利用无人机数码影像估算马铃薯地上生物量
Estimation of plant height and above ground biomass of potato based on UAV digital image
- 2021年25卷第9期 页码:2004-2014
纸质出版日期: 2021-09-07
DOI: 10.11834/jrs.20210419
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-09-07 ,
扫 描 看 全 文
刘杨,黄珏,孙乾,冯海宽,杨贵军,杨福芹.2021.利用无人机数码影像估算马铃薯地上生物量.遥感学报,25(9): 2004-2014
Liu Y,Huang J,Sun Q,Feng H K,Yang G J and Yang F Q. 2021. Estimation of plant height and above ground biomass of potato based on UAV digital image. National Remote Sensing Bulletin, 25(9):2004-2014
株高和地上生物量AGB(Above-Ground Biomass)是作物长势监测的重要指标,因此快速获取这些信息对指导田间管理具有重要意义。本研究通过无人机搭载高清数码相机分别获取马铃薯5个生育期的影像数据,地面实测株高H(heigh)和AGB以及地面控制点GCPs(Ground Control Points)的三维空间坐标。首先,利用试验区域的影像数据结合GCPs的位置信息从生成的数字表面模型DSM(Digital Surface Model)中提取出马铃薯的株高(Hdsm)。其次,选取26种植被指数和H
、
Hdsm组成新的数据集与AGB作相关性分析,筛选出相关性较高的前7个植被指数同Hdsm作为估算马铃薯AGB的输入参数。然后,使用MLR(Multiple Linear Regression)、SVM(Support Vector Machine)和ANN(Artificial Neural Network)方法分别基于植被指数、植被指数和Hdsm构建马铃薯多生育期AGB估算模型,对不同估算模型进行比较分析,从而选择出AGB估算的最佳模型。结果表明:基于DSM提取的Hdsm与实测株高H高度拟合(
R
2
=0.86,RMSE=6.36 cm,NRMSE=13.42%);各生育期基于3种回归技术均以植被指数融入Hdsm构建的模型精度最高,估算能力最强;各生育期利用MLR方法构建的AGB估算模型效果最佳,其次为SVM-AGB估算模型,而ANN-AGB估算模型效果最差。该研究可为马铃薯AGB快速、无损监测提供科学参考。
Plant height and Above-Ground Biomass (AGB) are important agronomic parameters for crop growth monitoring. Therefore
efficiently and timely acquire this information of potato plant is important for guiding farmland production management. Traditionally
manual actual surveys are time-consuming
laborious and destructive
and fail to meet the modern needs of smart agriculture. With the advancement of science and technology
remote sensing technology has attracted people’s attention for its advantages of non-destructive
high-throughput
and rapid acquisition of phenotype information of ground objects. Compared with satellite
aerial and ground remote sensing
UAV remote sensing technology is widely popularized in precision agriculture monitoring due to its strong mobility
simple operation
low operating cost
and the ability to obtain high-resolution digital orthophotos under the cloud. In this study
the UAV equipped with high-definition digital camera was used to obtain the image data of potato with budding periods
tuber formation period
tuber growth period
starch accumulation period and maturity period
and the height (H) and AGB of potato plant on the ground were measured
and the longitude
dimension and height of Ground Control Points (GCPs) were obtained by Global Positioning System (GPS) from March to July 2019. Firstly
the Digital Surface Model (DSM) was generated by structure from motion algorithm based on the image data of the experimental area and the location information of GCPs
and the Hdsm (potato plant height) of each growth period was extracted based on DSM. Then
combining 26 image indices with better performance in AGB monitoring based on the digital number value of the image
crop height of field survey by ruler (H) and crop height extracted based on DSM difference calculation (Hdsm) into a new data set. The first 7 indices and Hdsm based analyzing the correlation between these parameters (26 vegetation indices
H and Hdsm) and AGB were screened to construct the AGB estimation model of five growth periods. Finally
in order to further increase the variance of the different model
Multiple Linear Regression (MLR)
Support Vector Machine (SVM) and Artificial Neural Network (ANN) are selected to build the AGB estimation model based on the sensitivity parameters. Through the quantitative analysis of the model
the optimal estimation model is selected for each growth period to monitor crop conditions. The results showed that: the extracted plant height (Hdsm) is fitted with the measured plant height (
R
2
=0.86
RMSE=6.36cm
NRMSE=13.42%); the AGB estimation model was constructed by three different modeling methods in each growth period
in which the model by integrating with Hdsm into vegetation indices was better; it is found that the effect of MLR model (
R
2
=0.61
0.74
0.77
0.72 and 0.60) with incorporating the Hdsm into image indices in each growth period to estimate AGB is better than that of SVM (
R
2
=0.60
0.69
0.73
0.69 and 0.58) and ANN (
R
2
=0.56
0.67
0.71
0.65 and 0.55). The results of this research help solve the problem of monitoring AGB in the traditional way and provide reference for real-time monitoring of potato growth and yield prediction accurately.
无人机数码影像数字表面模型马铃薯株高地上生物量
unmanned aerial vehicledigital imagedigital surface modelpotatoplant heightabove-ground biomass
Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Gnyp M L and Bareth G. 2015. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39: 79-87 [DOI: 10.1016/j.jag.2015.02.012http://dx.doi.org/10.1016/j.jag.2015.02.012]
Candiago S, Remondino F, De Giglio M, Dubbini M and Gattelli M. 2015. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4): 4026-4047 [DOI: 10.3390/rs70404026http://dx.doi.org/10.3390/rs70404026]
Chen Z X, Ren J Q, Tang H J, Shi Y, Leng P, Liu J, Wang L M, Wu W B and Yao Y M. 2016. Progress and perspectives on agricultural remote sensing research and applications in China. Journal of Remote Sensing, 20(5): 748-767
陈仲新, 任建强, 唐华俊, 史云, 冷佩, 刘佳, 王利民, 吴文斌, 姚艳敏. 2016. 农业遥感研究应用进展与展望. 遥感学报, 20(5): 748-767 [DOI: 10.11834/jrs.20166214http://dx.doi.org/10.11834/jrs.20166214]
Chianucci F, Disperati L, Guzzi D, Bianchini D, Nardino V, Lastri C, Rindinella A and Corona P. 2016. Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV. International Journal of Applied Earth Observation and Geoinformation, 47: 60-68. [DOI: 10.1016/j.jag.2015.12.005http://dx.doi.org/10.1016/j.jag.2015.12.005]
Colomina I and Molina P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 92: 79-97 [DOI: 10.1016/j.isprsjprs.2014.02.013http://dx.doi.org/10.1016/j.isprsjprs.2014.02.013]
Cui R X, Liu Y D and Fu J D. 2015. Estimation of winter wheat biomass using visible spectral and BP based artificital neural networks. Spectroscopy and Spectral Analysis, 35(9): 2596-2601
崔日鲜, 刘亚东, 付金东. 2015. 基于可见光光谱和BP人工神经网络的冬小麦生物量估算研究. 光谱学与光谱分析, 35(9): 2596-2601) [DOI: 10.3964/j.issn.1000-0593(201509-2596-06]
Gitelson A A, Kaufman Y J, Stark R and Rundquist D. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1): 76-87 [DOI: 10.1016/S0034-4257(01)00289-9http://dx.doi.org/10.1016/S0034-4257(01)00289-9]
Guo Q H, Su Y J, Hu T Y, Zhao X Q, Wu F F, Li Y M, Liu J, Chen L H, Xu G C, Lin G H, Zheng Y, Lin Y Q, Mi X C, Fei L and Wang X G. 2017. An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China. International Journal of Remote Sensing, 38(8/10): 2954-2972 [DOI: 10.1080/01431161.2017.1285083http://dx.doi.org/10.1080/01431161.2017.1285083]
He C L, Zheng S L, Wan N X, Zhao T T, Yuan J C, He W and Hu J J. 2016. Potato spectrum and the digital image feature parameters on the response of the nitrogen level and its application. Spectroscopy and Spectral Analysis, 36(9): 2930-2936
何彩莲, 郑顺林, 万年鑫, 赵婷婷, 袁继超, 何卫, 胡建军. 2016. 马铃薯光谱及数字图像特征参数对氮素水平的响应及其应用. 光谱学与光谱分析, 36(9): 2930-2936) [DOI: 10.3964/j.issn.1000-0593(201609-2930-07]
Kataoka T, Kaneko T, Okamoto H and Hata S. 2003. Crop growth estimation system using machine vision//Proceedings of 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Kobe: IEEE: 1079-1083 [DOI: 10.1109/AIM.2003.1225492http://dx.doi.org/10.1109/AIM.2003.1225492]
Liu Y, Feng H K, Huang J, Sun Q, Yang F Q and Yang G J. 2021. Estimation of potato plant height and above-ground biomass based on UAV hyperspectral images. Transactions of the Chinese Society for Agricultural Machinery, 52(2): 188-198
刘杨, 冯海宽, 黄珏, 孙乾, 杨福芹, 杨贵军. 2021. 基于无人机高光谱影像的马铃薯株高和地上生物量估算. 农业机械学报, 52(2): 188-198 [DOI: 10.6041/j.issn.1000-1298.2021.02.017http://dx.doi.org/10.6041/j.issn.1000-1298.2021.02.017]
Meyer G E and Neto J C. 2018. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63(2): 282-293 [DOI: 10.1016/j.compag.2008.03.009http://dx.doi.org/10.1016/j.compag.2008.03.009]
Nie S, Wang C, Dong P L, Xi X H, Luo S Z and Zhou H Y. 2016. Estimating leaf area index of maize using airborne discrete-return LiDAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7): 3259-3266 [DOI: 10.1109/JSTARS.2016.2554619http://dx.doi.org/10.1109/JSTARS.2016.2554619]
Niu Q L, Feng H K, Yang G J, Li C C, Yang H, Xu B and Zhao Y X. 2018. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images. Transactions of the Chinese Society of Agricultural Engineering, 34(5): 73-82
牛庆林, 冯海宽, 杨贵军, 李长春, 杨浩, 徐波, 赵衍鑫. 2018. 基于无人机数码影像的玉米育种材料株高和LAI监测. 农业工程学报, 34(5): 73-82 [DOI: 10.11975/j.issn.1002-6819.2018.05.010http://dx.doi.org/10.11975/j.issn.1002-6819.2018.05.010]
Pei H J, Feng H K, Li C C, Jin X L, Li Z H and Yang G J. 2017. Remote sensing monitoring of winter wheat growth with UAV based on comprehensive index. Transactions of the Chinese Society of Agricultural Engineering, 33(20): 74-82
裴浩杰, 冯海宽, 李长春, 金秀良, 李振海, 杨贵军. 2017. 基于综合指标的冬小麦长势无人机遥感监测. 农业工程学报, 33(20): 74-82 [DOI: 10.11975/j.issn.1002-6819.2017.20.010http://dx.doi.org/10.11975/j.issn.1002-6819.2017.20.010]
Potgieter A B, George-Jaeggli B, Chapman S C, Laws K, Suárez Cadavid L A, Wixted J, Watson J, Eldridge M, Jordan D R and Hammer G L. 2017. Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines. Frontiers in Plant Science, 8: 1532 [DOI: 10.3389/fpls.2017.01532http://dx.doi.org/10.3389/fpls.2017.01532]
Singh S K, Houx III J H, Maw M J W and Fritschi F B. 2017. Assessment of growth, leaf N concentration and chlorophyll content of sweet sorghum using canopy reflectance. Field Crops Research, 209: 47-57 [DOI: 10.1016/j.fcr.2017.04.009http://dx.doi.org/10.1016/j.fcr.2017.04.009]
Som-ard J, Hossain M D, Ninsawat S and Veerachitt V. 2018. Pre-harvest sugarcane yield estimation using UAV-based RGB images and ground observation. Sugar Tech, 20(6): 645-657 [DOI: 10.1007/s12355-018-0601-7http://dx.doi.org/10.1007/s12355-018-0601-7]
Tao H L, Xu L J, Feng H K, Yang G J, Yang X D, Miao M K and Dai Y. 2019. Estimation of plant height and biomass of winter wheat based on UAV digital image. Transactions of the Chinese Society of Agricultural Engineering, 35(19): 107-116
陶惠林, 徐良骥, 冯海宽, 杨贵军, 杨小冬, 苗梦珂, 代阳. 2019. 基于无人机数码影像的冬小麦株高和生物量估算. 农业工程学报, 35(19): 107-116 [DOI: 10.11975/j.issn.1002-6819.2019.19.013http://dx.doi.org/10.11975/j.issn.1002-6819.2019.19.013]
Watanabe K, Guo W, Arai K, Takanashi H, Kajiya-Kanegae H, Kobayashi M, Yano K, Tokunaga T, Fujiwara T, Tsutsumi N and Iwata H. 2017. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Frontiers in Plant Science, 8: 421 [DOI: 10.3389/fpls.2017.00421http://dx.doi.org/10.3389/fpls.2017.00421]
Xu Y B. 2015. Envirotyping and its applications in crop science. Scientia Agricultura Sinica, 48(17): 3354-3371
徐云碧. 2015. 作物科学中的环境型鉴定(Envirotyping)及其应用. 中国农业科学, 48(17): 3354-3371 [DOI: 10.3864/j.issn.0578-1752.2015.17.004http://dx.doi.org/10.3864/j.issn.0578-1752.2015.17.004]
Yan G J, Hu R H, Luo J H, Mu X H, Xie D H and Zhang W M. 2016. Review of indirect methods for leaf area index measurement. Journal of Remote Sensing, 20(5): 958-978
阎广建, 胡容海, 罗京辉, 穆西晗, 谢东辉, 张吴明. 2016. 叶面积指数间接测量方法. 遥感学报, 20(5): 958-978 [DOI: 10.11834/jrs.20166238http://dx.doi.org/10.11834/jrs.20166238]
Yang G J, Li C C, Wang Y J, Yuan H H, Feng H K, Xu B and Yang X D. 2017b. The DOM generation and precise radiometric calibration of a UAV-mounted miniature snapshot hyperspectral imager. Remote Sensing, 9(7): 642 [DOI: 10.3390/rs9070642http://dx.doi.org/10.3390/rs9070642]
Yang G J, Liu J G, Zhao C J, Li Z H, Huang Y B, Yu H Y, Xu B, Yang X D, Zhu D M, Zhang X Y, Zhang R Y, Feng H K, Zhao X Q, Li Z H, Li H L and Yang H. 2017a. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Frontiers in Plant Science, 8: 1111 [DOI: 10.3389/fpls.2017.01111http://dx.doi.org/10.3389/fpls.2017.01111]
Yao K, Guo X D, Nan Y, Li K, Jiang S F and Sun T T. 2016. Research progress of hyperspectral remote sensing monitoring of vegetation biomass assessment. Science of Surveying and Mapping, 41(8): 48-53
姚阔, 郭旭东, 南颖, 李坤, 江淑芳, 孙婷婷. 2016. 植被生物量高光谱遥感监测研究进展. 测绘科学, 41(8): 48-53 [DOI: 10.16251/j.cnki.1009-2307.2016.08.010http://dx.doi.org/10.16251/j.cnki.1009-2307.2016.08.010]
Yuan H H, Yang G J, Li C C, Wang Y J, Liu J G, Yu H Y, Feng H K, Xu B, Zhao X Q and Yang X D. 2017. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: analysis of RF, ANN, and SVM regression models. Remote Sensing, 9(4): 309 [DOI: 10.3390/rs9040309http://dx.doi.org/10.3390/rs9040309]
Yue J B, Yang G J, Li C C, Li Z H, Wang Y J, Feng H K and Xu B. 2017. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sensing, 9(7): 708 [DOI: 10.3390/rs9070708http://dx.doi.org/10.3390/rs9070708]
Zhang L X, Chen Y Q, Li Y X, Ma J C, Du K M, Zheng F X and Sun Z F. 2019. Estimating above ground biomass of winter wheat at early growth stages based on visual spectral. Spectroscopy and Spectral Analysis, 39(8): 2501-2506
张领先, 陈运强, 李云霞, 马浚诚, 杜克明, 郑飞翔, 孙忠富. 2019. 可见光光谱的冬小麦苗期地上生物量估算. 光谱学与光谱分析, 39(8): 2501-2506) [DOI: 10.3964/j.issn.1000-0593(201908-2501-06]
相关作者
相关机构