移动地理信息系统技术发展的3个时代
Three development stages of mobile geographic information system technology
- 2022年26卷第12期 页码:2399-2410
纸质出版日期: 2022-12-07
DOI: 10.11834/jrs.20210428
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-12-07 ,
扫 描 看 全 文
乔彦友,常原飞.2022.移动地理信息系统技术发展的3个时代.遥感学报,26(12): 2399-2410
Qiao Y Y and Chang Y F.2022.Three development stages of mobile geographic information system technology. National Remote Sensing Bulletin, 26(12):2399-2410
为了明晰的理清移动地理信息系统技术发展脉络,本文简述了信息技术变革是如何推动该技术向嵌入式时代、移动互联网时代、智能物联网时代不断演变,并依次分析了每个时代的技术架构及其典型应用,在此基础上提出了集成全球导航定位、5G、人工智能和计算机视觉等信息技术于一体的新一代移动地理信息系统概念,分析了其具备的泛在化、实时化、智能化特征,论述了支撑3大特征的跨平台内核、同步定位与全息高精度导航地图、语义地图和智能决策3种核心技术,总结其发展和应用的变化趋势,对后续移动GIS的发展有一定的指导意义。
The development of Mobile Geographic Information System (MGIS)
which is driven by the change of information technology
is clarified and divided into three eras in this work: embedded
mobile Internet
and intelligent Internet Of Things (IOT) era.
At the end of 1990s
with the completion of Global Positioning System (GPS) deployment in the United States
the functions related to information acquisition of desktop GIS system were transplanted to Personal Digital Assistant (PDA) and other embedded devices to facilitate field data acquisition. MGIS entered the “embedded era” combined with GPS. In this period
the stand-alone version of MGIS has been successfully applied in the field data collection of land
forestry
surveying
mapping
and other industries. Although MGIS had some online functions at that time
the bandwidth of mobile network was not enough to support high-frequency network GIS services.
MGIS has gradually entered the “mobile Internet era” with the rise of 3G/4G and other broadband mobile networks and the popularity of intelligent mobile terminals (especially Android mobile phones). In this period
the core module of MGIS was translated from Global Navigation Satellite System (GNSS) to wireless communication network. The most typical applications in this era are the map APP developed by Google
Baidu
and other electronic map service providers and its related location-based services APP. At this time
MGIS has extended to the entire geographic information industry chains
involving data collection
data processing
platform software
industry applications
etc. “Cloud+End” constitutes a new ecosystem of geographic information. However
due to the problems of cloud computing
such as less real-time
insufficient bandwidth
and large energy consumption
which are not conducive to data security and privacy
MGIS in this era is still in the traditional artificial ground operation stage
making real-time spatial analysis
target recognition
and other intelligent processing difficult.
The MGIS technology gradually enters the “intelligent IOT era” around 2019 with the ubiquitous development of IOT
especially the development of Computer Vision (CV)
Artificial Intelligence (AI)
5G mobile communication
edge computing
and other technologies. The main technical features of this stage are intelligent
real-time
and ubiquitous GIS
and the system architecture evolves into “cloud+edge+end”. In this era
everyone is a sensor and plotter. A large number of intelligent sensors
such as cameras and radars integrated on ground mobile platforms (wearable devices
vehicles
etc.) and air mobile platforms (unmanned aerial vehicles
etc.) have emerged
which can help us locate and provide holographic map information
such as acoustic-optic-magnetic information. These IOT terminals can be used as carriers of MGIS. The massive raw data of the collected images
videos
locations
and other data are no longer uploaded to the cloud
but are analyzed and processed in real time by AI and other technologies on the network edge devices. Only the results are transmitted to the cloud. This mode greatly reduces the pressure of network bandwidth
data center power consumption
and system delay and enhances the service response ability. Furthermore
the risk of network data leakage is greatly reduced
and user data security and privacy are protected because users no longer upload privacy or sensitive data (only stored on network edge devices).
On this basis
a new generation of MGIS is proposed
which integrates GNSS
5G
AI
CV
and other information technologies. The ubiquitous
real-time
and intelligent features of this technology are analyzed
and three core technologies
including cross-platform kernel
simultaneous localization and mapping
pan-information-based high-precision navigation map
semantic map
and intelligent decision-making
are discussed. The development trend and direction are also predicted.
移动地理信息系统人工智能无人机遥感物联网云计算边缘计算智慧行业
mobile GISartificial intelligenceUAV remote sensinginternet of thingscloud computingedge computingsmart industry
Bailey T and Durrant-Whyte H. 2006. Simultaneous localization and mapping (SLAM): part Ⅱ. IEEE Robotics and Automation Magazine, 13(3): 108-117 [DOI: 10.1109/MRA.2006.1678144http://dx.doi.org/10.1109/MRA.2006.1678144]
Bu J and Zhang Q. 2004. Technical implementation of distributed mobile GIS based on LBS. Journal of Chongqing University of Posts and Telecommunications, 16(1): 105-107
卜健, 张琦. 基于LBS应用的分布式移动GIS技术实现. 重庆邮电学院学报(自然科学版), 16(1): 105-107 [DOI: 10.3969/j.issn.1673-825X.2004.01.026http://dx.doi.org/10.3969/j.issn.1673-825X.2004.01.026]
Chang Y F, Wu H G, Dong Z H, Cui F D, Liu L, Jian J, Zhang Y and Li W G. 2011. A national monitoring and warning system for forest pest based on service-oriented architecture. Scientia Silvae Sinicae, 47(6): 93-100
常原飞, 武红敢, 董振辉, 崔福东, 刘丽, 荐军, 张迎, 李卫国. 2011. 国家级林业有害生物灾害监测与预警系统. 林业科学, 47(6): 93-100 [DOI: 10.11707/j.1001-7488.20110614http://dx.doi.org/10.11707/j.1001-7488.20110614]
Che Z L. 2016. Study on Techniques of Disaster Point Investigation for Forest Pests Based on Location. Beijing: University of Chinese Academy of Sciences
车振磊. 2016. 林业有害生物灾害点复位调查关键技术研究. 北京: 中国科学院大学
Chen F X. 2006. Research on Key Technologies for Mobile Spatial Information Services. Beijing: Institute of Remote Sensing Applications Chinese Academy of Sciences
陈飞翔. 2006. 移动空间信息服务关键技术研究. 北京: 中国科学院遥感应用研究所
Chen Z J, Sun E X, Li D D, Zhang C C, Zang D D and Cheng X. 2018. Current Situation Analysis and Implementation of High Precision Map. Computer Knowledge and Technology, 14(22): 270-272
陈宗娟, 孙二鑫, 李丹丹, 张聪聪, 藏丹丹, 程旭. 2018. 高精地图现状分析与实现方案研究. 电脑知识与技术, 14(22): 270-272
Cui F D. 2009. Research on Management Technology of Forestry Pest Web Services. Beijing: Institute of Remote Sensing Application Chinese Academy of Sciences
崔福东. 2009. 林业有害生物Web服务管理技术研究. 北京: 中国科学院遥感应用研究所
Durrant-Whyte H and Bailey T. 2006. Simultaneous localization and mapping: part Ⅰ. IEEE Robotics and Automation Magazine, 13(2): 99-110 [DOI: 10.1109/MRA.2006.1638022http://dx.doi.org/10.1109/MRA.2006.1638022]
Girshick R, Donahue J, Darrell T and Malik J. 2016. Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1): 142-158 [DOI: 10.1109/TPAMI.2015.2437384http://dx.doi.org/10.1109/TPAMI.2015.2437384]
Gong J Y. 2004. Review of the progress in contemporary GIS. Geomatics and Spatial Information Technology, 27(1): 5-11
龚健雅. 2004. 当代地理信息系统进展综述. 测绘与空间地理信息, 27(1): 5-11 [DOI: 10.3969/j.issn.1672-5867.2004.01.001http://dx.doi.org/10.3969/j.issn.1672-5867.2004.01.001]
He D. 2008. Research and Application of Embedded GIS in Forest Pest Investigation. Beijing: Institute of Remote Sensing Application Chinese Academy of Sciences
何丹. 2008. 嵌入式GIS在林业有害生物调查中的研究与应用. 北京: 中国科学院遥感应用研究所
He K M, Gkioxari G, Dollár P and Girshick R. 2020. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2): 386-397 [DOI: 10.1109/TPAMI.2018.2844175http://dx.doi.org/10.1109/TPAMI.2018.2844175]
Jian J. 2005. Urban Fundamental Geographical Information Platform Framework and Key Technology Study. Beijing: Graduate School of the Chinese Academy of Sciences (Institute of Remote Sensing Application)
荐军. 2005. 城市基础地理信息平台框架及关键技术研究. 北京: 中国科学院研究生院(遥感应用研究所)
Lee N S T. 1993. Single line street network: the foundation of mobile GIS//Vehicle Navigation and Information Systems Conference. Ottawa, Ontario: IEEE: 34-37 [DOI: 10.1109/VNIS.1993.585578http://dx.doi.org/10.1109/VNIS.1993.585578]
Li C M, Wang J Z and Liu Y. 2004. Theory and application of moving GIS. Geomatics and Information Science of Wuhan University, 29(11): 990-993
李成名, 王继周, 刘勇. 2004. 移动GIS的原理、方法与实践. 武汉大学学报(信息科学版), 29(11): 990-993 [DOI: 10.3969/j.issn.1671-8860.2004.11.012http://dx.doi.org/10.3969/j.issn.1671-8860.2004.11.012]
Li D R. 2008. Mobile mapping technology and its applications//Proceedings of the 4th Council of the 9th CSMS and its 2008 Annual Meeting. Guilin: 638-654
李德仁. 2008. 移动测量技术及其应用//中国测绘学会九届四次理事会暨2008年学术年会论文集. 桂林: 638-654
Li H Y. 2006. Research on the Concept System of Mobile GIS. Xi’an: Chang’an University
李海艳. 2006. 移动GIS的概念体系研究. 西安: 长安大学
Li W G. 2010. Research on Field Investigation System Based on Embedded GIS. Beijing: Institute of Remote Sensing Application Chinese Academy of Sciences
李卫国. 2010. 基于嵌入式GIS的野外调查系统研究. 北京: 中国科学院遥感应用研究所
Liao X H, Xiao Q and Zhang H. 2019. UAV remote sensing: Popularization and expand application development trend. Journal of Remote Sensing, 23(6): 1046-1052
廖小罕, 肖青, 张颢. 2019. 无人机遥感:大众化与拓展应用发展趋势. 遥感学报, 23(6): 1046-1052 [DOI:10.11834/jrs.20199422http://dx.doi.org/10.11834/jrs.20199422]
Liu H X, Liu H D, He H J and Zhao Y L. 2005. Development and application of mobile GIS. Geospatial Information, 3(4): 41-42
刘海新, 刘惠德, 何虎军, 赵玉玲. 2005. 移动GIS的发展及其应用. 地理空间信息, 3(4): 41-42 [DOI: 10.3969/j.issn.1672-4623.2005.04.017http://dx.doi.org/10.3969/j.issn.1672-4623.2005.04.017]
Liu J J, Zou S H and Lu X L. 2021. Joint optimization scheme of resource allocation and offloading decision in mobile edge computing. Journal of Frontiers of Computer Science and Technology, 15(5): 848-858
刘继军, 邹山花, 卢先领. 2021. MEC中资源分配与卸载决策联合优化策略. 计算机科学与探索, 15(5): 848-858 [DOI: 10.3778/j.issn.1002-8331.2006087http://dx.doi.org/10.3778/j.issn.1002-8331.2006087]
Liu J N, Wu H B, Guo C, Zhang H M, Zuo W W and Yang C. 2018. Progress and consideration of high precision road navigation map. Strategic Study of CAE, 20(2): 99-105
刘经南, 吴杭彬, 郭迟, 张宏敏, 左文炜, 羊铖. 2018. 高精度道路导航地图的进展与思考. 中国工程科学, 20(2): 99-105 [DOI: 10.15302/J-SSCAE-2018.02.015http://dx.doi.org/10.15302/J-SSCAE-2018.02.015]
Liu L. 2012. Research on General Framework and Template of Management Information System based on WebGIS. Beijing: Institute of Remote Sensing Application Chinese Academy of Sciences
刘丽. 2012. WebGIS管理信息系统通用框架及模板技术研究. 北京: 中国科学院遥感应用研究所
Lu Y F, Cao R H, Wang J L and Yan C G. 2021. Method of encapsulating procuratorate affair services based on microservices. Computer Science, 48(2): 33-40
陆懿帆, 曹芮浩, 王俊丽, 闫春钢. 2021. 一种基于微服务的检察业务服务封装方法. 计算机科学, 48(2): 33-40 [DOI: 10.11896/jsjkx.191100152http://dx.doi.org/10.11896/jsjkx.191100152]
McCormac J, Handa A, Davison A and Leutenegger S. 2017. SemanticFusion: dense 3D semantic mapping with convolutional neural networks//2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE: 4628-4635 [DOI: 10.1109/ICRA.2017.7989538http://dx.doi.org/10.1109/ICRA.2017.7989538]
Mukherjee M, Shu L and Wang D. 2018. Survey of fog computing: fundamental, network applications, and research challenges. IEEE Communications Surveys and Tutorials, 20(3): 1826-1857 [DOI: 10.1109/COMST.2018.2814571http://dx.doi.org/10.1109/COMST.2018.2814571]
Qian C, Liu H, Tang J, Chen Y W, Kaartinen H, Kukko A, Zhu L L, Liang X L, Chen L and Hyyppä J. 2017. An integrated GNSS/INS/LiDAR-SLAM positioning method for highly accurate forest stem mapping. Remote Sensing, 9(1): 3 [DOI: 10.3390/rs9010003http://dx.doi.org/10.3390/rs9010003]
Qiao Y Y, Chang Y F, He D, Zhang Y and Jian J. 2009. GIS/GPS-based forestry pest monitoring data recording system and its industrialization. Journal of Remote Sensing, 13(S1): 422-426
乔彦友, 常原飞, 何丹, 张迎, 荐军. 2009. 基于GIS/GPS的林业有害生物监测数据记录系统及产业化. 遥感学报, 13(S1): 422-426 [DOI: 10.11834/jrs.20090060http://dx.doi.org/10.11834/jrs.20090060]
Redmon J, Divvala S, Girshick R and Farhadi A. 2016. You only look once: unified, real-time object detection//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE: 779-788 [DOI: 10.1109/CVPR.2016.91http://dx.doi.org/10.1109/CVPR.2016.91]
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/TPAMI.2016.2577031http://dx.doi.org/10.1109/TPAMI.2016.2577031]
Si J Z. 2012. Research of Field Forest Data Capture Technology based on GIS/GPS. Beijing: University of Chinese Academy of Sciences
司敬知. 2012. 基于GIS/GPS的林业有害生物野外数据采集技术研究. 北京: 中国科学院大学
Tian G, Zhang J and Tong X H. 2004. Research and implementation of embedded GIS based on mobile. Remote Sensing Information, (1): 49-52
田根, 张锦, 童小华. 2004. 基于移动的嵌入式GIS. 遥感信息, (1): 49-52 [DOI: 10.3969/j.issn.1000-3177.2004.01.014http://dx.doi.org/10.3969/j.issn.1000-3177.2004.01.014]
Wang C B. 2015. Study on Automatic Recognition and Service-Oriented Informationized Field Investigation of Discolored Pine Trees. Beijing: Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences (王成波. 2015. 变色松树的图像识别与地面调查综合技术研究. 北京: 中国科学院遥感与数字地球研究所)
Wang C B, Qiao Y Y, Wu H G, Chang Y F and Shi M Y. 2016. Empowering fall webworm surveillance with mobile phone-based community monitoring: a case study in northern China. Journal of Forestry Research, 27(6): 1407-1414 [DOI: 10.1007/s11676-016-0230-5http://dx.doi.org/10.1007/s11676-016-0230-5]
Wang D, Li X and Zhu M Z. 2006. Research on system architecture of mobile GIS. Computer Engineering and Design, 27(20): 3835-3837
王丹, 李欣, 朱美正. 2006. 移动式地理信息系统体系结构的研究. 计算机工程与设计, 27(20): 3835-3837 [DOI: 10.3969/j.issn.1000-7024.2006.20.033http://dx.doi.org/10.3969/j.issn.1000-7024.2006.20.033]
Wang G and Han Z B. 2013. Design and implementation of android-oriented mobile GIS. Bulletin of Surveying and Mapping, (8): 77-80
王刚, 韩振镖. 2013. 面向Android智能移动终端的GIS设计与实现. 测绘通报, (8): 77-80
Wang J Z and Li M C. 2005. Research on embedded mobile GIS. Science of Surveying and Mapping, 30(4): 48-50
王继周, 李成名. 2005. 嵌入式移动GIS研究. 测绘科学, 30(4): 48-50 [DOI: 10.3771/j.issn.1009-2307.2005.04.014http://dx.doi.org/10.3771/j.issn.1009-2307.2005.04.014]
Wang P. 2006. Mobile GIS and its new applications. Geomatics and Spatial Information Technology, 29(5): 129-131
王攀. 2006. 移动GIS及其新应用. 测绘与空间地理信息, 29(5): 129-131 [DOI: 10.3969/j.issn.1672-5867.2006.05.038http://dx.doi.org/10.3969/j.issn.1672-5867.2006.05.038]
Wang X B and Sun J Y. 2012. Geographic information system overview. Geospatial Information, 10(1): 25-28, 1
王小兵, 孙久运. 2012. 地理信息系统综述. 地理空间信息, 10(1): 25-28, 1 [DOI:10.3969/j.issn.1672-4623.2012.01.010http://dx.doi.org/10.3969/j.issn.1672-4623.2012.01.010]
Whelan T, Salas-Moreno R F, Glocker B, Davison A J and Leutenegger S. 2016. ElasticFusion: real-time dense SLAM and light source estimation. The International Journal of Robotics Research, 35(14): 1697-1716 [DOI: 10.1177/0278364916669237http://dx.doi.org/10.1177/0278364916669237]
Wu H G, Chang Y F and He D. 2007. GIS/GPS-based Forestry Pest Monitoring Data Recording and Processing System. Forestry of China, (18): 54
武红敢, 常原飞, 何丹. 2007. 基于GIS/GPS的林业有害生物监测数据记录与处理系统. 中国林业, (18): 54
Wu H G, Wang C B and Chang Y F. 2019. Study on cloud service management system of trees attacked by pine wood nematode disease. Forest Resources Management, (5): 68-75
武红敢, 王成波, 常原飞. 2019. 松材线虫病死松树云服务管理的探究. 林业资源管理, (5): 68-75 [DOI: 10.13466/j.cnki.lyzygl.2019.05.01 2http://dx.doi.org/10.13466/j.cnki.lyzygl.2019.05.012]
Xia H. 2015. A Study on Context-Awareness of Mobile Device for Location-Based Service. Beijing: University of Chinese Academy of Sciences
夏昊. 2015. 面向位置服务的移动终端情景感知研究. 北京: 中国科学院大学
Xia H, Zuo J B, Liu S and Qiao Y Y. 2019. Indoor localization on smartphones using built-In sensors and map constraints. IEEE Transactions on Instrumentation and Measurement, 68(4): 1189-1198 [DOI: 10.1109/TIM.2018.2863478http://dx.doi.org/10.1109/TIM.2018.2863478]
Xu Y Q, Huang H and Jin Z. 2021. Application research on container technology in scientific computing. Computer Science, 48(1): 319-325
徐蕴琪, 黄荷, 金钟. 2021. 容器技术在科学计算中的应用研究. 计算机科学, 48(1): 319-325 [DOI: 10.11896/jsjkx.191100111http://dx.doi.org/10.11896/jsjkx.191100111]
Yao H M, Feng F and Chen J H. 2022. Practical application of vehicle-road cooperation based on high precision map and multi-sensor fusion positioning. Journal of Geomatics, 47(3): 68-69
姚海敏, 冯霏, 陈建华. 2022. 基于高精度地图及多传感器融合定位的车路协同应用实践. 测绘地理信息, 47(3): 68-69 [DOI: 10.14188/j.2095-6045.2020368http://dx.doi.org/10.14188/j.2095-6045.2020368]
Yao X H and Tan X Y. 2021. Reward highway network based global credit assignment algorithm in multi-agent reinforcement learning. Journal of Computer Applications, 41(1): 1-7
姚兴虎, 谭晓阳. 2021. 基于奖励高速路网络的多智能体强化学习中的全局信用分配算法. 计算机应用, 41(1): 1-7 [DOI: 10.11772/j.issn.1001-9081.2020061009http://dx.doi.org/10.11772/j.issn.1001-9081.2020061009]
Yu Z Y, Lü G N, Zhang X N, Jia Y X, Zhou C H, Ge Y and Lü K J. 2020. Pan-information-based high precision navigation map: concept and theoretical model. Journal of Geo-Information Science, 22(4): 760-771
余卓渊, 闾国年, 张夕宁, 贾远信, 周成虎, 葛咏, 吕可晶. 2020. 全息高精度导航地图: 概念及理论模型. 地球信息科学学报, 22(4): 760-771 [DOI: 10.12082/dqxxkx.2020.190648http://dx.doi.org/10.12082/dqxxkx.2020.190648]
Zhang F and Liu Y. 2021. Street view imagery: methods and applications based on artificial intelligence. National Remote Sensing Bulletin, 25(5):1043-1054
张帆,刘瑜. 2021.街景影像——基于人工智能的方法与应用.遥感学报,25(5): 1043-1054 [DOI: 10.11834/jrs.20219341http://dx.doi.org/10.11834/jrs.20219341]
Zhang J J, Zhang H Y and Luo R. 2013. Research of mobile GIS based on Android platform and its implementation. Computer Engineering and Design, 34(9): 3322-3326
张俊杰, 张海燕, 罗锐. 2013. 基于Android平台的移动GIS研究与实现. 计算机工程与设计, 34(9): 3322-3326 [DOI: 10.3969/j.issn.1000-7024.2013.09.064http://dx.doi.org/10.3969/j.issn.1000-7024.2013.09.064]
Zhang J X,Liu F and Wang J. 2021. Review of the light-weighted and small UAV system for aerial photography and remote sensing. National Remote Sensing Bulletin, 25(3):708-724
张继贤,刘飞,王坚. 2021.轻小型无人机测绘遥感系统研究进展. 遥感学报,25(3): 708-724 [DOI: 10.11834/jrs.20210052http://dx.doi.org/10.11834/jrs.20210052]
Zhang S H, Fang Y. 2001. Development and significance of micro-embedded GIS software. Journal of Image and Graphics, 6A(9): 900-906
张时煌, 方裕. 2001. 微型嵌入式GIS软件平台的重要意义及发展动态. 中国图象图形学报:A辑, 6(9): 900-906
Zhang Y. 2007. Research and Application of County-Level Forestry Pest Monitoring and Management Information System based on GIS. Shijiazhuang: Hebei Normal University
张迎. 2007. 基于GIS的县级林业有害生物监测管理信息系统研究与应用. 石家庄: 河北师范大学
Zhang Y. 2008. Research on the Spatial Data Service based Forest Pest Web Management Information System. Beijing: Institute of Remote Sensing Application Chinese Academy of Sciences
张源. 2008. 基于空间数据服务技术的林业有害生物网络管理信息系统研究. 北京: 中国科学院遥感应用研究所
Zhang Z,Dang A R,Hou M L,Wu D F,Wang Z N,Zhang Z W and Xin T Q. 2021. Information technology methodology of the protection and utilization of the Great Wall Cultural Heritage System. National Remote Sensing Bulletin, 25(12):2339-2350
张智,党安荣,侯妙乐,邬东璠,王卓男,张仲伍,信泰琦. 2021.长城文化遗产保护与利用的信息技术方法框架构建. 遥感学报,25(12): 2339-2350 [DOI: 10.11834/jrs.20211229http://dx.doi.org/10.11834/jrs.20211229]
Zhao W B and Zhang D R. 2003. Geographical information system in mobile computing environment. Geography and Geo -Information Science, 19(2): 19-23
赵文斌, 张登荣. 2003. 移动计算环境中的地理信息系统. 地理与地理信息科学, 19(2): 19-23 [DOI: 10.3969/j.issn.1672-0504.2003.02.004http://dx.doi.org/10.3969/j.issn.1672-0504.2003.02.004]
Zhou C H. 2014. The Era of Holographic Map Has Come: Historical Evolution of Map Functions. Science of Surveying and Mapping, 39(7): 3-8
周成虎. 2014. 全息地图时代已经来临——地图功能的历史演变. 测绘科学, 39(7): 3-8 [DOI: 10.16251/j.cnki.1009-2307.2014.07.001http://dx.doi.org/10.16251/j.cnki.1009-2307.2014.07.001]
Zhou C H, Zhu X Y, Wang M, Shi C and Ou Y. 2011. Panoramic location-based map. Progress in Geography, 30(11): 1331-1335
周成虎, 朱欣焰, 王蒙, 施闯, 欧阳. 2011. 全息位置地图研究. 地理科学进展, 30(11): 1331-1335 [DOI: 10.11820/dlkxjz.2011.11.001http://dx.doi.org/10.11820/dlkxjz.2011.11.001]
Zhou T and Long Y. 2012. Review about recently development of mobile map and internet map in China. Geography and Geo-Information Science, 28(5): 1-5
周侗, 龙毅. 2012. 我国近期移动地图与互联网地图发展综述. 地理与地理信息科学, 28(5): 1-5
Zou B, Lin S Y and Yin Z S. 2020. Semantic mapping based on YOLOv3 and visual SLAM. Laser and Optoelectronics Progress, 57(20):116-122
邹斌, 林思阳, 尹智帅. 2020. 基于YOLOv3和视觉SLAM的语义地图构建. 激光与光电子学进展, 57(20): 116-122 [DOI: 10.3788/LOP57.201012http://dx.doi.org/10.3788/LOP57.201012]
Zuo J B. 2018. Research on Mobile Perception of Urban Environment. Beijing: Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences
左进波. 2018. 面向城市环境的移动感知研究. 北京: 中国科学院遥感与数字地球研究所
相关作者
相关机构