考虑地物类型的Minnaert地形校正模型优化方法
Optimal Minnaert topographic correction model based on land cover classification
- 2022年26卷第12期 页码:2542-2554
纸质出版日期: 2022-12-07
DOI: 10.11834/jrs.20210399
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-12-07 ,
扫 描 看 全 文
林英豪,金燕,沈夏炯,周黎鸣.2022.考虑地物类型的Minnaert地形校正模型优化方法.遥感学报,26(12): 2542-2554
Lin Y H,Jin Y,Shen X J and Zhou L M. 2022. Optimal Minnaert topographic correction model based on land cover classification. National Remote Sensing Bulletin, 26(12):2542-2554
地形校正可以削弱地势复杂区域由于地形起伏导致的地表接收太阳辐射不均匀和地表反射率失真的问题,从而提升遥感影像质量和遥感信息提取的精度。但是,现有地形校正模型存在过校正、波段间校正效果不稳定以及校正效果不理想等问题。本文根据Minnaert地形校正模型系数
k
和地物二向性反射特性的相关性,对Minnaert模型进行改进,提出了一种考虑地物类型的Minnaert地形校正模型(简称为CMinnaert模型),并在地物预分类中采用《土地利用现状分类》一级分类标准和分植被疏密程度分类两种方式,用以验证CMinnaert模型的稳定性并筛选最佳地物类型划分方案。首先对待校正影像进行地物类型预分类,其次逐波段针对各地物类型分别进行系数
k
的拟合求解,然后使用各波段各地物类型的系数
k
对该范围的遥感影像进行Minnaert地形校正。以河南省商城县的Landsat 8/OLI影像为实验数据,选取余弦校正模型、SCS校正模型、Minnaert校正模型、分坡度的Minnaert校正模型作为对比模型,通过目视对比和统计数据分析的方式评估CMinnaert模型的地形校正效果。研究结果表明,本文提出的CMinnaert模型有效地削弱了地形效应对遥感影像辐射亮度值的影响,与原始影像和其他4种地形校正结果相比,进行地物一级分类的CMinnaert模型有效降低了各波段辐亮度与太阳入射角余弦的线性拟合
R
2
,未出现过校正现象;分植被疏密程度分类的CMinnaert模型在第1、5波段存在过校正问题,但其余波段辐亮度与太阳入射角余弦的线性拟合
R
2
是6种模型中最低的。以上结果证明两种地物预分类方式的CMinnaert模型校正效果都较稳定且明显优于其他四种地形校正模型,且本文建议在进行CMinnaert地形校正时采用地物一级分类的方式进行地物预分类。
Topographic correction can reduce the problem of uneven solar radiation reception and surface reflectance distortion caused by terrain undulations in complex terrain areas
thus improving the quality of remote sensing images and the accuracy of remote sensing information extraction. However
existing topographic correction models have some problems
such as overcorrection
unstable effect of each band correction
and unsatisfactory correction accuracy.
This work proposes a corrected Minnaert topographic correction model
named the CMinnaert topographic correction model
which considers the type of land cover
based on the correlation between the
k
coefficient of the Minnaert topographic correction model and the bidirectional reflection characteristics of the ground object. Two methods are used in the pre classification of surface features: the first level classification of land cover types and the classification of vegetation density to verify the stability of the CMinnaert model. The best classification scheme of land cover types is proposed. First
a corrected image was pre-classified into land cover types
and the
k
coefficient was fitted to determine the land cover types in different places. Finally
Minnaert topographic correction was applied to the remote sensing data by using the
k
coefficient of the land cover type in each area. A Landsat 8/OLI image of Shangcheng County
Henan Province
China was used as experimental data.
The cosine correction model
the Sun Canopy Sensor (SCS) correction model
the Minnaert correction model
the Minnaert correction model based on slope
and the CMinnaert correction model were used to perform topographic correction of images in the research area. Visual comparison and statistical data analysis were used to evaluate the topographic correction performance of each algorithm. Results show that the CMinnaert correction model can effectively weaken the influence of the terrain effect on the radiance value of the remote sensing image: the CMinnaert correction model for the first level classification of land cover types can effectively reduce the linear fitting
R
2
of radiance and cosine of solar incidence angle at each band compared with the original image and the other four topographic correction results
and no over correction phenomenon occurred. Furthermore
the CMinnaert model of the vegetation density classification can effectively weaken the overcorrection problem of other correction models in bands 1 and 5. The linear fitting
R
2
of the radiance and cosine of the solar incidence angle in the other bands is the lowest of the six models. The CMinnaert model of two pre classification methods is more stable and better than the other four topographic correction models. The results of the visual comparison
cosine correlation analysis of the solar incidence angle
radiance histogram
and spectral characteristic analysis of the sunny and shady slopes are basically consistent.
This study recommends that the first level classification should be used in CMinnaert topographic correction considering the algorithm efficiency and practical application ability of the CMinnaert model.
遥感地形校正Minnaert模型地物类型Landsat 8/OLI
remote sensingtopographic correctionMinnaert modelland cover typeLandsat 8/OLI
Cavayas F. 1987. Modelling and correction of topographic effect using multi-temporal satellite images. Canadian Journal of Remote Sensing, 13(2): 49-67 [DOI: 10.1080/07038992.1987.10855108http://dx.doi.org/10.1080/07038992.1987.10855108]
Chinese Ministry of Land and Resources. 2017. Current land use classification. GB/T 21010-2017
国土资源部. 2017. 土地利用现状分类. GB/T 21010-2017
Civco D L. 1989. Topographic normalization of landsat thematic mapper digital imagery. Photogrammetric Engineering and Remote Sensing, 55(9): 1303-1309
Conese C, Gilabert M A, Maselli F and Bottai L. 1993. Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models. Photogrammetric Engineering and Remote Sensing, 59(12): 1745-1753
De Oliveira L M, Galvão L S and Ponzoni F J. 2021. Topographic effects on the determination of hyperspectral vegetation indices: a case study in southeastern Brazil. Geocarto International, 36(19): 2186-2203 [DOI: 10.1080/10106049.2019.1690055http://dx.doi.org/10.1080/10106049.2019.1690055]
Dong C, Zhao G X, Meng Y, Li B H and Peng B. 2020. The effect of topographic correction on forest tree species classification accuracy. Remote Sensing, 12(5): 787 [DOI: 10.3390/rs12050787http://dx.doi.org/10.3390/rs12050787]
Duan S B, Yan G J, Mu X H, Shen B and Li X W. 2007. DEM based remotely sensed imagery topographic correction method in mountainous areas. Geography and Geo-Information Science, 23(6): 18-22
段四波, 阎广建, 穆西晗, 沈斌, 李小文. 2007. 基于DEM的山区遥感图像地形校正方法. 地理与地理信息科学, 23(6): 18-22 [DOI: 10.3969/j.issn.1672-0504.2007.06.004http://dx.doi.org/10.3969/j.issn.1672-0504.2007.06.004]
Fan W L, Li J, Liu Q H, Zhang Q, Yin G F, Li A N, Zeng Y L, Xu B D, Xu X J, Zhou G M and Du H Q. 2018. Topographic correction of forest image data based on the canopy reflectance model for sloping terrains in multiple forward mode. Remote Sensing, 10(5): 717 [DOI: 10.3390/rs10050717http://dx.doi.org/10.3390/rs10050717]
Gao M L, Gong H L, Zhao W J, Chen B B, Chen Z and Shi M. 2016. An improved topographic correction model based on minnaert. GIScience and Remote Sensing, 53(2): 247-264 [DOI: 10.1080/15481603.2015.1118976http://dx.doi.org/10.1080/15481603.2015.1118976]
Gao M L, Zhao W J, Gong Z N, Gong H L, Chen Z and Tang X M. 2014. Topographic correction of ZY-3 satellite images and its effects on estimation of shrub leaf biomass in mountainous areas. Remote Sensing, 6(4): 2745-2764 [DOI: 10.3390/rs6042745http://dx.doi.org/10.3390/rs6042745]
Gao Y N and Zhang W C. 2008a. Simplification and modification of a physical topographic correction algorithm for remotely sensed data. Acta Geodaetica et Cartographica Sinica, 37(1): 89-94, 120
高永年, 张万昌. 2008a. 遥感影像地形校正物理模型的简化与改进. 测绘学报, 37(1): 89-94, 120 [DOI: 10.3321/j.issn:1001-1595.2008.01.016http://dx.doi.org/10.3321/j.issn:1001-1595.2008.01.016]
Gao Y N and Zhang W C. 2008b. Comparison test and research progress of topographic correction on remotely sensed data. Geographical Research, 27(2): 467-477
高永年, 张万昌. 2008b. 遥感影像地形校正研究进展及其比较实验. 地理研究, 27(2): 467-477 [DOI: 10.3321/j.issn:1000-0585.2008.02.024http://dx.doi.org/10.3321/j.issn:1000-0585.2008.02.024]
Gatebe C K and King M D. 2016. Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications. Remote Sensing of Environment, 179: 131-148 [DOI: 10.1016/j.rse.2016.03.029http://dx.doi.org/10.1016/j.rse.2016.03.029]
Ge H L, Lu D S, He S Z, Xu A J, Zhou G M and Du H Q. 2008. Pixel-based minnaert correction method for reducing topographic effects on a landsat 7 ETM+ image. Photogrammetric Engineering and Remote Sensing, 74(11): 1343-1350 [DOI: 10.14358/PERS.74.11.1343http://dx.doi.org/10.14358/PERS.74.11.1343]
Goslee S C. 2012. Topographic corrections of satellite data for regional monitoring. Photogrammetric Engineering and Remote Sensing, 78(9): 973-981 [DOI: 10.14358/PERS.78.9.973http://dx.doi.org/10.14358/PERS.78.9.973]
Gu D G and Gillespie A. 1998. Topographic normalization of landsat TM images of forest based on subpixel sun-canopy-sensor geometry. Remote Sensing of Environment, 64(2): 166-175 [DOI: 10.1016/S0034-4257(97)00177-6http://dx.doi.org/10.1016/S0034-4257(97)00177-6]
Gupta S K and Shukla D P. 2020. Evaluation of topographic correction methods for LULC preparation based on multi-source DEMs and Landsat-8 imagery. Spatial Information Research, 28(1): 113-127 [DOI: 10.1007/s41324-019-00274-0http://dx.doi.org/10.1007/s41324-019-00274-0]
Huang B and Xu L H. 2012. Applied research of topographic correction based on the improved minnaert model. Remote Sensing Technology and Application, 27(2): 183-189
黄博, 徐丽华. 2012. 基于改进型Minnaert地形校正模型的应用研究. 遥感技术与应用, 27(2): 183-189 [DOI: CNKI:SUN:YGJS.0.2012-02-006http://dx.doi.org/CNKI:SUN:YGJS.0.2012-02-006]
Huang W, Zhang L P and Li P X. 2005. An improved topographic correction approach for satellite image. Journal of Image and Graphics, 10(9): 1124-1128
黄微, 张良培, 李平湘. 2005. 一种改进的卫星影像地形校正算法. 中国图象图形学报, 10(9): 1124-1128 [DOI: 10.3969/j.issn.1006-8961.2005.09.009http://dx.doi.org/10.3969/j.issn.1006-8961.2005.09.009]
Hurni K, Van Den Hoek J and Fox J. 2019. Assessing the spatial, spectral, and temporal consistency of topographically corrected landsat time series composites across the mountainous forests of Nepal. Remote Sensing of Environment, 231: 111225 [DOI: 10.1016/j.rse.2019.111225http://dx.doi.org/10.1016/j.rse.2019.111225]
Jiang K, Hu C M, Yu K and Zhao Y C. 2014. Landsat TM/ETM+ topographic correction method based on smoothed terrain and semi-empirical model. Journal of Remote Sensing, 18(2): 287-306
姜亢, 胡昌苗, 于凯, 赵永超. 2014. 地形抹平与半经验模型的Landsat TM/ETM+地形校正方法. 遥感学报, 18(2): 287-306 [DOI: 10.11834/jrs.20143258http://dx.doi.org/10.11834/jrs.20143258]
Kobayashi S and Sanga-Ngoie K. 2008. The integrated radiometric correction of optical remote sensing imageries. International Journal of Remote Sensing, 29(20): 5957-5985 [DOI: 10.1080/01431160701881889http://dx.doi.org/10.1080/01431160701881889]
Li Y C. 1994. Topographic effect analysis and correction of digital remote sensing image. Beijing Surveying and Mapping, (2): 14-19
李英成. 1994. 数字遥感影像地形效应分析及校正. 北京测绘, (2): 14-19 [DOI: 10.19580/j.cnki.1007-3000.1994.02.004http://dx.doi.org/10.19580/j.cnki.1007-3000.1994.02.004]
Li Y K. 2015. Effects of analytical window and resolution on topographic relief derived using digital elevation models. GIScience and Remote Sensing, 52(4): 462-477 [DOI: 10.1080/15481603.2015.1049577http://dx.doi.org/10.1080/15481603.2015.1049577]
Lin Q N, Huang H G, Chen L and Chen E X. 2017. Topographic correction method for steep mountain terrain images. Journal of Remote Sensing, 21(5): 776-784
林起楠, 黄华国, 陈玲, 陈尔学. 2017. 陡峭山区影像的半经验地形校正. 遥感学报, 21(5): 776-784 [DOI: 10.11834/jrs.20176384http://dx.doi.org/10.11834/jrs.20176384]
Lin X W, Wen J G, Wu S B, Hao D L, Xiao Q and Liu Q H. 2020. Advances in topographic correction methods for optical remote sensing imageries. Journal of Remote Sensing, 24(8): 958-974
林兴稳, 闻建光, 吴胜标, 郝大磊, 肖青, 柳钦火. 2020. 地表反射率地形校正物理模型与效果评价方法研究进展. 遥感学报, 24(8): 958-974 [DOI: 10.11834/jrs.20209167http://dx.doi.org/10.11834/jrs.20209167]
Lin Y H. 2019 Angles Normalization Model of Vegetation Canopy Reflectance Based on Geostationary Satellite Remote Sensing Data . Nanjing: Nanjing University
林英豪. 2019. 静止卫星遥感植被冠层反射率的角度归一化模型研究. 南京:南京大学
Liu S H, Liu Q, Liu Q H, Wen J G and Li X W. 2010. The angular and spectral kernel model for BRDF and albedo retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 241-256 [DOI: 10.1109/JSTARS.2010.2048745http://dx.doi.org/10.1109/JSTARS.2010.2048745]
Liu Z W. 2017. Remote Sensing Inversion of Vegetation Cover Parameters based on Topographic Radiation Correction. Tai’an: Shandong Agricultural University
刘子玮. 2017. 基于地形辐射校正的植被覆盖参数遥感反演. 泰安: 山东农业大学
Lü L L, Xie Y W and Dong L L. 2017. The comparison of reflectance based on different terrain correction. Remote Sensing Technology and Application, 32(4): 751-759
吕利利, 颉耀文, 董龙龙. 2017. 基于不同地形校正模型的影像反射率对比分析. 遥感技术与应用, 32(4): 751-759 [DOI: 10.11873/j.issn.1004-0323.2017.4.0751http://dx.doi.org/10.11873/j.issn.1004-0323.2017.4.0751]
Melnikova I, Awaya Y, Saitoh T M, Muraoka H and Sasai T. 2018. Estimation of leaf area index in a mountain forest of central Japan with a 30-m spatial resolution based on landsat operational land imager imagery: an application of a simple model for seasonal monitoring. Remote Sensing, 10(2): 179 [DOI: 10.3390/rs10020179http://dx.doi.org/10.3390/rs10020179]
Minnaert M. 1941. The reciprocity principle in lunar photometry. The Astrophysical Journal, 93: 403-410 [DOI: 10.1086/144279http://dx.doi.org/10.1086/144279]
Pi X Y,Zeng Y N and He C Q. 2021. Estimating urban vegetation coverage on the basis of multi-source remote sensing data and temporal mixture analysis. National Remote Sensing Bulletin, 25(6): 1216-1226
皮新宇, 曾永年, 贺城墙. 2021. 融合多源遥感数据的高分辨率城市植被覆盖度估算. 遥感学报, 25(6): 1216-1226 [DOI:10.11834/ jrs.20219178http://dx.doi.org/10.11834/jrs.20219178]
Reeder D H. 2002. Topographic Correction of Satellite Images: Theory and Application. Hanover. New Hampshire: Dartmouth College
Reese H and Olsson H. 2011. C-correction of optical satellite data over alpine vegetation areas: a comparison of sampling strategies for determining the empirical c-parameter. Remote Sensing of Environment, 115(6): 1387-1400 [DOI: 10.1016/j.rse.2011.01.019http://dx.doi.org/10.1016/j.rse.2011.01.019]
Smith J A, Lin T L and Ranson K J. 1980. The lambertian assumption and landsat data. Photogrammetric Engineering and Remote Sensing, 46(9): 1183-1189
Soenen S A, Peddle D R and Coburn C A. 2005. SCS+C: a modified sun-canopy-sensor topographic correction in forested terrain. IEEE Transactions on Geoscience and Remote Sensing, 43(9): 2148-2159 [DOI: 10.1109/TGRS.2005.852480http://dx.doi.org/10.1109/TGRS.2005.852480]
Szantoi Z and Simonetti D. 2013. Fast and robust topographic correction method for medium resolution satellite imagery using a stratified approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(4): 1921-1933 [DOI: 10.1109/JSTARS.2012.2229260http://dx.doi.org/10.1109/JSTARS.2012.2229260]
Teillet P M, Guindon B and Goodenough D G. 1982. On the slope-aspect correction of multispectral scanner data. Canadian Journal of Remote Sensing, 8(2): 84-106 [DOI: 10.1080/07038992.1982.10855028http://dx.doi.org/10.1080/07038992.1982.10855028]
Tokola T, Sarkeala J and Van der Linden M. 2001. Use of topographic correction in landsat TM-based forest interpretation in Nepal. International Journal of Remote Sensing, 22(4): 551-563 [DOI: 10.1080/01431160050505856http://dx.doi.org/10.1080/01431160050505856]
Wen J G, Liu Q H, Liu Q, Xiao Q and Li X W. 2009. Parametrized BRDF for atmospheric and topographic correction and albedo estimation in Jiangxi rugged terrain, China. International Journal of Remote Sensing, 30(11): 2875-2896 [DOI: 10.1080/01431160802558618http://dx.doi.org/10.1080/01431160802558618]
Yan G J, Jiang H L, Yan K, Cheng S Y, Song W J, Tong Y Y, Liu Y N, Qi J B, Mu X H, Zhang W M, Xie D H and Zhou H M. 2021. Review of optical multi-angle quantitative remote sensing. National Remote Sensing Bulletin, 25(1): 83-108
阎广建, 姜海兰, 闫凯, 程诗宇, 宋婉娟, 童依依, 刘雅楠, 漆建波, 穆西晗, 张吴明, 谢东辉, 周红敏. 2021. 多角度光学定量遥感. 遥感学报, 25(1): 83-108 [DOI: 10.11834/jrs.20218355http://dx.doi.org/10.11834/jrs.20218355]
Yang C J, Huang H, Ni J and Yang D F. 2019. Effects of topographic normalization on the relationship between tropical forest biomass and landsat TM images. Journal of the Indian Society of Remote Sensing, 47(4): 595-601 [DOI: 10.1007/s12524-018-0902-zhttp://dx.doi.org/10.1007/s12524-018-0902-z]
Zhang R L. 2012. The Research on Topographic Correction of Remote Sensing Images based on ETM+ Data. Xi’an: Chang’an University
张若岚. 2012. 基于ETM+数据的遥感影像地形辐射校正研究. 西安: 长安大学
Zhang Y, Wang L, Ai Y F and Bai X J. 2019. An analysis research of terrain correction methods considering the slope ranges based on OLI image. IOP Conference Series: Materials Science and Engineering, 592: 012163 [DOI: 10.1088/1757-899X/592/1/012163http://dx.doi.org/10.1088/1757-899X/592/1/012163]
相关作者
相关机构