WorldView-2影像与OLI影像协同岩性模糊分类
Lithological fuzzy classification by combining WorldView-2 data and OLI data
- 2022年26卷第6期 页码:1247-1259
纸质出版日期: 2022-06-07
DOI: 10.11834/jrs.20210434
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-06-07 ,
扫 描 看 全 文
帅爽,张志,吕新彪,马梓程,陈思,郝利娜.2022.WorldView-2影像与OLI影像协同岩性模糊分类.遥感学报,26(6): 1247-1259
Shuai S,Zhang Z,Lyu X B,Ma Z C,Chen S and Hao L N. 2022. Lithological fuzzy classification by combining WorldView-2 data and OLI data. National Remote Sensing Bulletin, 26(6):1247-1259
Landsat系列、ASTER等中等空间分辨率遥感数据(中分数据)覆盖了碳酸盐矿物、粘土矿物、铁氧化物矿物等矿物的诊断光谱区间,广泛应用于矿物、岩石信息提取,但受限于空间分辨率,混合像元现象明显,严重制约了其岩性分类精度。WorldView-2、QuickBird等高空间分辨率遥感数据(高分数据)提供了岩石地层表面丰富的空间结构信息,同时空间分辨率的提高也是缓解混合像元效应的最有效途径,但高分数据覆盖的光谱区间往往较窄,难以满足大多数特征吸收谱段位于短波红外、热红外区间的矿物、岩石信息提取。在岩性自动分类方法上,前人研究中仍以采用基于像元的分类方法为主,分类结果的“椒盐现象(Salt-and-pepper,出现在分类结果图中大量孤立的错分点或小图斑)”严重。为结合中分数据的光谱信息优势和高分数据的空间结构信息优势,同时减少基于像元的岩性分类方法中的“椒盐现象”,提高岩性自动分类精度,本文以Landsat 8 OLI数据和WorldView-2数据为例,提出了一种协同中、高分遥感数据进行面向对象的岩性模糊分类的方法。首先通过“结构协同”和“光谱协同”方案对WorldView-2数据和OLI数据进行信息协同,利用主成分变换对协同后数据的纹理信息和光谱信息进行压缩和增强,然后将增强后的纹理信息和光谱信息进行波段绑定,并进行多尺度分割。根据岩性单元间的光谱特征和纹理特征的差异,构建各岩性单元的模糊逻辑隶属度函数,实现对研究区岩性的模糊分类。实验结果表明,该方法成功划分了岩性单元的分布,总体岩性分类精度为89.35%。
Medium spatial resolution data
such as TM (Theme Mapper)
ETM+ (Enhanced Theme Mapper Plus)
OLI (Operational Land Imager) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)
has been widely applied in lithological mapping and minerals mapping
because of covering the diagnostic spectral regions of carbonate rocks
clay minerals
iron oxide minerals
etc. However
due to the relatively coarse spatial resolution
the phenomenon of mixed pixels is obvious
which severely restricts the accuracy of lithological mapping of medium spatial resolution data. High spatial resolution data
such as WorldView and QuickBird
provides rich spatial structure information of rock surfaces. Meanwhile
the improvement of spatial resolution is also the most effective way to alleviate the phenomenon of mixed pixels
but the spectral range of high spatial resolution data is often narrow and difficult to extract of minerals and rocks with characteristic reflectance absorption in short-wave infrared and thermal infrared regions. And
for lithological classification method
pixel-based classification methods are still mainly used in previous studies
exhibiting the undesired “salt-and-pepper” phenomenon.
The objectives of this study are to (1) combine and enhance the spectral information and spatial structure information of high spatial resolution data (WorldView-2) and medium spatial resolution data (OLI) and (2) evaluate fuzzy classification method for lithological mapping. Firstly
WorldView-2 data and OLI data were structural and spectral combined. Then
texture information and spectral information of the combined data were compressed by PCA
compressed texture layer and compressed spectral layers are selected and stacked. The feature combined data was multi-scale segmented. Finally
the fuzzy logic membership functions of the rock types were built
based on the texture and spectral difference of rock types. And the lithological fuzzy classification of study area was carried out.
Results showed that the proposed method classifies the rock types of study area successfully
and received a high total accuracy of 89.35%.
遥感WorldView-2Landsat 8 OLI特征协同岩性模糊分类
remote sensingWorldView-2Landsat 8 OLIcombined userock typesfuzzy classification
Amer R, Kusky T and Ghulam A. 2010. Lithological mapping in the central eastern desert of egypt using ASTER data. Journal of African Earth Sciences, 56(2/3): 75-82 [DOI: 10.1016/j.jafrearsci.2009.06.004http://dx.doi.org/10.1016/j.jafrearsci.2009.06.004]
Bachri I, Hakdaoui M, Raji M, Teodoro A C and Benbouziane A. 2019. Machine learning algorithms for automatic lithological mapping using remote sensing data: a case study from souk arbaa sahel, sidi ifni inlier, western anti-atlas, morocco. ISPRS International Journal of Geo-Information, 8(6): 248 [DOI: 10.3390/ijgi8060248http://dx.doi.org/10.3390/ijgi8060248]
Benomar T and Fuling B. 2005. Improved geological mapping using landsat-5 TM data in Weixi area, Yunnan province China. Geo-spatial Information Science, 8(2): 110-114 [DOI: 10.1007/BF02826849http://dx.doi.org/10.1007/BF02826849]
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5-32 [DOI: 10.1023/A:1010933404324http://dx.doi.org/10.1023/A:1010933404324]
Cracknell A P. 1998. Review article Synergy in remote sensing-what’s in a pixel? International Journal of Remote Sensing, 19(11): 2025-2047 [DOI: 10.1080/014311698214848http://dx.doi.org/10.1080/014311698214848]
Congalton R G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1): 35-46 [DOI: 10.1016/0034-4257(91)90048-Bhttp://dx.doi.org/10.1016/0034-4257(91)90048-B]
Dorren L K A, Maier B and Seijmonsbergen A C. 2003. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. Forest Ecology and Management, 183(1/3): 31-46 [DOI: 10.1016/s0378-1127(03)00113-0http://dx.doi.org/10.1016/s0378-1127(03)00113-0]
Drăguţ L and Blaschke T. 2006. Automated classification of landform elements using object-based image analysis. Geomorphology, 81(3/4): 330-344 [DOI: 10.1016/j.geomorph.2006.04.013http://dx.doi.org/10.1016/j.geomorph.2006.04.013]
Foody G M. 2009. Sample size determination for image classification accuracy assessment and comparison. International Journal of Remote Sensing, 30(20): 5273-5291 [DOI: 10.1080/01431160903130937http://dx.doi.org/10.1080/01431160903130937]
Gad S and Kusky T. 2007. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11(3): 326-335 [DOI: 10.1016/j.gr.2006.02.010http://dx.doi.org/10.1016/j.gr.2006.02.010]
Gao Y G and Xu H Q. 2015. Standardization of radiation resolution for fusion of multi-sensor remote sensing images. Journal of Geo-information Science, 17(6): 714-723
高永刚, 徐涵秋. 2015. 异源遥感影像融合的辐射分辨率规范化方法. 地球信息科学学报, 17(6): 713-723 [DOI: 10.3724/SP.J.1047.2015.00713http://dx.doi.org/10.3724/SP.J.1047.2015.00713]
Grebby S, Cunningham D, Naden J and Tansey K. 2012. Application of airborne LiDAR data and airborne multispectral imagery to structural mapping of the upper section of the Troodos ophiolite, Cyprus. International Journal of Earth Sciences, 101(6): 1645-1660 [DOI: 10.1007/s00531-011-0742-3http://dx.doi.org/10.1007/s00531-011-0742-3]
Grebby S, Field E and Tansey K. 2016. Evaluating the use of an object-based approach to lithological mapping in vegetated terrain. Remote Sensing, 8(10): 843 [DOI: 10.3390/rs8100843http://dx.doi.org/10.3390/rs8100843]
Grebby S, Naden J, Cunningham D and Tansey K. 2011. Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote Sensing of Environment, 115(1): 214-226 [DOI: 10.1016/j.rse.2010.08.019http://dx.doi.org/10.1016/j.rse.2010.08.019]
Haralick R M, Shanmugam K and Dinstein I H. 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6): 610-621 [DOI: 10.1109/TSMC.1973.4309314http://dx.doi.org/10.1109/TSMC.1973.4309314]
Im J, Jensen J R and Tullis J A. 2008. Object-based change detection using correlation image analysis and image segmentation. International Journal of Remote Sensing, 29(2): 399-423 [DOI: 10.1080/01431160601075582http://dx.doi.org/10.1080/01431160601075582]
Jakob S, Bühler B, Gloaguen R, Breitkreuz C, Eliwa H A and El Gameel K. 2015. Remote sensing based improvement of the geological map of the Neoproterozoic Ras Gharib segment in the Eastern Desert (NE–Egypt) using texture features. Journal of African Earth Sciences, 111: 138-147 [DOI: 10.1016/j.jafrearsci.2015.07.024http://dx.doi.org/10.1016/j.jafrearsci.2015.07.024]
Jin X H, He J S, Wang K, Sun Y F and Yang T P. 2016. Fuzzy classification of land use based on texture and spectrum. Science of Surveying and Mapping, 41(2): 49-52, 19
靳晓辉, 何俊仕, 王康, 孙亚飞, 杨添平. 2016. 综合纹理与光谱的土地利用模糊分类. 测绘科学, 41(2): 49-52, 19 [DOI: 10.16251/j.cnki.1009-2307.2016.02.010http://dx.doi.org/10.16251/j.cnki.1009-2307.2016.02.010]
Kavak K S. 2005. Recognition of gypsum geohorizons in the Sivas Basin (Turkey) using ASTER and Landsat ETM+ images. International Journal of Remote Sensing, 26(20): 4583-4596 [DOI: 10.1080/01431160500185607http://dx.doi.org/10.1080/01431160500185607]
Li N, Frei M and Altermann W. 2011. Textural and knowledge-based lithological classification of remote sensing data in Southwestern Prieska sub-basin, Transvaal Supergroup, South Africa. Journal of African Earth Sciences, 60(4): 237-246 [DOI: 10.1016/j.jafrearsci.2011.03.002http://dx.doi.org/10.1016/j.jafrearsci.2011.03.002]
Li P J, Yu H K and Cheng T. 2009. Lithologic mapping using ASTER imagery and multivariate texture. Canadian Journal of Remote Sensing, 35(S1): S117-S125 [DOI: 10.5589/m09-019http://dx.doi.org/10.5589/m09-019]
Liu G X, Buckley S M, Ding X L, Chen Q and Luo X J. 2009. Estimating spatiotemporal ground deformation with improved persistent-scatterer radar interferometry. IEEE Transactions on Geoscience and Remote Sensing, 47(9): 3209-3219 [DOI: 10.1109/tgrs.2009.2028797http://dx.doi.org/10.1109/tgrs.2009.2028797]
Lucieer A and Stein A. 2005. Texture-based landform segmentation of LiDAR imagery. International Journal of Applied Earth Observation and Geoinformation, 6(3/4): 261-270 [DOI: 10.1016/j.jag.2004.10.008http://dx.doi.org/10.1016/j.jag.2004.10.008]
Masoumi F, Eslamkish T, Abkar A A, Honarmand M and Harris J R. 2017. Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping. Journal of African Earth Sciences, 129: 445-457 [DOI: 10.1016/j.jafrearsci.2017.01.028http://dx.doi.org/10.1016/j.jafrearsci.2017.01.028]
Myint S W, Gober P, Brazel A, Grossman-Clarke S and Weng Q H. 2011. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5): 1145-1161 [DOI: 10.1016/j.rse.2010.12.017http://dx.doi.org/10.1016/j.rse.2010.12.017]
Othman A A and Gloaguen R. 2014. Improving lithological mapping by SVM classification of spectral and morphological features: the discovery of a new chromite body in the Mawat ophiolite complex (Kurdistan, NE Iraq). Remote Sensing, 6(8): 6867-6896 [DOI: 10.3390/rs6086867http://dx.doi.org/10.3390/rs6086867]
Othman A A and Gloaguen R. 2017. Integration of spectral, spatial and morphometric data into lithological mapping: a comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq. Journal of Asian Earth Sciences, 146: 90-102 [DOI: 10.1016/j.jseaes.2017.05.005http://dx.doi.org/10.1016/j.jseaes.2017.05.005]
Parakh K, Thakur S, Chudasama B, Tirodkar S, Porwal A and Bhattacharya A. 2016. Machine learning and spectral techniques for lithological classification//Proceedings of the SPIE 9880, Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VI. New Delhi: SPIE: 98801Z [DOI: 10.1117/12.2223638http://dx.doi.org/10.1117/12.2223638]
Porwal A and González-Álvarez I. 2019. Introduction to special issue on geologic remote sensing. Ore Geology Reviews, 105: 216-222 [DOI: 10.1016/j.oregeorev.2018.12.001http://dx.doi.org/10.1016/j.oregeorev.2018.12.001]
Pournamdari M, Hashim M and Pour A B. 2014. Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran. Advances in Space Research, 54(4): 694-709 [DOI: 10.1016/j.asr.2014.04.022http://dx.doi.org/10.1016/j.asr.2014.04.022]
Qiu Y F and Ming D P. 2018. Lithostratigraphic classification method combining optimal texture window size selection and test sample purification using landsat 8 OLI data. Open Geosciences, 10(1): 565-581 [DOI: 10.1515/geo-2018-0045http://dx.doi.org/10.1515/geo-2018-0045]
Sabins F F. 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14(3/4): 157-183 [DOI: 10.1016/S0169-1368(99)00007-4http://dx.doi.org/10.1016/S0169-1368(99)00007-4]
Salati S, Van Ruitenbeek F J A, Van Der Meer F D, Tangestani M H and Van Der Werff H. 2011. Lithological mapping and fuzzy set theory: Automated extraction of lithological boundary from ASTER imagery by template matching and spatial accuracy assessment. International Journal of Applied Earth Observation and Geoinformation, 13(5): 753-765 [DOI: 10.1016/j.jag.2011.05.004http://dx.doi.org/10.1016/j.jag.2011.05.004]
Salehi T and Tangestani M H. 2018. Large-scale mapping of iron oxide and hydroxide minerals of Zefreh porphyry copper deposit, using Worldview-3 VNIR data in the Northeastern Isfahan, Iran. International Journal of Applied Earth Observation and Geoinformation, 73: 156-169 [DOI: 10.1016/j.jag.2018.06.010http://dx.doi.org/10.1016/j.jag.2018.06.010]
Sgavetti M, Pompilio L and Meli S. 2006. Reflectance spectroscopy (0.3-2.5 µm) at various scales for bulk-rock identification. Geosphere, 2(3): 142-160 [DOI: 10.1130/ges00039.1http://dx.doi.org/10.1130/ges00039.1]
Shuai S, Zhang Z, Wang S J and Chen A. 2016. Lithological mapping by multiple reference spectra based SAM. Journal of Geo-Information Science, 18(1): 133-140
帅爽, 张志, 王少军, 陈安. 2016. 基于多元参照光谱的SAM岩性划分方法. 地球信息科学学报, 18(1): 133-140 [DOI: 10.3724/SP.J.1047.2016.00133http://dx.doi.org/10.3724/SP.J.1047.2016.00133]
Swanson M D, Kobayashi M and Tewfik A H. 1998. Multimedia data-embedding and watermarking technologies. Proceedings of the IEEE, 86(6): 1064-1087 [DOI: 10.1109/5.687830http://dx.doi.org/10.1109/5.687830]
Tangestani M H, Jaffari L, Vincent R K and Sridhar B B M. 2011. Spectral characterization and ASTER-based lithological mapping of an ophiolite complex: a case study from Neyriz ophiolite, SW Iran. Remote Sensing of Environment, 115(9): 2243-2254 [DOI: 10.1016/j.rse.2011.04.023http://dx.doi.org/10.1016/j.rse.2011.04.023]
Traore M, Wambo J D T, Ndepete C P, Tekin S, Pour A B and Muslim A M. 2020. Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 Operational Land Imager (OLI) data. Journal of African Earth Sciences, 170: 103933 [DOI: 10.1016/j.jafrearsci.2020.103933http://dx.doi.org/10.1016/j.jafrearsci.2020.103933]
Van Der Meer F. 2006. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 8(1): 3-17 [DOI: 10.1016/j.jag.2005.06.001http://dx.doi.org/10.1016/j.jag.2005.06.001]
Van Der Werff H, Van Ruitenbeek F and Van Der Meer F. 2007. Geological mapping on Mars by segmentation of hyperspectral OMEGA data//2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE: 2811-2813 [DOI: 10.1109/IGARSS.2007.4423427http://dx.doi.org/10.1109/IGARSS.2007.4423427]
Wang R S, Xiong S Q, Nie H F, Liang S N, Qi Z R, Yang J Z, Yan B K, Zhao F Y, Fan J H, Tong L Q, Lin J, Gan F P, Chen W, Yang S M, Zhang R J, Ge D Q, Zhang X K, Zhang Z H, Wang P Q, Guo X F and Li L. 2011. Remote sensing technology and its application in geological exploration. Acta Geologica Sinica, 85(11): 1699-1743
王润生, 熊盛青, 聂洪峰, 梁树能, 齐泽荣, 杨金中, 闫柏琨, 赵福岳, 范景辉, 童立强, 林键, 甘甫平, 陈微, 杨苏明, 张瑞江, 葛大庆, 张晓坤, 张振华, 王品清, 郭小方, 李丽. 2011. 遥感地质勘查技术与应用研究. 地质学报, 85(11): 1699-1743 [DOI: 11-1951/P.20111025.0834.009http://dx.doi.org/11-1951/P.20111025.0834.009]
Whiteside T G, Boggs G S and Maier S W. 2011. Comparing object-based and pixel-based classifications for mapping savannas. International Journal of Applied Earth Observation and Geoinformation, 13(6): 884-893 [DOI: 10.1016/j.jag.2011.06.008http://dx.doi.org/10.1016/j.jag.2011.06.008]
Xu Y J, Meng P Y and Chen J G. 2019. Study on clues for gold prospecting in the Maizijing-Shulonggou area, Ningxia Hui autonomous region, China, using ALI, ASTER and WorldView-2 imagery. Journal of Visual Communication and Image Representation, 60: 192-205 [DOI: 10.1016/j.jvcir.2019.02.011http://dx.doi.org/10.1016/j.jvcir.2019.02.011]
Zhang B, Zhang Z, Shuai S and Zhang Y M. 2015. Lithological mapping by using the synergestic Landsat-8 and WorldView-2 images. Geological Science and Technology Information, 34(3): 208-213, 229
张斌, 张志, 帅爽, 张耀明. 2015. 利用Landsat-8和WorldView-2数据进行协同岩性分类. 地质科技情报, 34(3): 208-213, 229
Zhang R S, Zeng M and Chen J P. 2011. Study on geological structural interpretation based on WorldView-2 remote sensing image and its implementation. Procedia Environmental Sciences, 10: 653-659 [DOI: 10.1016/j.proenv.2011.09.105http://dx.doi.org/10.1016/j.proenv.2011.09.105]
Zhao B, Wu J J, Yang F, Pilz J and Zhang D H. 2019. A novel approach for extraction of Gaoshanhe-Group outcrops using Landsat Operational Land Imager (OLI) data in the heavily loess-covered Baoji District, Western China. Ore Geology Reviews, 108: 88-100 [DOI: 10.1016/j.oregeorev.2018.01.034http://dx.doi.org/10.1016/j.oregeorev.2018.01.034]
Zhou J J, Tian S F, Wang N and Hu X. 2014. Enhancement and application of WorldView-2 to geological interpretation. Advanced Materials Research, 1010-1012: 1237-1242 [DOI: 10.4028/www.scientific.net/AMR.1010-1012.1237http://dx.doi.org/10.4028/www.scientific.net/AMR.1010-1012.1237]
相关作者
相关机构