Enz: An independent performance study. Photogrammetric Week '05, pp. 79-92
Datla R U, Rice J P, Lykke K R, Johnson B C, Butler J J and Xiong X. 2011. Best Practice Guidelines for Pre-Launch Characterization and Calibration of Instruments for Passive Optical Remote Sensing. Journal of Research of the National Institute of Standards and Technology, 116(2): 621-646 [DOI: 10.6028/jres.116.009http://dx.doi.org/10.6028/jres.116.009]
Duan S B, Li Z L, Tang B H, Wu H, Ma L L, Zhao E Y and Li C R. 2013. Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site. PLoS One, 8(6): e66972 [DOI: 10.1371/journal.pone.0066972http://dx.doi.org/10.1371/journal.pone.0066972]
Duan S B, Li Z L, Wu H, Tang B H, Ma L L, Zhao E Y and Li C R. 2014. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 26: 12-20 [DOI: 10.1016/j.jag.2013.05.007http://dx.doi.org/10.1016/j.jag.2013.05.007]
Franks S, Neigh C S R, Campbell P K, Sun G Q, Yao T, Zhang Q Y, Huemmrich K F, Middleton E M, Ungar S G and Frye S W. 2017. EO-1 Data Quality and Sensor Stability with Changing Orbital Precession at the End of a 16 Year Mission. Remote Sensing, 9(5): 412 [DOI: 10.3390/rs9050412http://dx.doi.org/10.3390/rs9050412]
Gao C X, Ma L L, Liu Y K, Wang N, Qian Y G, Tang L L and Li C R. 2014. The Assessment of In-flight Dynamic Range and Response Linearity of Optical Payloads onboard GF-1 Satellite. Proc. of SPIE, Vol. 9264, 92641F [DOI: 10.1117/12.2068794]
Giles D M. 2019. AERONET (Aerosol Robotic Network)[OL].[2019-09-26]. https://aeronet.gsfc.nasa.gov/new_web/index.htmlhttps://aeronet.gsfc.nasa.gov/new_web/index.html
Honkavaara E, Hakala T, Peltoniemi J, Suomalainen J, Ahokas E and Markelin L. 2010. Analysis of Properties of Reflectance Reference Targets for Permanent Radiometric Test Sites of High Resolution Airborne Imaging Systems. Remote Sensing, 2(8): 1892-1917 [DOI: 10.3390/rs2081892http://dx.doi.org/10.3390/rs2081892]
Honkavaara E, Peltoniemi J, Ahokas E, Kulttinen R, Hyyppa J, Jaakkola J, Kaartinen H, Markelin L, Nurminen K and Suomalainen J. 2008. A Permanent Test Field for Digital Photogrammetric Systems. Photogrammetric Engineering and Remote Sensing, 74(1): 95-106 [DOI: 10.14358/PERS.74.1.95http://dx.doi.org/10.14358/PERS.74.1.95]
Li C R, Ma L L, Gao C X, Tang L L, Wang N, Liu Y K, Zhao Y G, Dou S, Zhang D D and Li X H. 2015a. Permanent target for optical payload performance and data quality assessment: Spectral characterization and a case study for calibration. Journal of Applied Remote Sensing, 8(1): 083498 [DOI: 10.1117/1.JRS.8.083498http://dx.doi.org/10.1117/1.JRS.8.083498]
Li C R, Ma L L, Yuan X F, Wang N, Tang L L, Qiu S and Li J J. 2014b. A color calibration method for spectral image based on radiative transfer mechanism. Proc. of SPIE, Vol. 9088, 90881E [DOI: 10.1117/12.2050297]
Li C R, Tang L L, Ma L L, Zhou Y S, Gao C X, Wang N, Li X H, Wang X H and Zhu X H. 2015b. A comprehensive calibration and validation site for information remote sensing. ISPRS Archives, 40(7W3): 1233-1240 [DOI: 10.5194/isprsarchives-XL-7-W3-1233-2015http://dx.doi.org/10.5194/isprsarchives-XL-7-W3-1233-2015]
Li C R, Tang L L, Ma L L, Zhou Y S, Wang N, Gao C X and Wang X H. 2014a. Progress of calibration and validation for quantitative remote sensing in China. Proc. of SPIE, Vol. 9264, 92640T [DOI: 10.1117/12.2068670]
Li Z Y, Qian Y G, Shen Q F, Wang N, Liu Y K and Ma L L. 2014. Leaf area index retrieval from remotely sensed hyperspectral data. Infrared and Laser Engineering, 43(3): 944-949
李子扬, 钱永刚, 申庆丰, 王宁, 刘耀开, 马灵玲, 孔祥生. 2014. 基于高光谱数据的叶面积指数遥感反演. 红外与激光工程, 43(3): 944-949
Liu Y K, Li C R, Ma L L, Qian Y G, Wang N, Gao C X and Tang L L. 2019b. Land surface reflectance retrieval from optical hyperspectral data collected with an unmanned aerial vehicle platform. Optics Express, 27(5): 7174-7195 [DOI: 10.1364/OE.27.007174http://dx.doi.org/10.1364/OE.27.007174]
Liu Y K, Li C R, Ma L L, Wang N, Qian Y G and Tang L L. 2017b. An automatic reflectance-based approach to vicarious radiometric calibrate the Landsat8 operational land imager. Proceedings of IGARSS 2017, pp. 4699-4702 [DOI: 10.1109/IGARSS.2017.8128051http://dx.doi.org/10.1109/IGARSS.2017.8128051]
Liu Y K, Ma L L, Wang N, Qian Y G, Qiu S, Li C R and Tang L L. 2017a. Vicarious radiometric calibration/validation of Landsat-8 operational land imager using a ground reflected radiance-based approach with Baotou site in China. Journal of Applied Remote Sensing, 11(4): 044004 [DOI: 10.1117/1.JRS.11.044004http://dx.doi.org/10.1117/1.JRS.11.044004]
Liu Y K, Ma L L, Wang N, Qian Y G, Zhao Y G, Qiu S, Gao C X, Long X X and Li C R. 2020. On-orbit radiometric calibration of the optical sensors on-board SuperView-1 satellite using three independent methods. Optics Express, 28(8): 11085-11105 [DOI:10.1364/OE.388387http://dx.doi.org/10.1364/OE.388387]
Liu Y K, Ma Z H, Ma L L, Wang N, Qian Y G, Li C R and Tang L L. 2018. Vicarious radiometric calibration using a ground radiance-based approach: A case study of Sentinel 2A MSI. Proceedings of IGARSS 2018, pp. 3296-3299 [DOI: 10.1109/IGARSS.2018.8517883http://dx.doi.org/10.1109/IGARSS.2018.8517883]
Liu Y K, Qian Y G, Wang N, Ma L L, Gao C X, Qiu S, Li C R and Tang L L. 2019a. An improved dense dark vegetation based algorithm for aerosol optical thickness retrieval from hyperspectral data. Proc. of SPIE, Vol. 11028, 1102812 [DOI: 10.1117/12.2524488http://dx.doi.org/10.1117/12.2524488]
Liu Y K, Wang T X, Ma L L and Wang N. 2014. Spectral Calibration of Hyperspectral Data Observed From a Hyperspectrometer Loaded on an Unmanned Aerial Vehicle Platform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2630-2638 [DOI: 10.1109/JSTARS.2014.2329891http://dx.doi.org/10.1109/JSTARS.2014.2329891]
Lv X K, Li C R, Ma L L, Yuan X F and Li X H. 2013. A true color correction model for hyperspectral remote sensing image based on physical mechanism. Remote Sensing Technology and Application, 28(3): 467-473
吕晓凯, 李传荣, 马灵玲, 苑馨方, 李晓辉. 2013. 一种基于物理机理的高光谱遥感图像真彩色校正模型. 遥感技术与应用, 28(3): 467-473
Ma L L, Wang N, Zhao Y G, Liu Y K, Wang X H, Ma Z H, Li C R, Tang L L and Qian Y G. 2019. Improved vicarious radiometric calibration method considering adjacency effect for high resolution optical sensors. Proceedings of IGARSS 2019, pp. 9014-9017 [DOI:10.1109/IGARSS.2019.8898171http://dx.doi.org/10.1109/IGARSS.2019.8898171]
Ma L L, Zhao Y G, Woolliams E R, Dai C H, Wang N, Liu Y K, Li L, Wang X H, Gao C X, Li C R and Tang L L. 2020. Uncertainty Analysis for RadCalNet Instrumented Test Sites Using the Baotou Sites BTCN and BSCN as Examples. Remote Sensing, 12(11): 1696 [DOI:10.3390/rs12111696http://dx.doi.org/10.3390/rs12111696]
Ma Z H, Ma L L, Liu Y K, Zhao Y G, Wang N, Li C R and Tang L L. 2019. A method for hyperspectral reflectance reconstruction from automatic observation with multispectral radiometer. Acta Optica Sinica, 39(7): 371-380
马志宏, 马灵玲, 刘耀开, 赵永光, 王宁, 李传荣, 唐伶俐. 2019. 通道式辐射计自动观测数据的反射率光谱拓展方法. 光学学报, 39(7): 371-380 [DOI: 10.3788/AOS201939.0728004http://dx.doi.org/10.3788/AOS201939.0728004]
Merchant D C, Schenk A, Habib A and Yoon T. 2004. USGS/OSU progress with digital camera in situ calibration methods. ISPRS Archives, Vol. 35 [DOI: 10.1201/9780203026830.ch9http://dx.doi.org/10.1201/9780203026830.ch9]
Pang B, Ma L L, Liu Y K, Wang N, Zhao Y G, Han Q J, Meng F R, Li C R, Tang L L, Chen Z M and Wang G Z. 2019. Ground-based automatic radiometric calibration of land observation satellite optical sensors and cross validation analysis. Remote Sensing Technology and Application, 34(1): 146-154
庞博,马灵玲,刘耀开, 王宁, 赵永光, 韩启金, 孟凡荣, 李传荣, 唐伶俐, 陈志明, 王国珠. 2019. 陆地卫星光学载荷地基自动辐射定标与验证分析. 遥感技术与应用, 2019, 34(1): 146-154 [DOI: 10.11873/j.issn.1004-0323.2019.1.0146http://dx.doi.org/10.11873/j.issn.1004-0323.2019.1.0146]
Qian Y G, Wang N, Ma L L, Liu Y K, Wu H, Tang B H, Tang L L and Li C R. 2016. Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data. Optics Express, 24(2): A257-A269 [DOI: 10.1364/OE.24.00A257http://dx.doi.org/10.1364/OE.24.00A257]
Wang N, Li C R, Ma L L, Liu Y K, Meng F R, Zhao Y G, Pang B, Qian Y G, Li W, Tang L L and Wang D J. 2017. Ground based automated radiometric calibration system in Baotou site, China. Proc. of SPIE, Vol. 10427, 104271J [DOI: 10.1117/12.2278072]
Zhao Y G, Ma L L, Li C R, Gao C X, Wang N and Tang L L. 2018. Radiometric Cross-Calibration of Landsat-8/OLI and GF-1/PMS Sensors Using an Instrumented Sand Site. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10): 3822-3829 [DOI: 10.1109/JSTARS.2018.2862638http://dx.doi.org/10.1109/JSTARS.2018.2862638]
Zhou C C, Li C R, He W J, Ma L L and Zhao Y G. 2018. A smile effect correction method for dispersive imaging spectrometer based on simultaneous radiometric and spectral calibration. Proc. of SPIE, Vol. 10785, 107851W [DOI: 10.1117/12.2501444]
Zhou C C, Li C R, Hu J, Ma L L and Yu G. 2012. A study on relative radiometric correction method based on line frequency difference for airborne hyperspectral imagery. Remote Sensing Technology and Application, 27(1): 33-38
周春城, 李传荣, 胡坚, 马灵玲, 于钢. 2012. 基于行频变化的航空高光谱成像仪相对辐射校正方法研究. 遥感技术与应用, 27(1): 33-38
Zhou C C, Meng F R, Li C R, He W J and Li W. 2017b. A parametric elastic registration method for airborne multispectral line scan imager. Proceedings of ICCT 2017, pp. 1618-1622 [DOI: 10.1109/ICCT.2017.8359904http://dx.doi.org/10.1109/ICCT.2017.8359904]
Zhou Y S, Li C R, Ma L L, Yang M Y and Liu Q. 2014. Improved trihedral corner reflector for high-precision SAR calibration and validation. Proceedings of IGARSS 2014, pp. 454-457 [DOI: 10.1109/IGARSS.2014.6946457http://dx.doi.org/10.1109/IGARSS.2014.6946457]
Zhou Y S, Li C R, Tang L L, Gao C X, Ren L and Ma L L. 2015. Permanent Target for Synthetic Aperture Radar Image Resolution Assessment. Proceedings of IGARSS 2015, pp. 4284-4287 [DOI: 10.1109/IGARSS.2015.7326773http://dx.doi.org/10.1109/IGARSS.2015.7326773]
Zhou Y S, Li C R, Tang L L, Ma L L, Wang Q and Liu Q. 2017a. A Permanent Bar Pattern Distributed Target for Microwave Image Resolution Analysis. IEEE Geoscience and Remote Sensing Letters, 14(2): 164-168 [DOI: 10.1109/LGRS.2016.2632181http://dx.doi.org/10.1109/LGRS.2016.2632181]
Zhu B, Li C R, Wang X H and Wang C L. 2017. A new method to estimate SNR of remote sensing imagery. Proc. of SPIE, Vol. 10462, 1046209 [DOI:10.1117/12.2281522http://dx.doi.org/10.1117/12.2281522]
Zhu B, Wang X H, Li Z Y, Dou S, Tang L L and Li C R. 2013. A new method based on Spatial Dimension Correlation and Fast Fourier Transform for SNR estimation in remote sensing images. Proceedings of IGARSS 2013, pp. 4114-4117 [DOI: 10.1109/IGARSS.2013.6723738http://dx.doi.org/10.1109/IGARSS.2013.6723738]
Zhu X H, Li C R, Tang L L and Ma L L. 2019. Retrieval and scale effect analysis of LAI over typical farmland from UAV-based hyperspectral data. Proc. of SPIE, Vol. 11149, 111490K [DOI: 10.1117/12.2535478]
Zhu X W, Li X H and Zhu B. 2013. Influence of the hyperspectral data quality based on CCSDS compression algorithm. Remote Sensing Information, 28(4): 29-36
朱学伟, 李晓辉, 朱博. 2013. CCSDS压缩算法对高光谱数据质量的影响研究. 遥感信息, 28(4): 29-36 [DOI: 10.3969/j.issn.1000-3177.2013.04.006http://dx.doi.org/10.3969/j.issn.1000-3177.2013.04.006]