海洋涡旋遥感:进展与挑战
Remote sensing of oceanic eddies: Progresses and challenges
- 2021年25卷第1期 页码:302-322
纸质出版日期: 2021-01-07
DOI: 10.11834/jrs.20210400
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-01-07 ,
扫 描 看 全 文
陈戈,杨杰,田丰林,陈树果,赵朝方,唐军武,刘颖洁,王祎诺,苑忠浩,何遒,曹川川.2021.海洋涡旋遥感:进展与挑战.遥感学报,25(1): 302-322
Chen G,Yang J,Tian F L,Chen S G,Zhao C F,Tang J W,Liu Y J,Wang Y N,Yuan Z H,He Q and Cao C C. 2021. Remote sensing of oceanic eddies: Progresses and challenges. National Remote Sensing Bulletin, 25(1):302-322
海洋涡旋数量大、分布广、含能高、裹挟强,是研究物质循环、能量级联和圈层耦合的理想载体。对涡旋的全生命周期追踪观测成为21世纪以来海洋遥感领域最重要的进展之一,并引发了新一轮涡旋研究的热潮。本文从涡旋的温度异常、物质示踪、旋转流场和闭合拓扑等特征出发,简述了红外辐射计、可见光扫描仪、微波高度计、合成孔径雷达等遥感技术在涡旋观测中的机理和方法,重点阐述了卫星高度计涡旋识别与追踪算法及其在涡旋形态学、运动学和动力学中的应用。基于虚拟星座下的多参数遥感,介绍了涡旋在海洋、大气、生态等交叉学科领域的前沿应用和最新进展。指出当前涡旋遥感发展面临的亚中尺度、垂直结构、跨学科研究等3大挑战,展望了新一代遥感技术在未来海洋科学特别是涡旋海洋学研究中的应用前景。
Oceanic eddies are known for their massive quantity
broad distribution
high energy
and strong entrainment
and are therefore an ideal proxy for studying substance cycling
energy cascade
and multi-sphere coupling in the ocean. Tracking of mesoscale eddies for their entire lifetimes is one of the most significant advances in ocean remote sensing during the first two decades of the 21st century
leading to a new wave of active eddy research. The principles and methodologies for remote sensing of oceanic eddies by infrared radiometer
optical scanner
microwave altimeter
and synthetic aperture radar based on their temperature anomaly
substance tracer
swirling flow
and enclosed topology are briefly described. In particular
the algorithms for eddy identification and tracking
as well as their applications to eddy morphology
kinematics
and dynamics are highlighted. Firstly
the eddy identification methods based on infrared remote sensing technology are described multistage. From the early stage of visual decipherment relying on human eye recognition to automatic interpretation stage represented by edge detection algorithms
feature extraction algorithms and isotherm algorithms
then to the intelligent analysis stage based on artificial intelligence technology. It is pointed out the important leading role infrared remote sensing plays
as the first remote sensing technology applied to ocean eddy detection. Secondly
based on the development stage of ocean color satellite
this paper divides it into early exploration stage and extensive application stage
and carries out a enumeration from the perspective of time
space and ecology to illustrate the irreplaceable advantages of ocean color remote sensing in the study of ocean eddies. Thirdly
the eddy identification algorithms of satellite altimeter
such as the
OW
(Okubo-Weiss) based method
the winding angle methods
the flow direction based methods
sea surface height based methods and the Lagrange-coherent-structures methods
and the tracking algorithm represented by the nearest neighbor methods
the similarity methods and the pixel connectivity methods are described; and the application of satellite altimeter in eddy morphology
kinematics and dynamics is supplemented. By comparing the results of different identification and tracking algorithms
their respective characteristics and diversities are described. It is pointed out that the satellite altimeter technology is widely used in eddy research
and the applications of satellite altimeter in eddy morphology
kinematics and dynamics are described systematically. Meanwhile
the role of Synthetic Aperture Radar in the study of ocean eddy is no negligible
its common tracer observation
flow field retrieval and intelligent mining methods are also mentioned in this paper. Theapplication in recent years show that it has more advantages in small scale detectionand expose the structure detail of eddies. In addition
eddy-related research frontiers and corresponding latest advances involving multiple disciplines of the oceanic
atmospheric
and ecological sciences are outlined from a virtual satellite constellation perspective
especially the important influence of eddies on primary and secondary productivity. Finally
three major challenges in eddy remote sensing
i.e.
submesoscale resolving
vertical profiling
and interdisciplinary investigation
are addressed with an outlook of applying next generation remote sensing technology to future marine science and eddy oceanography.
涡旋遥感高度计辐射计水色仪合成孔径雷达涡旋海洋学跨学科研究新一代海洋卫星
eddy remote sensingaltimeterradiometerocean color scannersynthetic aperture radareddy oceanographyinterdisciplinary researchnew generation ocean satellite
Alpers W. 1985. Theory of radar imaging of internal waves. Nature, 314(6008): 245-247 [DOI: 10.1038/314245a0http://dx.doi.org/10.1038/314245a0]
Alpers W, Brandt P, Lazar A, Dagorne D, Sow B, Faye S, Hansen M W, Rubino A, Poulain PM and Brehmer P. 2013. A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data. Remote Sensing of Environment, 129: 132-143 [DOI: 10.1016/j.rse.2012.10.032http://dx.doi.org/10.1016/j.rse.2012.10.032]
Alpers W and Hühnerfuss H. 1989. The damping of ocean waves by surface films: a new look at an old problem.Journal of Geophysical Research, 94(C5): 6251-6266 [DOI: 10.1029/jc094ic05p06251http://dx.doi.org/10.1029/jc094ic05p06251]
Amores A, Jordà G, Arsouze T and Le Sommer J. 2018. Up to what extent can we characterize ocean eddies using present-day gridded altimetric products?. Journal of Geophysical Research, 123(10): 7220-7236 [DOI: 10.1029/2018JC014140http://dx.doi.org/10.1029/2018JC014140]
Amores A, Monserrat S, Melnichenko O and Maximenko N. 2017. On the shape of sea level anomaly signal on periphery of mesoscale ocean eddies. Geophysical Research Letters, 44(13): 6926-6932 [DOI: 10.1002/2017GL073978http://dx.doi.org/10.1002/2017GL073978]
Apel J R. 1994. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. Journal of Geophysical Research: Oceans, 99(C8): 16269-16291 [DOI: 10.1029/94JC00846http://dx.doi.org/10.1029/94JC00846]
Arriaza J A T, Rojas F G, Lopez M P and Canton M. 2003. Competitive neural-net-based system for the automatic detection of oceanic mesoscalar structures on AVHRR scenes. IEEE Transactions on Geoscience and Remote Sensing, 41(4): 845-852 [DOI: 10.1109/tgrs.2003.809929http://dx.doi.org/10.1109/tgrs.2003.809929]
Bertinetto L, Valmadre J, Henriques J F, Vedaldi A and Torr P H S. 2016. Fully-convolutional siamese networks for object tracking//Computer Vision - ECCV 2016 Workshops.The Netherlands: Springer: 850-865 [DOI: 10.1007/978-3-319-48881-3_56http://dx.doi.org/10.1007/978-3-319-48881-3_56]
Braun C D, Gaube P, Sinclair-Taylor T H, Skomal G B and Thorrold S R. 2019. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proceedings of the National Academy of Sciences of the United States of America, 116(35): 17187-17192 [DOI: 10.1073/PNAS.1903067116http://dx.doi.org/10.1073/PNAS.1903067116]
Canny J. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6): 679-698 [DOI: 10.1109/tpami.1986.4767851http://dx.doi.org/10.1109/tpami.1986.4767851]
Carsey F D and Garwood R W. 1993. Identification of modeled ocean plumes in Greenland Gyre ERS-1 SAR data. Geophysical Research Letters, 20(20): 2207-2210 [DOI: 10.1029/93gl01954http://dx.doi.org/10.1029/93gl01954]
Castellani M. 2006. Identification of eddies from sea surface temperature maps with neural networks. International Journal of Remote Sensing, 27(8): 1601-1618 [DOI: 10.1080/01431160500462170http://dx.doi.org/10.1080/01431160500462170]
Castellani M and Marques N C. 2005. Automatic detection of meddies through texture analysis of sea surface temperature maps//Progress in Artificial Intelligence. EPIA 2005.Lecture Notes in Computer Science, vol 3808. Berlin, Heidelberg: Springer: 359-370 [DOI: 10.1007/11595014_36http://dx.doi.org/10.1007/11595014_36]
Chaigneau A, Gizolme A and Grados C. 2008. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2/4): 106-119 [DOI: 10. 1016/j.pocean.2008.10.013http://dx.doi.org/10.1016/j.pocean.2008.10.013]
Chaigneau A, Le Texier M, Eldin G, Grados C and Pizarro O. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research, 116(C11):C11025 [DOI: 10.1029/2011jc007134http://dx.doi.org/10.1029/2011jc007134]
Chang L, Gao G P and Guo L X. 2015. Review on ocean surface current field measurement by space-borne SAR. Advances in Marine Science, 33(1): 107-117
常亮, 高郭平, 郭立新. 2015. 星载SAR海洋表层流场反演综述. 海洋科学进展, 33(1): 107-117 [DOI: 10.3969/j.issn.1671-6647.2015.01.013http://dx.doi.org/10.3969/j.issn.1671-6647.2015.01.013]
Chelton D B, Gaube P, Schlax M G, Early J J and Samelson R M. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic Chlorophyll. Science, 334(6054): 328-332 [DOI: 10.1126/science.1208897http://dx.doi.org/10.1126/science.1208897]
Chelton D B, Schlax M G and Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167-216 [DOI: 10.1016/j.pocean.2011.01.002http://dx.doi.org/10.1016/j.pocean.2011.01.002]
Chelton D B, Schlax M G, Samelson R M and de Szoeke R A. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606 [DOI: 10.1029/2007gl030812http://dx.doi.org/10.1029/2007gl030812]
Chen G, Han G Y and Yang X Q. 2019a. On the intrinsic shape of oceanic eddies derived from satellite altimetry. Remote Sensing of Environment, 228: 75-89 [DOI: 10.1016/j.rse.2019.04.011http://dx.doi.org/10.1016/j.rse.2019.04.011]
Chen G, Tang J W, Zhao C F, Wu S H, Yu F J, Ma C Y, Xu Y S, Chen W B, Zhang Y H, Liu J and Wu L X. 2019b. Concept design of the “Guanlan” science mission: China's novel contribution to space oceanography. Frontiers in Marine Science, 6:14 [DOI: 10.3389/fmars.2019.00194http://dx.doi.org/10.3389/fmars.2019.00194]
Chen G, Yang J, Zhang B T and Ma C Y. 2019.Thoughts and prospects on the new generation of marine science satellites. Periodical of Ocean University of China, 49(10): 110-117
陈戈, 杨杰, 张本涛, 马纯永. 2019. 新一代海洋科学卫星的思考与展望.中国海洋大学学报(自然科学版), 49(10): 110-117 [DOI: 10.16441/j.cnki.hdxb.20190226http://dx.doi.org/10.16441/j.cnki.hdxb.20190226]
Cushman-Roisin B. 1994. Introduction to Geophysical Fluid Dynamics.Upper Saddle River, N.J.:Prentice-Hall
Cushman-Roisin B, Chassignet E P and Tang B Y. 1990. Westward motion of mesoscale eddies. Journal of Physical Oceanography, 20(5): 758-768 [DOI: 10.1175/1520-0485(1990)020<0758:wmome>2.0.co;2http://dx.doi.org/10.1175/1520-0485(1990)020<0758:wmome>2.0.co;2]
D’Alimonte D. 2009. Detection of mesoscale eddy-related structures through Iso-SST patterns. IEEE Geoscience and Remote Sensing Letters, 6(2): 189-193 [DOI: 10.1109/lgrs.2008.2009550http://dx.doi.org/10.1109/lgrs.2008.2009550]
Dawson H R S, Strutton P G and Gaube P. 2018. The unusual surface Chlorophyll signatures of southern ocean eddies. Journal of Geophysical Research: Oceans, 123(9): 6053-6069 [DOI: 10.1029/2017JC013628http://dx.doi.org/10.1029/2017JC013628]
Deschamps P Y, Frouin R and Crépon M. 1984.Sea surface temperatures of the coastal zones of France observed by the HCMM satellite. Journal of Geophysical Research, 89(C5): 8123-8149 [DOI: 10.1029/ JC089iC05p08123http://dx.doi.org/10.1029/JC089iC05p08123]
DiGiacomo P M and Holt B. 2001. Satellite observations of small coastal ocean eddies in the Southern California Bight. Journal of Geophysical Research: Oceans, 106(C10): 22521-22543 [DOI: 10.1029/2000jc000728http://dx.doi.org/10.1029/2000jc000728]
Dong C M. 2015.OceanicEddy Detection and Analysis. Beijing: Science Press: 61-65
董昌明. 2015. 海洋涡旋探测与分析. 北京: 科学出版社: 61-65
Dong C M, Jiang X L, Xu G J, Ji J L, Lin X Y, Sun W J and Wang S. 2017. Automated eddy detection using geometric approach, eddy datasets and their application. Advances in Marine Science, 35(4): 439-453
董昌明, 蒋星亮, 徐广珺, 季巾淋, 林夏艳, 孙文金, 王森. 2017. 海洋涡旋自动探测几何方法、涡旋数据库及其应用. 海洋科学进展, 35(4): 439-453 [DOI: 10.3969/j.issn.1671-6647.2017.04.001http://dx.doi.org/10.3969/j.issn.1671-6647.2017.04.001]
Dong C M, Nencioli F, Liu Y and McWilliams J C. 2011. An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data. IEEE Geoscience and Remote Sensing Letters, 8(6): 1055-1059 [DOI: 10.1109/lgrs.2011.2155029http://dx.doi.org/10.1109/lgrs.2011.2155029]
Dong D, Yang X F, Li X F and Li Z W. 2016.SAR observation of eddy-induced mode-2 internal solitary waves in the South China Sea. IEEE Transactions on Geoscience and Remote Sensing, 54(11): 6674-6686 [DOI: 10.1109/TGRS.2016.2587752http://dx.doi.org/10.1109/TGRS.2016.2587752]
Dufois F, Hardman-Mountford N J, Greenwood J, Richardson A J, Feng M and Matear R J. 2016. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Science Advances, 2(5): e1600282 [DOI: 10.1126/SCIADV.1600282http://dx.doi.org/10.1126/SCIADV.1600282]
Early J J, Samelson R M and Chelton D B. 2011. The evolution and propagation of quasigeostrophic ocean eddies. Journal of Physical Oceanography, 41(8): 1535-1555 [DOI: 10. 1175/2011JPO4601.1http://dx.doi.org/10.1175/2011JPO4601.1]
Eden B R, Steinberg D K, Goldthwait S A and McGillicuddy D J. 2009.Zooplankton community structure in a cyclonic and mode-water eddy in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers, 56(10): 1757-1776 [DOI: 10.1016/J.DSR.2009.05.005http://dx.doi.org/10.1016/J.DSR.2009.05.005]
Faghmous J H, Frenger I, Yao Y S, Warmka R, Lindell A and Kumar V. 2015.A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2(1): 150028 [DOI: 10.1038/sdata.2015.28http://dx.doi.org/10.1038/sdata.2015.28]
Fernandes A M and Nascimento S. 2006. Automatic water eddy detection in SST maps using random ellipse fitting and vectorial fields for image segmentation//Discovery Science. DS 2006.Lecture Notes in Computer Science, vol 4265.Berlin, Heidelberg: Springer: 77-88 [DOI: 10.1007/11893318_11http://dx.doi.org/10.1007/11893318_11]
Ferrari R and Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41(1): 253-282 [DOI: 10.1146/annurev.fluid.40.111406.102139http://dx.doi.org/10.1146/annurev.fluid.40.111406.102139]
Frenger I, Gruber N, Knutti R and Münnich M. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6(8): 608-612 [DOI: 10.1038/NGEO1863http://dx.doi.org/10.1038/NGEO1863]
Fu L L. 2006. Pathways of eddies in the South Atlantic Ocean revealed from satellite altimeter observations. Geophysical Research Letters, 33(14):L14610 [DOI: 10.1029/2006GL026245http://dx.doi.org/10.1029/2006GL026245]
Fu L L. 2009. Pattern and velocity of propagation of the global ocean eddy variability. Journal of Geophysical Research: Oceans, 114(C11): C11017 [DOI: 10.1029/2009JC005349http://dx.doi.org/10.1029/2009JC005349]
Fu L L, Chelton D B, Le Traon P Y and Morrow R. 2010. Eddy dynamics from satellite altimetry. Oceanography, 23(4): 14-25 [DOI: 10.5670/oceanog.2010.02http://dx.doi.org/10.5670/oceanog.2010.02]
Fu L L and Holt B. 1983. Some examples of detection of oceanic mesoscale eddies by the SEASAT synthetic-aperture radar. Journal of Geophysical Research, 88(C3): 1844-1852 [DOI: 10.1029/JC088iC03p01844http://dx.doi.org/10.1029/JC088iC03p01844]
García-Moliner G and Yoder J A. 1994. Variability in pigment concentration in warm-core rings as determined by coastal zone color scanner satellite imagery from the Mid-Atlantic Bight. Journal of Geophysical Research, 99(C7): 14277-14290 [DOI: 10.1029/93jc03515http://dx.doi.org/10.1029/93jc03515]
Gaube P, Barceló C, McGillicuddy D J, Domingo A, Miller P, Giffoni B, Marcovaldi N and Swimmer Y. 2017. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PLoS ONE, 12(3): e0172839 [DOI: 10.1371/journal.pone.0172839http://dx.doi.org/10.1371/journal.pone.0172839]
Gaube P, Chelton D B, Strutton P G and Behrenfeld M J. 2013. Satellite observations of Chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. Journal of Geophysical Research, 118(12): 6349-6370 [DOI: 10.1002/2013JC009027http://dx.doi.org/10.1002/2013JC009027]
Gaube P, McGillicuddy D J Jr and Moulin A J. 2019. Mesoscale eddies modulate mixed layer depth globally. Geophysical Research Letters, 46(3): 1505-1512 [DOI: 10.1029/2018GL080006http://dx.doi.org/10.1029/2018GL080006]
Ge Y, Du Y Y, Cheng Q M and Li C. 2007. Multifractal filtering method for extraction of ocean eddies from remotely sensed imagery. Acta Oceanologica Sinica, 29(5): 40-47
葛咏, 杜云艳, 成秋明, 李策. 2007. 多重分形方法在涡旋遥感信息处理提取中的应用研究. 海洋学报, 29(5): 40-47 [DOI: 10.3321/j.issn:0253-4193.2007.05.005http://dx.doi.org/10.3321/j.issn:0253-4193.2007.05.005]
Gonzalez-Silvera A, Santamaria-del-Angel E, Millán-Nuñez R and Manzo-Monroy H. 2004. Satellite observations of mesoscale eddies in the Gulfs of Tehuantepec and Papagayo (Eastern Tropical Pacific). Deep Sea Research Part II: Topical Studies in Oceanography, 51(6/9): 587-600 [DOI: 10.1016/J.DSR2.2004.05.019http://dx.doi.org/10.1016/J.DSR2.2004.05.019]
Gordon H R, Clark D K, Brown J W, Brown O B and Evans R H. 1982. Satellite measurement of the phytoplankton pigment concentration in the surface waters of a warm core Gulf Stream ring. Journal of Marine Research, 40(2): 491-502
Gotthardt G A and Potocsky G J. 1974. Life cycle of a Gulf stream anticyclonic eddy observed from several oceanographic platforms. Journal of Physical Oceanography, 4(1): 131-134 [DOI: 10.1175/1520-0485(1974)004<0131: lcoags>2.0.CO;2http://dx.doi.org/10.1175/1520-0485(1974)004<0131:lcoags>2.0.CO;2]
Gower J F R, Denman K L and Holyer R J. 1980. Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure. Nature, 288(5787): 157-159 [DOI: 10.1038/288157a0http://dx.doi.org/10.1038/288157a0]
Gurova E and Chubarenko B. 2012. Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic. Oceanologia, 54(4): 631-654 [DOI: 10.5697/oc.54-4.631http://dx.doi.org/10.5697/oc.54-4.631]
Haller G. 2015. Lagrangian coherent structures. Annual Review of Fluid Mechanics, 47(1): 137-162 [DOI: 10.1146/annurev-fluid-010313-141322http://dx.doi.org/10.1146/annurev-fluid-010313-141322]
Haller G and Beron-Vera F J. 2013. Coherent lagrangian vortices: the black holes of turbulence. Journal of Fluid Mechanics, 731: R4 [DOI: 10.1017/jfm.2013.391http://dx.doi.org/10.1017/jfm.2013.391]
Hausmann U, McGillicuddy D J Jr and Marshall J C. 2017. Observed mesoscale eddy signatures in Southern Ocean surface mixed-layer depth. Journal of Geophysical Research, 122(1): 617-635 [DOI: 10.1002/2016JC012225http://dx.doi.org/10.1002/2016JC012225]
Henson S A and Thomas A C. 2008. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Research Part I: Oceanographic Research Papers, 55(2): 163-176 [DOI: 10.1016/j.dsr.2007.11.005http://dx.doi.org/10.1016/j.dsr.2007.11.005]
Holloway G. 1986. Estimation of oceanic eddy transports from satellite altimetry. Nature, 323(6085): 243-244 [DOI: 10.1038/323243a0http://dx.doi.org/10.1038/323243a0]
Holyer R J and Peckinpaugh S H. 1989. Edge detection applied to satellite imagery of the oceans. IEEE Transactions on Geoscience and Remote Sensing, 27(1): 46-56 [DOI: 10.1109/36.20274http://dx.doi.org/10.1109/36.20274]
Hostetler C A, Behrenfeld M J, Hu Y X, Hair J W and Schulien J A. 2018. Spaceborne lidar in the study of marine systems. Annual Review of Marine Science, 10(1): 121-147 [DOI: 10.1146/ANNUREV-MARINE-121916-063335http://dx.doi.org/10.1146/ANNUREV-MARINE-121916-063335]
Hussey N E, Kessel S T, Aarestrup K, Cooke S J, Cowley P D, Fisk A T, Harcourt R G, Holland K N, Iverson S J, Kocik J F, Mills Flemming J E and Whoriskey F G. 2015. Aquatic animal telemetry: apanoramic window into the underwater world. Science, 348(6240): 1255642 [DOI: 10.1126/SCIENCE.1255642http://dx.doi.org/10.1126/SCIENCE.1255642]
Isern-Fontanet J, García-Ladona E and Font J. 2003. Identification of marine eddies from altimetric maps. Journal of Atmospheric and Oceanic Technology, 20(5): 772-778 [DOI: 10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2]
Isern-Fontanet J, García-Ladona E and Font J. 2006. Vortices of the Mediterranean Sea: an altimetric perspective. Journal of Physical Oceanography, 36(1): 87-103 [DOI: 10.1175/jpo2826.1http://dx.doi.org/10.1175/jpo2826.1]
Isoguchi O and Kawamura H. 2003. Eddies advected by time-dependent Sverdrup circulation in the western boundary of the subarctic North Pacific. Geophysical Research Letters, 30(15): 1794 [DOI: 10.1029/2003GL017652http://dx.doi.org/10.1029/2003GL017652]
Jenkins W J. 1988. Nitrate flux into the euphotic zone near Bermuda. Nature, 331(6156): 521-523 [DOI: 10.1038/331521A0http://dx.doi.org/10.1038/331521A0]
Ji G R, Chen X, Huo Y Z and Jia T J. 2002. An automatic detecting method of the marine meso-scale eddy in remote sensing image. Oceanologia Et Limnologia Sinica, 33(2): 139-144
姬光荣, 陈霞, 霍玉臻, 贾同军. 2002. 一种海洋遥感图像中尺度涡的自动检测方法. 海洋与湖沼, 33(2): 139-144 [DOI: 10.3321/j.issn:0029-814X.2002.02.004http://dx.doi.org/10.3321/j.issn:0029-814X.2002.02.004]
Johannessen J A, Kudryavtsev V, Akimov D, Eldevik T, Winther N and Chapron B. 2005. On radar imaging of current features: 2. Mesoscale eddy and current front detection. Journal of Geophysical Research: Oceans, 110(C7):C07017 [DOI: 10.1029/2004JC002802http://dx.doi.org/10.1029/2004JC002802]
Johannessen J A, Shuchman R A, Johannessen O M, Davidson K L and Lyzenga D R. 1991. Synthetic aperture radar imaging of upper ocean circulation features and wind fronts. Journal of Geophysical Research:Oceans, 96(C6):10411-10422 [DOI: 10.1029/91jc00301http://dx.doi.org/10.1029/91jc00301]
Kai E T and Marsac F. 2010. Influence of mesoscale eddies on spatial structuring of top predators’ communities in the Mozambique Channel. Progress in Oceanography, 86(1/2): 214-223 [DOI: 10.1016/J.POCEAN.2010.04.010http://dx.doi.org/10.1016/J.POCEAN.2010.04.010]
Kamenkovich V M, Koshlyakov M N and Monin A S. 1986.Synoptic Eddies in the Ocean.Dordrecht:Springer [DOI: 10.1007/978-94-009-4502-9http://dx.doi.org/10.1007/978-94-009-4502-9]
Keffer T and Holloway G. 1988. Estimating Southern Ocean eddy flux of heat and salt from satellite altimetry. Nature, 332(6165): 624-626 [DOI: 10.1038/332624a0http://dx.doi.org/10.1038/332624a0]
Kudryavtsev V, Johannessen J. 2004. On effect of wave breaking on short wind waves. Geophysical Research Letters, 31(20):L20310 [DOI: 10.1029/2004GL020619http://dx.doi.org/10.1029/2004GL020619]
Lemonnier B, Delmas R, Lopez C and Duporte E. 1994. Multiscale analysis of shapes applied to thermal infrared sea surface images//Proceedings of OCEANS'94.
Brest, France: IEEE: III/319-III/322 [DOI: 10.1109/OCEANS.1994.364217http://dx.doi.org/10.1109/OCEANS.1994.364217]
Li G, He Y J, Liu G Q, Zhang Y J, Hu C M and Perrie W. 2020.Multi-sensor observations of submesoscale eddies in coastal regions. Remote Sensing, 12(4):711 [DOI: 10.3390/rs12040711http://dx.doi.org/10.3390/rs12040711]
Li Q Y, Sun L and Lin SF. 2016. GEM: a dynamic tracking model for mesoscale eddies in the ocean. Ocean Science, 12(6):1249-1267 [DOI: 10.5194/os-2016-49http://dx.doi.org/10.5194/os-2016-49]
Li X F, Liu B, Zheng G, Ren Y B, Zhang SS, Liu Y J, Gao L, Liu Y H, Zhang B and Wang F. 2020. Deep-learning-based information mining from ocean remote-sensing imagery. National Science Review, 7(10):1584-1605 [DOI: 10.1093/nsr/nwaa047http://dx.doi.org/10.1093/nsr/nwaa047]
Lin I I, Wu C C, Emanuel K A, Lee I H, Wu C R and Pun I F. 2005. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Monthly Weather Review, 133(9): 2635-2649 [DOI: 10.1175/MWR3005.1http://dx.doi.org/10.1175/MWR3005.1]
Lippmann R P. 1987.An introduction to computing with neural nets. IEEE ASSP Magazine, 4(2): 4-22 [DOI: 10.1109/massp.1987.1165576http://dx.doi.org/10.1109/massp.1987.1165576]
Liu A K, Peng C Y and Schumacher J D. 1994. Wave-current interaction study in the Gulf of Alaska for detection of eddies by synthetic aperture radar. Journal of Geophysical Research, 99(C5): 10075-10085 [DOI: 10.1029/94jc00422http://dx.doi.org/10.1029/94jc00422]
Liu F, Tang S and Chen C. 2015.Satellite observations of the small-scale cyclonic eddies in the western South China Sea. Biogeosciences, 12: 299-305[DOI: 10.5194/bg-12-299-2015http://dx.doi.org/10.5194/bg-12-299-2015]
Liu Y J, Chen G, Sun M, Liu S A and Tian F L. 2016. A parallel SLA-based algorithm for global mesoscale eddy identification. Journal of Atmospheric and Oceanic Technology, 33(12): 2743-2754 [DOI: 10.1175/jtech-d-16-0033.1http://dx.doi.org/10.1175/jtech-d-16-0033.1]
Lyzenga D R. 1996. Effects of wave breaking on SAR signatures observed near the edge of the Gulf Stream//International Geoscience andRemote Sensing Symposium. Lincoln, NE, USA:IEEE,2: 908-910 [DOI: 10.1109/IGARSS.1996.516517http://dx.doi.org/10.1109/IGARSS.1996.516517]
Ma Z H, Fei J F, Huang X G and Cheng X P. 2018. Modulating effects of mesoscale oceanic eddies on sea surface temperature response to tropical cyclones over the Western North Pacific. Journal of Geophysical Research, 123: 367-379 [DOI: 10.1002/2017JD027806http://dx.doi.org/10.1002/2017JD027806]
Mason E, Pascual A and McWilliams J C. 2014.A new sea surface height-based code for oceanic mesoscale eddy tracking. Journal of Atmospheric and Oceanic Technology, 31(5): 1181-1188 [DOI: 10.1175/JTECH-D-14-00019.1http://dx.doi.org/10.1175/JTECH-D-14-00019.1]
McGillicuddy D J. 2011. Eddies masquerade as planetary waves. Science, 334(6054): 318-319 [DOI: 10.1126/science.1208892http://dx.doi.org/10.1126/science.1208892]
McGillicuddy D J. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annual Review of Marine Science, 8(1): 125-159 [DOI: 10.1146/ANNUREV-MARINE-010814-015606http://dx.doi.org/10.1146/ANNUREV-MARINE-010814-015606]
McGillicuddy D J, Anderson L A, Bates N R, Bibby T, Buesseler K O, Carlson C A, Davis C S, Ewart C, Falkowski P G, Goldthwait S A, Hansell D A, Jenkins W J, Johnson R, Kosnyrev V K, Ledwell J R, Li Q P, Siegel D A and Steinberg D K. 2007. Eddy/Wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316(5827): 1021-1026 [DOI: 10.1126/science.1136256http://dx.doi.org/10.1126/science.1136256]
McGillicuddy D J, Kosnyrev V K, Ryan J P and Yoder J A. 2001.Covariation of mesoscale ocean color and sea-surface temperature patterns in the Sargasso Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8/9): 1823-1836 [DOI: 10.1016/S0967-0645(00)00164-8http://dx.doi.org/10.1016/S0967-0645(00)00164-8]
McGillicuddy D J, Robinson A R, Siegel D A, Jannasch H W, Johnson R, Dickey T D, McNeil J, Michaels A F and Knap A H. 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394(6690): 263-266 [DOI: 10.1038/28367http://dx.doi.org/10.1038/28367]
McKinney P, Holt B and Matsumoto K. 2012. Small eddies observed in Lake Superior using SAR and sea surface temperature imagery. Journal of Great Lakes Research, 38(4): 786-797 [DOI: 10.1016/j.jglr.2012.09.023http://dx.doi.org/10.1016/j.jglr.2012.09.023]
Michaelsen J, Zhang X Y and Smith R C. 1988. Variability of pigment biomass in the California Current System as determined by satellite imagery: 2.Temporal variability. Journal of Geophysical Research, 93(D9): 10883-10896 [DOI: 10.1029/JD093ID09P10883http://dx.doi.org/10.1029/JD093ID09P10883]
Mitchelson-Jacob G. 1993. Eddies in the Greenland Sea observed from infrared and visible satellite radiometry. Oceanologica Acta, 16(3): 213-220
Morrow R, Birol F,Griffin D and Sudre J. 2004.Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophysical Research Letters, 31(24):L24311 [DOI: 10.1029/2004GL020974http://dx.doi.org/10.1029/2004GL020974]
Morrow R, Church J, Coleman R, Chelton D and White N. 1992. Eddy momentum flux and its contribution to the Southern Ocean momentum balance. Nature, 357(6378): 482-484 [DOI: 10.1038/357482a0http://dx.doi.org/10.1038/357482a0]
Morrow R, Fu L L, Ardhuin F, Benkiran M, Chapron B, Cosme E, D'Ovidio F, Farrar J T, Gille S T, Lapeyre G, Le Traon P Y, Pascual A, Ponte A, Qiu B, Rascle N, Ubelmann C, Wang J B and Zaron E D. 2019. Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) mission. Frontiers in Marine Science, 6:232 [DOI: 10.3389/FMARS.2019.00232http://dx.doi.org/10.3389/FMARS.2019.00232]
Moschos E, Schwander O, Stegner A and Gallinari P. 2020. Deep-SST-eddies: a deep learning framework to detect oceanic eddies in sea surface temperature images//ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).Barcelona, Spain: IEEE: 4307-4311 [DOI: 10.1109/icassp40776.2020.9053909http://dx.doi.org/10.1109/icassp40776.2020.9053909]
Nichol D G. 1987. Autonomous extraction of an eddy-like structure from infrared images of the ocean. IEEE Transactions on Geoscience and Remote Sensing, GE-25(1): 28-34 [DOI: 10.1109/TGRS.1987.289778http://dx.doi.org/10.1109/TGRS.1987.289778]
Ning J, Xu Q, Zhang H, Wang T and Fan K G. 2019. Impact of cyclonic ocean eddies on upper ocean thermodynamic response to typhoon Soudelor. Remote Sensing, 11(8): 938 [DOI: 10.3390/rs11080938http://dx.doi.org/10.3390/rs11080938]
Oram J J, McWilliams J C and Stolzenbach K D. 2008. Gradient-based edge detection and feature classification of sea-surface images of the Southern California Bight. Remote Sensing of Environment, 112(5): 2397-2415 [DOI: 10.1016/j.rse.2007.11.010http://dx.doi.org/10.1016/j.rse.2007.11.010]
Park J E, Park K A, Ullman D S, Cornillon P C and Park Y J. 2016. Observation of diurnal variations in mesoscale eddy sea-surface currents using GOCI data. Remote Sensing Letters, 7(12): 1131-1140 [DOI: 10.1080/2150704X.2016.1219423http://dx.doi.org/10.1080/2150704X.2016.1219423]
Peckinpaugh S H and Holyer R J. 1994. Circle detection for extracting eddy size and position from satellite imagery of the ocean. IEEE Transactions on Geoscience and Remote Sensing, 32(2): 267-273 [DOI: 10.1109/36.295041http://dx.doi.org/10.1109/36.295041]
Penven P, Echevin V,Pasapera J, Colas F and Tam J. 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: a modeling approach. Journal of Geophysical Research: Oceans, 110(C10): C10021 [DOI: 10.1029/2005JC002945http://dx.doi.org/10.1029/2005JC002945]
Polito P S and Sato O T. 2015. Do eddies ride on Rossby waves?. Journal of Geophysical Research: Oceans, 120(8): 5417-5435 [DOI:10.1002/2015jc010737http://dx.doi.org/10.1002/2015jc010737]
Pujol M I and Mertz F. 2020. PRODUCT USER MANUAL (CMEMS-SL-PUM-008-032-062)[ER/OL]..https://resources.marine.copernicus.eu/documents/PUM/CMEMS-SL-PUM-008-032-062.pdf (2020-07-15https://resources.marine.copernicus.eu/documents/PUM/CMEMS-SL-PUM-008-032-062.pdf(2020-07-15]
Qiu B, Scott R B and Chen S M. 2008. Length scales of eddy generation and nonlinear evolution of the seasonally modulated south pacific subtropical countercurrent. Journal of Physical Oceanography, 38(7): 1515-1528 [DOI: 10.1175/2007JPO3856.1http://dx.doi.org/10.1175/2007JPO3856.1
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/tpami.2016.2577031http://dx.doi.org/10.1109/tpami.2016.2577031]
Robinson A R. 1983. Overview and summary of eddy science//Eddies in Marine Science.Berlin, Heidelberg: Springer: 3-15 [DOI: 10.1007/978-3-642-69003-7_1http://dx.doi.org/10.1007/978-3-642-69003-7_1]
Robinson A R and Zimmerman J T F. 1984. Book-review-eddies in marine science. Space Science Reviews, 39: 218
Romeiser R and Alpers W. 1997. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. Journal of Geophysical Research: Oceans, 102(C11): 25251-25267 [DOI: 10.1029/97jc00191http://dx.doi.org/10.1029/97jc00191]
Rouault M J, Mouche A, Collard F, Johannessen J A and Chapron B. 2010. Mapping the Agulhas current from space: an assessment of ASAR surface current velocities. Journal of Geophysical Research: Oceans, 115(C10):C10026 [DOI: 10.1029/2009JC006050http://dx.doi.org/10.1029/2009JC006050]
Saunders P M. 1971. Anticyclonic eddies formed from shoreward meanders of the Gulf Stream. Deep Sea Research and Oceanographic Abstracts, 18(12): 1207-1219 [DOI: 10.1016/0011-7471(71)90027-1http://dx.doi.org/10.1016/0011-7471(71)90027-1]
Scott R B and Wang F. 2005. Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. Journal of Physical Oceanography, 35(9): 1650-1666 [DOI: 10.1175/jpo2771.1http://dx.doi.org/10.1175/jpo2771.1]
Shay L K, Goni G J and Black P G. 2000. Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128(5): 1366-1383 [DOI: 10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2http://dx.doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2]
Shuchman R A, Burns B A, Johannessen O M, Josberger E G, Campbell W J, Manley T O and Lannelongue N. 1987. Remote sensing of the Fram strait marginal ice zone. Science, 236(4800): 429-431 [DOI: 10.1126/science.236.4800.429http://dx.doi.org/10.1126/science.236.4800.429]
Shulenberger E and Reid J L. 1981. The Pacific shallow oxygen maximum, deep Chlorophyll maximum, and primary productivity, reconsidered. Deep Sea Research Part A. Oceanographic Research Papers, 28(9): 901-919 [DOI: 10.1016/0198-0149(81)90009-1http://dx.doi.org/10.1016/0198-0149(81)90009-1]
Simhadri K K, Iyengar S S, Holyer R J, Lybanon M and Zachary J M. 1998. Wavelet-based feature extraction from oceanographic images. IEEE Transactions on Geoscience and Remote Sensing, 36(3): 767-778 [DOI: 10.1109/36.673670http://dx.doi.org/10.1109/36.673670]
Song Q T, Cornillon P and Hara T. 2006. Surface wind response to oceanic fronts. Journal of Geophysical Research, 111(C12):C12006 [DOI: 10.1029/2006JC003680http://dx.doi.org/10.1029/2006JC003680]
Soussi B. 2018. ENVISAT ALTIMETRY Level 2 Product Handbook[ER/OL]. https://earth.esa.int/web/guest/-/ra-2-geophysical-data-record-1470[2020-07-09].
Stumpf H G and Legeckis R V. 1977. Satellite observations of mesoscale eddy dynamics in the Eastern Tropical Pacific Ocean. Journal of Physical Oceanography, 7(5): 648-658 [DOI: 10.1175/1520-0485(1977)007<0648:soomed>2.0.co;2http://dx.doi.org/10.1175/1520-0485(1977)007<0648:soomed>2.0.co;2]
Stumpf H G and Rao P K. 1975. Evolution of Gulf stream eddies as seen in satellite infrared imagery. Journal of Physical Oceanography, 5(2): 388-393 [DOI: 10.1175/1520-0485(1975)005<0388:eogsea>2.0.co;2http://dx.doi.org/10.1175/1520-0485(1975)005<0388:eogsea>2.0.co;2]
Sun L, Li Y X, Yang Y J, Wu Q Y, Chen X T, Li Q Y, Li Y B and Xian T. 2014. Effects of super typhoons on cyclonic ocean eddies in the western North Pacific: asatellite data-based evaluation between 2000 and 2008. Journal of Geophysical Research, 119(9): 5585-5598 [DOI: 10.1002/2013JC009575http://dx.doi.org/10.1002/2013JC009575]
Sun M, Tian F L, Liu Y J and Chen G. 2017. An improved automatic algorithm for global eddy tracking using satellite altimeter data. Remote Sensing, 9(3): 206 [DOI: 10.3390/rs9030206http://dx.doi.org/10.3390/rs9030206]
Tang D L, Kawamura H and Luis A J. 2002. Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian Sea. Remote Sensing of Environment, 81(1): 82-89 [DOI: 10.1016/S0034-4257(01)00334-0http://dx.doi.org/10.1016/S0034-4257(01)00334-0]
Tian F L, Wu D, Yuan L M and Chen G. 2020. Impacts of the efficiencies of identification and tracking algorithms on the statistical properties of global mesoscale eddies using merged altimeter data. International Journal of Remote Sensing, 41(8): 2835-2860 [DOI: 10.1080/01431161.2019.1694724http://dx.doi.org/10.1080/01431161.2019.1694724]
Toner M, Kirwan A D, Poje A C, Kantha L H, Müller-Karger F E and Jones C K R T. 2003. Chlorophyll dispersal by eddy-eddy interactions in the Gulf of Mexico. Journal of Geophysical Research, 108(C4): 3015 [DOI: 10.1029/2002JC001499http://dx.doi.org/10.1029/2002JC001499]
Walker N D, Leben R R and Balasubramanian S. 2005. Hurricane-forced upwelling and Chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophysical Research Letters, 32(18):L18610 [DOI: 10.1029/2005GL023716http://dx.doi.org/10.1029/2005GL023716]
Wang Y H and Chong J S. 2020. Detection method of oceanic eddies using Tiangong-2 near-nadir interferometric SAR. Journal of Remote Sensing, 24(9): 1070-1076
王宇航, 种劲松. 2020. 天宫二号近天底角交轨干涉SAR的海洋涡旋探测. 遥感学报, 24(9): 1070-1076 [DOI: 10.11834/jrs.20209231http://dx.doi.org/10.11834/jrs.20209231]
White W B and Annis J L. 2003. Coupling of extratropical mesoscale eddies in the ocean to westerly winds in the atmospheric boundary layer. Journal of Physical Oceanography, 33(5): 1095-1107 [DOI: 10.1175/1520-0485(2003)033<1095:COEMEI>2.0.CO;2http://dx.doi.org/10.1175/1520-0485(2003)033<1095:COEMEI>2.0.CO;2]
Williams S, Hecht M, Petersen M, Strelitz R, Maltrud M, Ahrens J P, Hlawitschka M and Hamann B. 2011. Visualization and analysis of eddies in a global ocean simulation. Computer Graphics Forum, 30(3): 991-1000 [DOI: 10.1111/j.1467-8659.2011.01948.xhttp://dx.doi.org/10.1111/j.1467-8659.2011.01948.x]
Xu G J, Dong C M, Liu Y, Gaube P and Yang J S. 2019. Chlorophyll rings around ocean eddies in the North Pacific. Scientific Reports, 9(1): 2056 [DOI: 10.1038/S41598-018-38457-8http://dx.doi.org/10.1038/S41598-018-38457-8]
Yang Q, Parvin B and Mariano A. 2001. Detection of vortices and saddle points in SST data. Geophysical Research Letters, 28(2): 331-334 [DOI: 10.1029/2000gl011408http://dx.doi.org/10.1029/2000gl011408]
Yang Y, Xing T, Wang Y X, Sui J P, Lei J H, Zhou W D, Wang Q, Qu L J and Sui D D. 2016. The topography effect on the sudden deceleration of the mesoscale eddy propagation speed around the Dongsha Islands in northern South China Sea. Aquatic Ecosystem Health and Management, 19(3): 242-249 [DOI: 10.1080/14634988.2016.1215747http://dx.doi.org/10.1080/14634988.2016.1215747]
Yi J, Du Y, He Z and Zhou C. 2014a. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Science, 10: 39-48 [DOI: 10.5194/os-10-39-2014http://dx.doi.org/10.5194/os-10-39-2014]
Yi J W, Liu Z, Du Y Y, Wu D, Zhou C H, Wei H T, Xu K H and Liang F Y. 2014b. A Gaussian-surface-based approach to identifying oceanic multi-eddy structures from satellite altimeter datasets//Proceedings of the 22nd International Conference on Geoinformatics. Kaohsiung, China: IEEE: 1-5 [DOI: 10.1109/GEOINFORMATICS.2014.6950840http://dx.doi.org/10.1109/GEOINFORMATICS.2014.6950840]
Zhang C H, Li H L, Liu S T, Shao L J, Zhao Z and Liu H W. 2015. Automatic detection of oceanic eddies in reanalyzed SST images and its application in the East China Sea. Science China Earth Sciences, 58(12): 2249-2259 [DOI: 10.1007/s11430-015-5101-yhttp://dx.doi.org/10.1007/s11430-015-5101-y]
Zhang Y, Zhang Z G, Chen D K, Qiu B and Wang W. 2020. Strengthening of the Kuroshio current by intensifying tropical cyclones. Science, 368(6494): 988-993 [DOI: 10.1126/science.aax5758http://dx.doi.org/10.1126/science.aax5758]
Zhang Z W, Tian J W, Qiu B, Zhao W, Chang P, Wu D X and Wan X Q. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6(1): 24349 [DOI: 10.1038/srep24349http://dx.doi.org/10.1038/srep24349]
Zhang Z G, Wang W and Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322-324 [DOI: 10.1126/science.1252418http://dx.doi.org/10.1126/science.1252418]
Zhao Z M, Li J M, Zhao W J, Yang J, Qi S B and Xu M. 2019. A numerical study of island wakes in the Xisha Archipelago associated with mesoscale eddies in the spring. Ocean Modelling, 139: 101406 [DOI: 10.1016/j.ocemod.2019.101406http://dx.doi.org/10.1016/j.ocemod.2019.101406]
Zheng Q, Tai C K, Hu J Y, Lin H Y, Zhang R H, Su F C and Yang X F. 2011. Satellite altimeter observations of nonlinear Rossby eddy-Kuroshio interaction at the Luzon Strait. Journal of Oceanography, 67(4): 365-376 [DOI: 10.1007/s10872-011-0035-2http://dx.doi.org/10.1007/s10872-011-0035-2]
相关作者
相关机构