InSAR与激光雷达测高集成的马兰山冰川物质平衡变化
Glacier mass balance changes in Malan Mountain based on InSAR and LiDAR altimetry
- 2022年26卷第10期 页码:2094-2105
纸质出版日期: 2022-10-07
DOI: 10.11834/jrs.20210389
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-10-07 ,
扫 描 看 全 文
庞书剑,柯长青,周兴华,张其兵,范宇宾,喻薛凝.2022.InSAR与激光雷达测高集成的马兰山冰川物质平衡变化.遥感学报,26(10): 2094-2105
Pang S J,Ke C Q,Zhou X H,Zhang Q B,Fan Y B and Yu X N. 2022. Glacier mass balance changes in Malan Mountain Based on InSAR and LiDAR altimetry. National Remote Sensing Bulletin, 26(10):2094-2105
冰川物质平衡是反映冰川消融与积累关系的重要指标,也是联系冰川与气候变化的纽带,对于评估冰川动态变化具有十分重要的意义。马兰山冰川位于青藏高原北部,作为东昆仑山系中消融最为剧烈的冰川之一,为了评估其在全球气候变暖背景下的物质平衡变化,利用TerraSAR-X/TanDEM-X合成孔径雷达数据、ICESat-2激光雷达高度计数据、SRTM DEM数据,基于合成孔径雷达干涉测量和激光雷达测高技术对其2000年—2020年高程变化进行了研究,并估算了物质平衡。结果表明:近20年来,该区域41条冰川平均表面高程变化-5.64±0.96 m,物质平衡为-0.24±0.06 m·w·e/a,呈明显负平衡状态。其中,2000年—2012年冰川的消融速度(-0.30±0.04 m·w·e/a)要略快于2012年—2020年消融速度(-0.22±0.11 m·w·e/a)。结合GPCC(Global Precipitation Climatology Centre)降水与GHCN_CAMS(Global Historical Climatology Network)气温再分析数据集可知:自2000年以来,马兰山冰川整体受夏季气温升高影响,消融剧烈,年降水量微弱增加仅弥补了少部分由升温带来的物质亏损。此外,由于2012后气温增速变慢,夏季气温波动降低,导致了冰川在2012年—2020年间消融速度有所减缓。根据Landsat-7遥感影像发现,马兰山南坡存在一条跃动冰川,跃动发生于2007年—2012年间,冰川末端在此期间异常增厚并前进了约251 m。
Glacier mass balance is a significant indicator of glacier accumulation and ablation state
and it also reflects the relationship between glacier and climate forcing
which have great impacts on evaluating glacier dynamics. Due to the continuous accumulation of greenhouse effect
large amount of mountain glaciers in the Qinghai-Tibet Plateau in China has been continuously depleted since 1970
especially in the East Kunlun Mountains and the inner regions of the Qinghai-Tibet Plateau. The large-scale and long-term observation of glacier mass balance is usually estimated according to the elevation change of the glacier surface by the remote sensing means of synthetic aperture radar interferometry
Lidar altimetry technology and photogrammetry using optical stereo image. In this work
we choose Malan Mountain
located in the north of Tibet Plateau
as our study area
which is one of the most ablated glacier regions in East Kunlun Mountains. To assess glacier mass change in Malan Mountain in recent two decades
we utilize SRTM DEM
TerraSAR-X/TanDEM-X
and ICESat-2 data to estimate its glacier mass balance during 2000—2012
2012—2020
and 2000—2020. In order to obtain the true value of the long time change of glacier surface elevation
we take the following steps. Firstly
three kinds of elevation data were registered to eliminate the spatial errors
and then the penetration depth of ice in the East Kunlun Mountains was estimated by statistical method according to the difference between SRTM-X DEM and SRTM-C DEM. Finally
the accurate ice elevation change value was obtained by seasonal correction according to the seasonal change of glacier. The results show that: (1) During 2000—2020
41 glaciers in Malan Mountain display remarkably negative mass change (-0.24 ± 0.06 m·w·e/a) and their overall elevation change is -5.64 ± 0.96 m. Besides
we also compare glacier mass change in Malan Mountain during two subperiods and we find that glacier ice mass loss rate is more apparent during 2000—2012 (-0.30 ± 0.04 m·w·e/a) than 2012—2020 (-0.22 ± 0.11 m·w·e/a). (2) Based on GPCC (Global Precipitation Climatology Center) and GHCN_CAMS (Global Historical Climatology Network) reanalysis dataset
we discover that the evidently negative mass change in Malan Mountain during 2000—2020 is mainly attributed to increasing summer temperature. Albeit slightly increasing annual precipitation for glacier ice mass accumulation in recent two decades
it still cannot compensate ice mass loss caused by increasing summer temperature. Additionally
we also find that the decreasing glacier ice mass loss rate during 2012—2020 is predominantly ascribed to decreasing summer temperature in this period. (3) According to Landsat-7 images during 2007—2012
we discover a surging glacier in the southern slope of Malan Mountain and its terminus advances approximately 251 m during this period.
物质平衡干涉测量TanDEM-XICEsat-2气候变化冰川跃动马兰山冰川
mass balanceradar interferometryTanDEM-XICEsat-2climate changeglacier surgingglacier in Malan Mountain
Barsi J A, Markham B L, Czapla-Myers J S, Helder D L, Hook S J, Schott J R and Mohammed O H. 2016. Landsat-7 ETM+ radiometric calibration status//Proceedings of Society of Photo-Optical Instrumentation Engineers 9972. Earth Observing Systems XXI: 99720C [DOI: 10.1117/12.2238625http://dx.doi.org/10.1117/12.2238625]
Bojinski S, Verstraete M, Peterson T C, Richter C, Simmons A and Zemp M. 2014. The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society, 95(9): 1431-1443 [DOI: 10.1175/bams-d-13-00047.1http://dx.doi.org/10.1175/bams-d-13-00047.1]
Bolch T, Pieczonka T and Benn D I. 2011. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2): 349-358[DOI: 10.5194/tc-5-349-2011http://dx.doi.org/10.5194/tc-5-349-2011]
Brun F, Berthier E, Wagnon P, Kääb A and Treichler D. 2017. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 10(9): 668-673 [DOI: 10.1038/ngeo2999http://dx.doi.org/10.1038/ngeo2999]
Dehecq A, Millan R, Berthier E, Gourmelen N, Trouvé E and Vionnet V. 2016. Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: impact of the X-band interferometric bias. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8): 3870-3882 [DOI: 10.1109/jstars.2016.2581482http://dx.doi.org/10.1109/jstars.2016.2581482]
Farr T G, Rosen P A, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth, L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D and Alsdorf D. 2007. The shuttle radar topography mission. Reviews of Geophysics, 45(2): RG2004 [DOI: 10.1029/2005RG000183http://dx.doi.org/10.1029/2005RG000183]
Gardelle J, Berthier E, Arnaud Y and Kääb A. 2013. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999—2011. The Cryosphere, 7(4): 1263-1286[DOI: 10.5194/tc-7-1263-2013http://dx.doi.org/10.5194/tc-7-1263-2013]
Huang D F and Liu G X. 2009. Experimental Investigation on Generating Digital Elevation Model of highly Mountains Area with ERS-1/2 Tandem Radar Interferometry. Remote Sensing Technology and Application, 24(3): 291-296+251
黄丁发,刘国祥. 2009. 利用ERS-1/2串接雷达干涉建立高山地区数字高程模型的实验研究. 遥感技术与应用, 24(3): 291-296+251 [DOI: 1004-0323(2009)03-0291-06http://dx.doi.org/1004-0323(2009)03-0291-06]
Huss M. 2013. Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere, 7(3): 877-887 [DOI: 10.5194/tc-7-877-2013http://dx.doi.org/10.5194/tc-7-877-2013]
Jiang S. 2012. Research on Glacier and Climate Change in the Eastern Kunlun Mountains Based on Remote Sensing. Lanzhou University
姜珊. 2012. 基于遥感的东昆仑山冰川和气候变化研究. 兰州:兰州大学
Jiang S, Yang T B and Tian H Z. 2012. Glacier shrinkage and its dependence on climate in the Malan Mountain in past 40 years based on RS and GIS. Journal of Glaciology and Geocryology, 34(3): 522-529
姜珊, 杨太保, 田洪阵. 2012. 1973—2010年基于RS和GIS的马兰冰川退缩与气候变化关系研究. 冰川冻土, 34(3): 522-529 [DOI:1000-0240(2012)03-0522-08http://dx.doi.org/1000-0240(2012)03-0522-08]
Jiang Z L, Liu S Y, Guo W Q, Li J, Long S C, Wang X, Wei J F, Zhang Z and Wu K P. 2018. Recent surface elevation changes of three representative glaciers in Ányêmaqên Mountains, source region of Yellow River. Journal of Glaciology and Geocryology, 40(2): 231-237
蒋宗立, 刘时银, 郭万钦, 李晶, 龙四春, 王欣, 魏俊锋, 张震, 吴坤鹏. 2018. 黄河源区阿尼玛卿山典型冰川表面高程近期变化. 冰川冻土, 40(2): 231-237 [DOI: 10.7522/j.issn.1000-0240.2018.0027http://dx.doi.org/10.7522/j.issn.1000-0240.2018.0027]
Jiang Z L, Zhang J L, Zhang Z, Liu S Y, Wei J F, Guo W Q, Zhu C G and Huang D N. 2019. Glacier change and mass balance (1972—2011) in Ulugh Muztagh, eastern Kunlun Mountains, monitored by remote sensing. Remote Sensing for Land and Resources, 31(4): 128-136
蒋宗立, 张俊丽, 张震, 刘时银, 魏俊锋, 郭万钦, 祝传广, 黄丹妮. 2019. 1972—2011年东昆仑山木孜塔格峰冰川面积变化与物质平衡遥感监测. 国土资源遥感, 31(4): 128-136 [DOI: 10.6046/gtzyyg.2019.04.17http://dx.doi.org/10.6046/gtzyyg.2019.04.17]
Kääb A, Berthier E, Nuth C, Gardelle J and Arnaud Y. 2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412): 495-498 [DOI: 10.1038/nature11324http://dx.doi.org/10.1038/nature11324]
Li G and Lin H. 2017. Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry. Global and Planetary Change, 149: 177-190 [DOI: 10.1016/j.gloplacha.2016.12.018http://dx.doi.org/10.1016/j.gloplacha.2016.12.018]
Liu L, Jiang L M, Jiang H J, Wang H S, Ma N and Xu H Z. 2019. Accelerated glacier mass loss (2011—2016) over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements. Remote Sensing of Environment, 231: 111241 [DOI: 10.1016/j.rse.2019.111241http://dx.doi.org/10.1016/j.rse.2019.111241]
Maussion F, Scherer D, Mölg T, Collier E, Curio J and Finkelnburg R. 2014. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. Journal of Climate, 27(5): 1910-1927 [DOI: 10.1175/jcli-d-13-00282.1http://dx.doi.org/10.1175/jcli-d-13-00282.1]
Nuth C and Kääb A. 2011. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5(1): 271-290 [DOI: 10.5194/tc-5-271-2011http://dx.doi.org/10.5194/tc-5-271-2011]
Pieczonka T and Bolch T. 2015. Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery. Global and Planetary Change, 128: 1-13 [DOI: 10.1016/j.gloplacha.2014.11.014http://dx.doi.org/10.1016/j.gloplacha.2014.11.014]
Pieczonka T, Bolch T, Wei J F and Liu S Y. 2013. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sensing of Environment, 2013, 130: 233-244[DOI: 10.1016/j.rse.2012.11.020http://dx.doi.org/10.1016/j.rse.2012.11.020]
Pu J C, Yao T D, Wang N L, Ding F L and Zhang Q H. 2001. Recent variation of the Malan glacier in Hoh Xil region of the Tibetan Plateau. Journal of Glaciology and Geocryology, 23(2): 189-192
蒲健辰, 姚檀栋, 王宁练, 丁良福, 张其花. 2011. 可可西里马兰山冰川的近期变化. 冰川冻土, 23(2): 189-192 [DOI: 10.3969/j.issn.1000-0240.2001.02.014http://dx.doi.org/10.3969/j.issn.1000-0240.2001.02.014]
Qin D H, Ding Y J, Xiao C D, Kang S C, Ren J W, Yang J P and Zhang S Q. 2018. Cryospheric science: research framework and disciplinary system. National Science Review, 5(2): 255-268 [DOI: 10.1093/nsr/nwx108http://dx.doi.org/10.1093/nsr/nwx108]
RGI Consortium, 2017. Randolph Glacier Inventory-A Dataset of Global Glacier Outlines, Version 6. Boulder, Colorado USA: Global Land Ice Measurements from Space [DOI: 10.7265/N5-RGI-60http://dx.doi.org/10.7265/N5-RGI-60]
Smith B, Adusumilli S, Csathó B M, Felikson D, Fricker H A, Gardner A, Holschuh N, Lee J, Nilsson J, Paolo F S, Siegfried M R, Sutterley T and the ICESat-2 Science Team. 2021. ATLAS/ICESat-2 L3Land Ice HeightA, Version 5. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center [DOI: 10.5067/ATLAS/ATL06.005http://dx.doi.org/10.5067/ATLAS/ATL06.005]
Sun Y F, Jiang L M, Liu L, Sun Y L and Wang H S. 2016. Generating and evaluating digital terrain model with TanDEM-X Bistatic SAR interferometry. Geomatics and Information Science of Wuhan University, 41(1): 100-105
孙亚飞, 江利明, 柳林, 孙永玲, 汪汉胜. 2016. TanDEM-X双站InSAR地形提取及精度评估. 武汉大学学报(信息科学版), 41(1): 100-105 [DOI: 10.13203/j.whugis20130618http://dx.doi.org/10.13203/j.whugis20130618]
Wang N L, Yao T D, Xu B Q, Chen A A and Wang W C. 2019. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming. Bulletin of the Chinese Academy of Sciences, 34(11): 1220-1232
王宁练, 姚檀栋, 徐柏青, 陈安安, 王伟财. 2019. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响. 中国科学院院刊, 34(11): 1220-1232 [DOI: 10.16418/j.issn.1000-3045.2019.11.005http://dx.doi.org/10.16418/j.issn.1000-3045.2019.11.005]
Wang Q Y, Yi S, Chang L and Sun W K. 2017a. Large-scale seasonal changes in glacier thickness across High Mountain Asia. Geophysical Research Letters, 44(20): 10427-10435 [DOI: 10.1002/2017gl075300http://dx.doi.org/10.1002/2017gl075300]
Wang Q Y, Yi S and Sun W K. 2017b. Precipitation-driven glacier changes in the Pamir and Hindu Kush mountains. Geophysical Research Letters, 44(6): 2817-2824 [DOI: 10.1002/2017gl072646http://dx.doi.org/10.1002/2017gl072646]
Wang S, Pu J C and Wang N L. 2011. Study of mass balance and sensibility to climate change of Qiyi Glacier in Qilian Mountains. Journal of Glaciology and Geocryology, 33(6): 1214-1221
王盛, 蒲健辰, 王宁练. 2011. 祁连山七一冰川物质平衡及其对气候变化的敏感性研究. 冰川冻土, 33(6): 1214-1221 [DOI:1000-0240(2011)06-1214-08http://dx.doi.org/1000-0240(2011)06-1214-08]
Xie Z C, Han J K, Feng Q H and Wang X J. 2000. Primary study on the glaciers of Mountain Malan, Hoh Xil Region, Qinghai-Xizang Plateau. Acta Scientiarum Naturalium Universitatis Normalis Hunanensis, 23(1): 83-88
谢自楚, 韩健康, 冯清华, 王晓军. 2000. 青藏高原可可西里地区马兰山冰川的初步研究. 湖南师范大学自然科学学报, 23(1): 83-88 [DOI:1000-2537(2000)-01-0083-06http://dx.doi.org/1000-2537(2000)-01-0083-06]
Yang R M, Zhang T J, Zhu L P and Ju J T. 2019. Laigu glacial lake variation and its outburst flood risk in southeast Tibetan Plateau. Quaternary Sciences, 39(5): 1171-1180
杨瑞敏, 张廷军, 朱立平, 鞠建廷. 2019. 青藏高原东南部来古冰湖变化及其溃决洪水评估. 第四纪研究, 39(5): 1171-1180 [DOI: 10.11928/j.issn.1001-7410.2019.05.09http://dx.doi.org/10.11928/j.issn.1001-7410.2019.05.09]
Yao T D, Thompson L, Yang W, Yu W S, Gao Y, Guo X J, Yang X X, Duan K Q, Zhao H B, Xu B Q, Pu J C, Lu A X, Xiang Y, Kattel D B and Joswiak D. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667 [DOI: 10.1038/nclimate1580http://dx.doi.org/10.1038/nclimate1580]
Zhang K Q, Gann D, Ross M, Robertson Q, Sarmiento J, Santana S, Rhome J and Fritz C. 2019. Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sensing of Environment, 225: 290-306 [DOI: 10.1016/j.rse.2019.02.028http://dx.doi.org/10.1016/j.rse.2019.02.028]
Zhang Z, Liu S Y, Jiang Z L, Shangguan D H, Wei J F, Guo W Q, Xu J L, Zhang Y, Zhang S S and Huang D N. 2020. Glacier variations at Xinqingfeng and Malan ice caps in the Inner Tibetan Plateau since 1970. Remote Sensing, 12(3): 421 [DOI: 10.3390/rs12030421http://dx.doi.org/10.3390/rs12030421]
Zhou Y S, Hu J, Li Z W, Li J, Zhao R and Ding X L. 2019. Quantifying glacier mass change and its contribution to lake growths in central Kunlun during 2000—2015 from multi-source remote sensing data. Journal of Hydrology, 570: 38-50 [DOI: 10.1016/j.jhydrol.2019.01.007http://dx.doi.org/10.1016/j.jhydrol.2019.01.007]
Zhou Y S, Li Z W and Li J. 2017. Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. Journal of Glaciology, 63(238): 331-342 [DOI: 10.1017/jog.2016.142http://dx.doi.org/10.1017/jog.2016.142]
Zhou Y S, Li Z W, Li J, Zhao R and Ding X L. 2018. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sensing of Environment, 210: 96-112 [DOI: 10.1016/j.rse.2018.03.020http://dx.doi.org/10.1016/j.rse.2018.03.020]
相关作者
相关机构