高分辨率遥感影像智能解译研究进展与趋势
Research progress and trend of high-resolution remote sensing imagery intelligent interpretation
- 2021年25卷第11期 页码:2198-2210
收稿:2020-09-08,
纸质出版:2021-11-07
DOI: 10.11834/jrs.20210382
移动端阅览
收稿:2020-09-08,
纸质出版:2021-11-07
移动端阅览
遥感影像解译是一个不断发展的研究方向,随着日新月异的遥感应用需求、高分辨率遥感数据的快速发展、地理知识的日积月累、以及人工智能技术的发展,亟需发展自动化、智能化的遥感影像解译技术。本文针对遥感影像智能解译,首先从遥感影像解译单元、分类方法、解译认知3个方面阐述遥感影像解译的研究进展,然后提出了面向地理场景的 “地理知识图谱构建—深度学习模型构建—地理知识图谱与深度学习模型协同的遥感影像语义分类”遥感影像智能解译总体框架,并给出初步试验成果,最后对智能解译的重要发展趋势予以展望,以期拓展遥感影像智能解译研究的思路与方法,提高遥感影像智能解译的精细程度和智能化水平,使智能解译具备地理空间理解能力,推动“数据—信息—知识—智能”的深度转化。
Remote sensing imagery interpretation is a continuously developing research direction. With the ever-changing needs of remote sensing applications
the rapid development of high-resolution remote sensing data
the accumulation of geographic knowledge
and the development of artificial intelligence
automated and intelligent classification technology should be urgently developed. This paper aims at the development of intelligent interpretation. First
the research progress is elaborated from three aspects: interpretation unit
classification method
and interpretation recognition. Then
a geographic scene-level overall framework for intelligent understanding of remote sensing imagery is presented. The framework includes geographic knowledge map construction
deep convolutional neural network model construction
and the semantic classification method based on geographic knowledge graph and deep learning model. The preliminary test results are provided. Lastly
the important development trend of intelligent understanding is projected. A geographic knowledge graph can realize formal description and reasoning calculation of geographic knowledge and improve the learning capability and the utilization rate of prior knowledge. Classification and related semantic information can also be obtained
which is helpful for in-depth cognition of geographic scenes. This study looks forward to expanding the ideas and methods for intelligent interpretation of remote sensing images and improving its fineness and intelligence. Intelligent interpretation can understand geospatial capabilities intelligently and promote in-depth transformation of data
information
knowledge
and intelligence.
Arvor D , Belgiu M , Falomir Z , Mougenot I and Durieux L . 2019 . Ontologies to interpret remote sensing images: why do we need them? GIScience and Remote Sensing , 56 ( 6 ): 911 - 939 [ DOI: 10.1080/15481603.2019.1587890 http://dx.doi.org/10.1080/15481603.2019.1587890 ]
Ball J E , Anderson D T and Chan C S Sr . 2017 . Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community . Journal of Applied Remote Sensing , 11 ( 4 ): 042609 [ DOI: 10.1117/1.JRS.11.042609 http://dx.doi.org/10.1117/1.JRS.11.042609 ]
Blaschke T . 2010 . Object based image analysis for remote sensing . ISPRS Journal of Photogrammetry and Remote Sensing , 65 ( 1 ): 2 - 16 [ DOI: 10.1016/j.isprsjprs.2009.06.004 http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004 ]
Chen G , Weng Q H , Hay G J and He Y N . 2018 . Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities . GIScience and Remote Sensing , 55 ( 2 ): 159 - 182 [ DOI: 10.1080/15481603.2018.1426092 http://dx.doi.org/10.1080/15481603.2018.1426092 ]
Cheng G , Han J W and Lu X Q . 2017 . Remote sensing image scene classification: benchmark and state of the art . Proceedings of the IEEE , 105 ( 10 ): 1865 - 1883 [ DOI: 10.1109/JPROC.2017.2675998 http://dx.doi.org/10.1109/JPROC.2017.2675998 ]
Cheng G , Xie X X , Han J W , Guo L and Xia G S . 2020 . Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 13 : 3735 - 3756 [ DOI: 10.1109/JSTARS.2020.3005403 http://dx.doi.org/10.1109/JSTARS.2020.3005403 ]
Fu T Y , Ma L , Li M C and Johnson B A . 2018 . Using convolutional neural network to identify irregular segmentation objects from very high-resolution remote sensing imagery . Journal of Applied Remote Sensing , 12 ( 2 ): 025010 [ DOI: 10.1117/1.JRS.12.025010 http://dx.doi.org/10.1117/1.JRS.12.025010 ]
Ghazouani F , Farah I R and Solaiman B . 2019 . A multi-level semantic scene interpretation strategy for change interpretation in remote sensing imagery . IEEE Transactions on Geoscience and Remote Sensing , 57 ( 11 ): 8775 - 8795 [ DOI: 10.1109/tgrs.2019.2922908 http://dx.doi.org/10.1109/tgrs.2019.2922908 ]
Gu H Y , Li H T , Yan L , Liu Z J , Blaschke T and Soergel U . 2017 . An object-based semantic classification method for high resolution remote sensing imagery using ontology . Remote Sensing , 9 ( 4 ): 329 [ DOI: 10.3390/rs9040329 http://dx.doi.org/10.3390/rs9040329 ]
Gu H Y , Han Y S , Yang Y , Li H T , Liu Z J , Soergel U , Blaschke T and Cui S Y . 2018 . An efficient parallel multi-scale segmentation method for remote sensing imagery . Remote Sensing , 10 ( 4 ): 590 [ DOI: 10.3390/rs10040590 http://dx.doi.org/10.3390/rs10040590 ]
Han W , Feng R Y , Wang L Z and Cheng Y F . 2018 . A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification . ISPRS Journal of Photogrammetry and Remote Sensing , 145 : 23 - 43 [ DOI: 10.1016/j.isprsjprs.2017.11.004 http://dx.doi.org/10.1016/j.isprsjprs.2017.11.004 ]
Huang B , Zhao B and Song Y M . 2018 . Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery . Remote Sensing of Environment , 214 : 73 - 86 [ DOI: 10.1016/j.rse.2018.04.050 http://dx.doi.org/10.1016/j.rse.2018.04.050 ]
Kemker R , Salvaggio C and Kanan C . 2018 . Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning . ISPRS Journal of Photogrammetry and Remote Sensing , 145 : 60 - 77 [ DOI: 10.1016/j.isprsjprs.2018.04.014 http://dx.doi.org/10.1016/j.isprsjprs.2018.04.014 ]
Li D J , Guo H T , Lu J , Zhao C , Lin Y Z and Yu D H . 2020 . A remote sensing image classification procedure based on multilevel attention fusion U-Net . Acta Geodaetica et Cartographica Sinica , 49 ( 8 ): 1051 - 1064
李道纪 , 郭海涛 , 卢俊 , 赵传 , 林雨准 , 余东行 . 2020 . 遥感影像地物分类多注意力融和U型网络法 . 测绘学报 , 49 ( 8 ): 1051- 1064 [ DOI: 10.11947/j.AGCS.2020.20190407 http://dx.doi.org/10.11947/j.AGCS.2020.20190407 ]
Li H T , Gu H Y , Han Y S and Yang J H . 2008 . An efficient multi-scale segmentation for high-resolution remote sensing imagery based on Statistical region merging and minimum heterogeneity rule // 2008 International Workshop on Earth Observation and Remote Sensing Applications . Beijing, China : IEEE : 1 - 6 [ DOI: 10.1109/EORSA.2008.4620351 http://dx.doi.org/10.1109/EORSA.2008.4620351 ]
Li H T , Gu H Y , Han Y S and Yang J H . 2010 . Object-oriented classification of high-resolution remote sensing imagery based on an improved colour structure code and a support vector machine . International Journal of Remote Sensing , 31 ( 6 ): 1453 - 1470 [ DOI: 10.1080/01431160903475266 http://dx.doi.org/10.1080/01431160903475266 ]
Li J Y , Huang X and Gong J Y . 2019 . Deep neural network for remote-sensing image interpretation: status and perspectives . National Science Review , 6 ( 6 ): 1082 - 1086 [ DOI: 10.1093/nsr/nwz058 http://dx.doi.org/10.1093/nsr/nwz058 ]
Li Q J , Liu J , Mi X F , Yang J and Yu T . 2021 . Object-oriented crop classification for GF-6 WFV remote sensing images based on convolutional neural network . Journal of Remote Sensing , 25 ( 2 ): 549 - 558
李前景 , 刘珺 , 米晓飞 , 杨健 , 余涛 . 2021 . 面向对象与卷积神经网络模型的GF-6 WFV影像作物分类 . 遥感学报 , 25 ( 2 ): 549- 558 [ DOI: 10.11834/jrs.20219347 http://dx.doi.org/10.11834/jrs.20219347 ]
Lin D Y , Fu K , Wang Y , Xu G L and Sun X . 2017 . MARTA GANs: unsupervised representation learning for remote sensing image classification . IEEE Geoscience and Remote Sensing Letters , 14 ( 11 ): 2092 - 2096 [ DOI: 10.1109/LGRS.2017.2752750 http://dx.doi.org/10.1109/LGRS.2017.2752750 ]
Ma F , Gao F , Sun J P , Zhou H Y and Hussain A . 2019 . Attention graph convolution network for image segmentation in big SAR imagery data . Remote Sensing , 11 ( 21 ): 2586 [ DOI: 10.3390/rs11212586 http://dx.doi.org/10.3390/rs11212586 ]
Ma L , Li M C , Ma X X , Cheng L , Du P J and Liu Y X . 2017 . A review of supervised object-based land-cover image classification . ISPRS Journal of Photogrammetry and Remote Sensing , 130 : 277 - 293 [ DOI: 10.1016/j.isprsjprs.2017.06.001 http://dx.doi.org/10.1016/j.isprsjprs.2017.06.001 ]
Maggiori E , Tarabalka Y , Charpiat G and Alliez P . 2017 . Convolutional neural networks for large-scale remote sensing image classification . IEEE Transactions on Geoscience and Remote Sensing , 55 ( 2 ): 645 - 657 [ DOI: 10.1109/TGRS.2016.2612821 http://dx.doi.org/10.1109/TGRS.2016.2612821 ]
Marcos D , Volpi M , Kellenberger B and Tuia D . 2018 . Land Cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models . ISPRS Journal of Photogrammetry and Remote Sensing , 145 : 96 - 107 [ DOI: 10.1016/j.isprsjprs.2018.01.021 http://dx.doi.org/10.1016/j.isprsjprs.2018.01.021 ]
Maxwell A E , Warner T A and Fang F . 2018 . Implementation of machine-learning classification in remote sensing: an applied review . International Journal of Remote Sensing , 39 ( 9 ): 2784 - 2817 [ DOI: 10.1080/01431161.2018.1433343 http://dx.doi.org/10.1080/01431161.2018.1433343 ]
Panboonyuen T , Jitkajornwanich K , Lawawirojwong S , Srestasathiern P and Vateekul P . 2019 . Semantic segmentation on remotely sensed images using an enhanced global convolutional network with channel attention and domain specific transfer learning . Remote Sensing , 11 ( 1 ): 83 [ DOI: 10.3390/rs11010083 http://dx.doi.org/10.3390/rs11010083 ]
Réjichi S , Chaabane F and Tupin F . 2015 . Expert knowledge-based method for satellite image time series analysis and interpretation . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 8 ( 5 ): 2138 - 2150 [ DOI: 10.1109/jstars.2015.2433257 http://dx.doi.org/10.1109/jstars.2015.2433257 ]
Rotich G , Aakur S , Minetto R , Segundo M P and Sarkar S . 2018 . Using semantic relationships among objects for geospatial land use classification // 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR) . Washington, DC, USA : IEEE : 1 - 7 [ DOI: 10.1109/aipr.2018.8707405 http://dx.doi.org/10.1109/aipr.2018.8707405 ]
Saini R and Ghosh S K . 2017 . Ensemble classifiers in remote sensing: a review //2017 International Conference on Computing, Communication and Automation (ICCCA). Greater Noida , India : IEEE : 1148 - 1152 [ DOI: 10.1109/CCAA.2017.8229969 http://dx.doi.org/10.1109/CCAA.2017.8229969 ]
Sun W W and Wang R S . 2018 . Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM . IEEE Geoscience and Remote Sensing Letters , 15 ( 3 ): 474 - 478 [ DOI: 10.1109/LGRS.2018.2795531 http://dx.doi.org/10.1109/LGRS.2018.2795531 ]
Sun X , Shi A J , Huang H and Mayer H . 2020 . BAS 4 Net: boundary-aware semi-supervised semantic segmentation network for very high resolution remote sensing images . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 13 : 5398 - 5413 [ DOI: 10.1109/JSTARS.2020.3021098 http://dx.doi.org/10.1109/JSTARS.2020.3021098 ]
Sun Y , Tian Y and Xu Y P . 2019 . Problems of encoder-decoder frameworks for high-resolution remote sensing image segmentation: structural stereotype and insufficient learning . Neurocomputing , 330 : 297 - 304 [ DOI: 10.1016/j.neucom.2018.11.051 http://dx.doi.org/10.1016/j.neucom.2018.11.051 ]
Troya-Galvis A , Gançarski P and Berti-Équille L . 2018 . Remote sensing image analysis by aggregation of segmentation-classification collaborative agents . Pattern Recognition , 73 : 259 - 274 [ DOI: 10.1016/j.patcog.2017.08.030 http://dx.doi.org/10.1016/j.patcog.2017.08.030 ]
Wang H F , Qi G L and Chen H J . 2019 . Knowledge Graph: Method, Practice and Application . Beijing : Electronic Industry Press
王昊奋 , 漆桂林 , 陈华钧 . 2019 . 知识图谱: 方法、实践与应用 . 北京 : 电子工业出版社
Wang J J , Zhong Y F , Zheng Z , Ma A L and Zhang L P . 2021 . RSNet: the search for remote sensing deep neural networks in recognition tasks . IEEE Transactions on Geoscience and Remote Sensing 59 ( 3 ): 2520 - 2534 [ DOI: 10.1109/TGRS.2020.3001401 http://dx.doi.org/10.1109/TGRS.2020.3001401 ]
Xia L G , Luo J C , Wang W H and Shen Z F . 2014 . Land cover automatic classification based on RS-Informatic Tupu . Journal of Remote Sensing , 18 ( 4 ): 788 - 803
夏列钢 , 骆剑承 , 王卫红 , 沈占锋 . 2014 . 遥感信息图谱支持的土地覆盖自动分类 . 遥感学报 , 18 ( 4 ): 788- 803 [ DOI: 10.11834/jrs.20143058 http://dx.doi.org/10.11834/jrs.20143058 ]
Yan X F , Ai T H , Yang M and Yin H M . 2019 . A graph convolutional neural network for classification of building patterns using spatial vector data . ISPRS Journal of Photogrammetry and Remote Sensing , 150 : 259 - 273 [ DOI: 10.1016/j.isprsjprs.2019.02.010 http://dx.doi.org/10.1016/j.isprsjprs.2019.02.010 ]
Yu Y , Gong Z Q , Wang C and Zhong P . 2018 . An unsupervised convolutional feature fusion network for deep representation of remote sensing images . IEEE Geoscience and Remote Sensing Letters , 15 ( 1 ): 23 - 27 [ DOI: 10.1109/LGRS.2017.2767626 http://dx.doi.org/10.1109/LGRS.2017.2767626 ]
Zhang C , Sargent I , Pan X , Li H P , Gardiner A , Hare J and Atkinson P M . 2018b . An object-based convolutional neural network (OCNN) for urban land use classification . Remote Sensing of Environment , 216 : 57 - 70 [ DOI: 10.1016/j.rse.2018.06.034 http://dx.doi.org/10.1016/j.rse.2018.06.034 ]
Zhang F , Du B and Zhang L P . 2016 . Scene classification via a gradient boosting random convolutional network framework . IEEE Transactions on Geoscience and Remote Sensing , 54 ( 3 ): 1793 - 1802 [ DOI: 10.1109/TGRS.2015.2488681 http://dx.doi.org/10.1109/TGRS.2015.2488681 ]
Zhang X Y , Du S H , Wang Q and Zhou W Q . 2018a . Multiscale geoscene segmentation for extracting urban functional zones from VHR satellite images . Remote Sensing , 10 ( 2 ): 281 [ DOI: 10.3390/rs10020281 http://dx.doi.org/10.3390/rs10020281 ]
Zhang X Y , Du S H and Wang Y C . 2015 . Semantic classification of heterogeneous urban scenes using intrascene feature similarity and interscene semantic dependency . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 8 ( 5 ): 2005 - 2014 [ DOI: 10.1109/JSTARS.2015.2414178 http://dx.doi.org/10.1109/JSTARS.2015.2414178 ]
Zhao B , Zhong Y F , Xia G S and Zhang L P . 2016 . Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery . IEEE Transactions on Geoscience and Remote Sensing , 54 ( 4 ): 2108 - 2123 [ DOI: 10.1109/TGRS.2015.2496185 http://dx.doi.org/10.1109/TGRS.2015.2496185 ]
Zhao W Z , Du S H and Emery W J . 2017 . Object-based convolutional neural network for high-resolution imagery classification . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 10 ( 7 ): 3386 - 3396 [ DOI: 10.1109/JSTARS.2017.2680324 http://dx.doi.org/10.1109/JSTARS.2017.2680324 ]
Zhou P C , Cheng G , Yao X W and Han J W . 2021 . Machine learning paradigms in high-resolution remote sensing image interpretation . Journal of Remote Sensing , 25 ( 1 ): 182 - 197
周培诚 , 程塨 , 姚西文 , 韩军伟 . 2021 . 高分辨率遥感影像解译中的机器学习范式 . 遥感学报 , 25 ( 1 ): 182- 197 [ DOI: 10.11834/jrs.20210164 http://dx.doi.org/10.11834/jrs.20210164 ]
Zhu X X , Tuia D , Mou L C , Xia G S , Zhang L P , Xu F and Fraundorfer F . 2017 . Deep learning in remote sensing: a comprehensive review and list of resources . IEEE Geoscience and Remote Sensing Magazine , 5 ( 4 ): 8 - 36 [ DOI: 10.1109/MGRS.2017.2762307 http://dx.doi.org/10.1109/MGRS.2017.2762307 ]
相关作者
相关机构
京公网安备11010802024621
