基于卫星遥感的近地面PM2.5浓度反演进展
Progress of near-surface PM2.5 concentration retrieve based on satellite remote sensing
- 2022年26卷第9期 页码:1757-1776
纸质出版日期: 2022-09-07
DOI: 10.11834/jrs.20210438
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-09-07 ,
扫 描 看 全 文
向娟,陶明辉,郭玲,陈良富,陶金花,桂露.2022.2022.5浓度反演进展.遥感学报,26(9): 1757-1776
Xiang J,Tao M H,Guo L,Chen L F,Tao J H and Gui L. 2022. Progress of near-surface PM2.5 concentration retrieve based on satellite remote sensing. National Remote Sensing Bulletin, 26(9):1757-1776
细颗粒物PM
2.5
(Fine Particulate Matter)是影响空气质量和公共健康的关键因素之一。高时空分辨率的PM
2.5
数据是公共健康风险评估和流行病学研究的基本需求。相较于地面站点,卫星遥感技术具有连续观测、宽覆盖和低成本的优势,基于卫星气溶胶光学厚度AOD(Aerosol Optical Depth)反演PM
2.5
质量浓度的方法已成为热点。本研究概述了卫星AOD产品反演PM
2.5
浓度的原理,介绍了用于PM
2.5
反演的主要卫星AOD产品及其反演精度;总结了现有的PM
2.5
估算方法及其优缺点,指出目前PM
2.5
反演研究存在的问题;提出未来PM
2.5
反演方向主要集中在高时空分辨率的PM
2.5
浓度重建、基于激光雷达数据的三维PM
2.5
浓度反演及PM
2.5
化学组分反演等方向。比例因子法、物理机理模型和统计模型这3种方法都能在不同时期不同程度地准确估算PM
2.5
浓度,代表了那个时期较为前沿的研究热点,但比例因子法和物理机理模型因其自身的局限性而应用较少,而统计模型因其独特的时间或时空异质性的可描述性和强大的非线性描述能力的优势而被广泛应用并不断改进。目前PM
2.5
反演研究存在的问题主要有3种:(1)卫星AOD的非随机缺失问题造成估算的PM
2.5
数据缺失;(2)反演模型的精度问题;(3)PM
2.5
的化学成分估算问题。基于此,本文为了准确揭示近地面PM
2.5
的时空变化趋势,提高基于卫星AOD产品的近地面PM
2.5
反演研究的准确性,提出了几点未来的研究方向:首先,新型的高空间(如风云四号、高分五号)、高时间分辨率(Himawari-8/9)卫星AOD产品在PM
2.5
的精细化估算研究上具有很大优势,这对于高时空分辨率的PM
2.5
浓度重建具有重要意义;其次,随着大气探测技术的发展,星载、机载及地基激光雷达都能够获取垂直分布信息,搭载在无人机上的颗粒物传感器可实现PM
2.5
垂直方向上的监测,将其与光学遥感卫星数据及地面监测数据结合,可实现三维的PM
2.5
浓度反演;最后,PM
2.5
化学组分信息对于分析污染成因、暴露特征等尤其重要,其时空变化趋势研究是一个重要的发展方向,然而,地面PM
2.5
组分观测站网仍不完善,如何克服卫星遥感估算中对地面站网的依赖,实现PM
2.5
化学成分的高精度反演需要进一步研究。通过本研究,有助于进一步了解不同PM
2.5
估算方法的原理机制及其优缺点,为基于卫星AOD产品反演近地面PM
2.5
浓度的新的发展方向提供启示,提升近地面PM
2.5
浓度反演的精度及时空分辨率。
Fine particulate matter (PM
2.5
) is a dynamic and complex mixture of particle matter with an aerodynamic diameter equal or less than 2.5 µm that can seriously affect the air quality and public health. High spatial and temporal resolution PM
2.5
data is a basic requirement for public health risk assessment and epidemiological research. Compared with ground-based datasets
satellite remote sensing provides continuous
wide space coverage and low-cost observation
and the PM
2.5
mass concentrations retrieval based on the satellite aerosol optical depth (AOD) has become a popular topic. This paper systematically scrutinizes the research on the near-surface PM
2.5
concentration retrieved based on satellite AOD products. The basic method of estimating the PM
2.5
concentration based on satellite AOD products is introduced
and the main satellite AOD products used for PM
2.5
retrieval and their accuracy are described in detail. The existing PM
2.5
estimation methods and their pros and cons are also discussed. Finally
the problems identified in PM
2.5
retrieval research and the development direction of PM
2.5
retrieval research are presented in the future.
The scale factor method and the physical mechanism and statistical models can accurately estimate the PM
2.5
concentrations at different degrees in different periods
but the scale factor method and the physical mechanism model are less used than the statistical model because of their limitations. Statistical models have been widely used and improved due to their unique descriptive ability of temporal or spatiotemporal heterogeneity and strong nonlinear description ability. However
the current PM
2.5
retrieve research has three main limitations: 1. the non-random missing problem of satellite AOD causes missing PM
2.5
data; 2. inaccuracy of retrieval models
and 3. Poor chemical composition estimation of PM
2.5
. Therefore
to accurately reveal the spatial and temporal trends of near-ground PM
2.5
and improve the accuracy of the near-ground PM
2.5
calculated from satellite AOD products
we predict several future research directions. First
the AOD products of new high-spatial-resolution (such as FY-4 and GF-5) and high-temporal-resolution (HIMAWARI-8/-9) satellites could greatly promote the research on PM
2.5
estimation
which is of great significance to the reconstruction of PM
2.5
concentrations with high spatial-temporal resolutions. Second
with the development of atmospheric detection technology
satellite-based
airborne
and ground-based lidar can obtain vertical distribution information
and the particle matter sensor carried on UAVs can achieve the vertical monitoring of PM
2.5
which can be combined with optical remote sensing satellite and ground monitoring data to achieve three-dimensional PM
2.5
concentration retrieval. Finally
PM
2.5
chemical component information is particularly important for analyzing the cause of pollution and exposure characteristics
and its space–time change trend research is an important development direction. However
the ground PM
2.5
component observation network is still imperfect
and overcoming the dependence on ground station network in satellite remote sensing estimation and achieving the high-precision retrieval of chemical composition need further study.
This study is helpful in further understanding the principles
advantages
and disadvantages of different PM
2.5
estimation methods
providing inspiration for the new development direction of near-surface PM
2.5
concentrations retrieval based on satellite AOD products
and improving the accuracy and spatial-temporal resolution of near-surface PM
2.5
concentrations retrieval.
PM2.5卫星遥感AOD估算方法
PM2.5satellite remote sensingAODestimation methods
Bassan P, Kohler A, Martens H, Lee J, Byrne H J, Dumas P, Gazi E, Brown M, Clarke N and Gardner P. 2010. Resonant mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst, 135(2): 268-277 [DOI: 10.1039/B921056Chttp://dx.doi.org/10.1039/B921056C]
Bi J Z, Belle J H, Wang Y J, Lyapustin A I, Wildani A and Liu Y. 2019. Impacts of snow and cloud covers on satellite-derived PM2.5 levels. Remote Sensing of Environment, 221: 665-674 [DOI: 10.1016/j.rse.2018.12.002http://dx.doi.org/10.1016/j.rse.2018.12.002]
Bilal M, Nazeer M and Nichol J E. 2017. Validation of MODIS and VIIRS derived aerosol optical depth over complex coastal waters. Atmospheric Research, 186: 43-50 [DOI: 10.1016/j.atmosres.2016.11.009http://dx.doi.org/10.1016/j.atmosres.2016.11.009]
Bovchaliuk A. 2013. The spatial variability of PM2.5 over Europe using satellite POLDER-3/PARASOL data. Advances in Astronomy and Space Physics, 3(2): 102-108 [DOI: https://www.researchgate.net/publication/259658657http://dx.doi.org/https://www.researchgate.net/publication/259658657]
Brokamp C, Jandarov R, Hossain M and Ryan P. 2018. Predicting daily urban fine particulate matter concentrations using a random forest model. Environmental Science and Technology, 52(7): 4173-4179 [DOI: 10.1021/acs.est.7b05381http://dx.doi.org/10.1021/acs.est.7b05381]
Cao J J, Shen Z X, Chow J C, Watson J G, Lee S C, Tie X X, Ho K F, Wang G H and Han Y M. 2012. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. Journal of the Air and Waste Management Association, 62(10): 1214-1226 [DOI: 10.1080/10962247.2012.701193http://dx.doi.org/10.1080/10962247.2012.701193]
Chudnovsky A A, Kostinski A, Lyapustin A and Koutrakis P. 2013. Spatial scales of pollution from variable resolution satellite imaging. Environmental Pollution, 172: 131-138 [DOI: 10.1016/j.envpol.2012.08.016http://dx.doi.org/10.1016/j.envpol.2012.08.016]
Chudnovsky A A, Lee H J, Kostinski A, Kotlov T and Koutrakis P. 2012. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the geostationary operational environmental satellite (GOES). Journal of the Air and Waste Management Association, 62(9): 1022-1031 [DOI: 10.1080/10962247.2012.695321http://dx.doi.org/10.1080/10962247.2012.695321]
Colarco P R, Kahn R A, Remer L A and Levy R C. 2014. Impact of satellite viewing-swath width on global and regional aerosol optical thickness statistics and trends. Atmospheric Measurement Techniques, 7(7): 2313-2335 [DOI: 10.5194/amt-7-2313-2014http://dx.doi.org/10.5194/amt-7-2313-2014]
Collaud Coen M, Andrews E, Asmi A, Baltensperger U, Bukowiecki N, Day D, Fiebig M, Fjaeraa A M, Flentje H, Hyvärinen A, Jefferson A, Jennings S G, Kouvarakis G, Lihavainen H, Lund Myhre C, Malm W C, Mihapopoulos N, Molenar J V, O'Dowd C, Ogren J A, Schichtel B A, Sheridan P, Virkkula A, Weingartner E, Weller R and Laj P. 2013. Aerosol decadal trends-part 1: in-situ optical measurements at GAW and IMPROVE stations. Atmospheric Chemistry and Physics, 13(2): 869-894 [DOI: 10.5194/acp-13-869-2013http://dx.doi.org/10.5194/acp-13-869-2013]
de Hoogh K, Héritier H, Stafoggia M, Künzli N and Kloog I. 2018. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environmental Pollution, 233: 1147-1154 [DOI: 10.1016/j.envpol.2017.10.025http://dx.doi.org/10.1016/j.envpol.2017.10.025]
Deuzé J L, Bréon F M, Deschamps P Y, Devaux C, Herman M, Podaire A and Roujean J L. 1993. Analysis of the POLDER (POLarization and directionality of earth’s reflectances) airborne instrument observations over land surfaces. Remote Sensing of Environment, 45(2): 137-154 [DOI: 10.1016/0034-4257(93)90038-Yhttp://dx.doi.org/10.1016/0034-4257(93)90038-Y]
Deuzé J L, Bréon F M, Devaux C, Goloub P, Herman M, Lafrance B, Maignan F, Marchand A, Nadal F, Perry G and Tanré D. 2001. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. Journal of Geophysical Research: Atmospheres, 106(D5): 4913-4926 [DOI: 10.1029/2000JD900364http://dx.doi.org/10.1029/2000JD900364]
Engel-Cox J A, Holloman C H, Coutant B W and Hoff R M. 2004. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmospheric Environment, 38(16): 2495-2509 [DOI: 10.1016/j.atmosenv.2004.01.039http://dx.doi.org/10.1016/j.atmosenv.2004.01.039]
Fan X H, Goloub P, Deuzé J L, Chen H B, Zhang W X, Tanré D and Li Z Q. 2008. Evaluation of PARASOL aerosol retrieval over north east Asia. Remote Sensing of Environment, 112(3): 697-707 [DOI: 10.1016/j.rse.2007.06.010http://dx.doi.org/10.1016/j.rse.2007.06.010]
Franklin M, Kalashnikova O V and Garay M J. 2017. Size-resolved particulate matter concentrations derived from 4.4 km-resolution size-fractionated multi-angle imaging SpectroRadiometer (MISR) aerosol optical depth over southern California. Remote Sensing of Environment, 196: 312-323 [DOI: 10.1016/j.rse.2017.05.002http://dx.doi.org/10.1016/j.rse.2017.05.002]
Garay M J, Kalashnikova O V and Bull M A. 2017. Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data. Atmospheric Chemistry and Physics, 17(8): 5095-5106 [DOI: 10.5194/acp-17-5095-2017http://dx.doi.org/10.5194/acp-17-5095-2017]
Garay M J, Witek M L, Kahn R A, Seidel F C, Limbacher J A, Bull M A, Diner D J, Hansen E G, Kalashnikova O V, Lee H, Nastan A M and Yu Y. 2020. Introducing the 4.4 km spatial resolution multi-angle imaging spectroradiometer (MISR) aerosol product. Atmospheric Measurement Techniques, 13(2): 593-628 [DOI: 10.5194/amt-13-593-2020http://dx.doi.org/10.5194/amt-13-593-2020]
Glantz P, Kokhanovsky A, von Hoyningen-Huene W and Johansson C. 2009. Estimating PM2.5 over southern Sweden using space-borne optical measurements. Atmospheric Environment, 43(36): 5838-5846 [DOI: 10.1016/j.atmosenv.2009.05.017http://dx.doi.org/10.1016/j.atmosenv.2009.05.017]
Gong W, Huang Y S, Zhang T H, Zhu Z M, Ji Y X and Xiang H. 2017. Impact and suggestion of column-to-surface vertical correction scheme on the relationship between satellite AOD and ground-level PM2.5 in China. Remote Sensing, 9(10): 1038 [DOI: 10.3390/rs9101038http://dx.doi.org/10.3390/rs9101038]
Guo H, Cheng T H, Gu X F, Chen H, Wang Y, Zheng F J and Xiang K S. 2016a. Comparison of four ground-level PM2.5 estimation models using PARASOL aerosol optical depth data from China. International Journal of Environmental Research and Public Health, 13(2): 180 [DOI: 10.3390/ijerph13020180http://dx.doi.org/10.3390/ijerph13020180]
Guo J P, Deng M J, Lee S S, Wang F, Li Z Q, Zhai P M, Liu H, Lv W T, Yao W and Li X W. 2016b. Delaying precipitation and lightning by air pollution over the pearl river delta. Part I: observational analyses. Journal of Geophysical Research: Atmospheres, 121(11): 6472-6488 [DOI: 10.1002/2015JD023257http://dx.doi.org/10.1002/2015JD023257]
Guo Y X, Tang Q H, Gong D Y and Zhang Z Y. 2017. Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model. Remote Sensing of Environment, 198: 140-149 [DOI: 10.1016/j.rse.2017.06.001http://dx.doi.org/10.1016/j.rse.2017.06.001]
Gupta P and Christopher S A. 2009. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. Journal of Geophysical Research: Atmospheres, 114(D20): D20205 [DOI: 10.1029/2008JD011497http://dx.doi.org/10.1029/2008JD011497]
Hand J L and Malm W C. 2007. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. Journal of Geophysical Research: Atmospheres, 112(D16): D16203 [DOI: 10.1029/2007JD008484http://dx.doi.org/10.1029/2007JD008484]
He Q Q and Huang B. 2018a. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environmental Pollution, 236: 1027-1037 [DOI: 10.1016/j.envpol.2018.01.053http://dx.doi.org/10.1016/j.envpol.2018.01.053]
He Q Q and Huang B. 2018b. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sensing of Environment, 206: 72-83 [DOI: 10.1016/j.rse.2017.12.018http://dx.doi.org/10.1016/j.rse.2017.12.018]
He Q S, Li C C, Geng F H, Zhou G Q, Gao W, Yu W, Li Z K and Du M B. 2016. A parameterization scheme of aerosol vertical distribution for surface-level visibility retrieval from satellite remote sensing. Remote Sensing of Environment, 181: 1-13 [DOI: 10.1016/j.rse.2016.03.016http://dx.doi.org/10.1016/j.rse.2016.03.016]
Hidy G M, Brook J R, Chow J C, Green M, Husar R B, Lee C, Scheffe R D, Swanson A, and Watson J G. 2012. Remote sensing of particulate pollution from space: have we reached the promised land?. Journal of the Air & Waste Management Association, 59(10): 1130-1139 [DOI: 10.3155/1047-3289.59.10.1130http://dx.doi.org/10.3155/1047-3289.59.10.1130]
Hoff R M and Christopher S A. 2009. Remote sensing of particulate pollution from space: have we reached the promised land? Journal of the Air and Waste Management Association, 59(6): 645-675 [DOI: 10.3155/1047-3289.59.6.645http://dx.doi.org/10.3155/1047-3289.59.6.645]
Holz R E, Ackerman S A, Nagle F W, Frey R, Dutcher S, Kuehn R E, Vaughan M A and Baum B. 2008. Global moderate resolution imaging spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. Journal of Geophysical Research: Atmospheres, 113(D8): D00A19 [DOI: 10.1029/2008JD009837http://dx.doi.org/10.1029/2008JD009837]
Hsu N C, Lee J, Sayer A M, Kim W, Bettenhausen C and Tsay S C. 2019. VIIRS deep blue aerosol products over land: extending the EOS long-term aerosol data records. Journal of Geophysical Research: Atmospheres, 124(7): 4026-4053 [DOI: 10.1029/2018JD029688http://dx.doi.org/10.1029/2018JD029688]
Huang K Y, Bi J Z, Meng X, Geng G N, Lyapustin A, Lane K J, Gu D F, Kinney P L and Liu Y. 2019. Estimating daily PM2.5 concentrations in New York City at the neighborhood-scale: implications for integrating non-regulatory measurements. Science of the Total Environment, 697: 134094 [DOI: 10.1016/j.scitotenv.2019.134094http://dx.doi.org/10.1016/j.scitotenv.2019.134094]
Hu X F, Waller L A, Al-Hamdan M Z, Crosson W L, Estes Jr M G, Estes S M, Quattrochi D A, Sarnat J A and Liu Y. 2013. Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression. Environmental Research, 121: 1-10 [DOI: 10.1016/j.envres.2012.11.003http://dx.doi.org/10.1016/j.envres.2012.11.003]
Hu X F, Waller L A, Lyapustin A, Wang Y J, Al-Hamdan M Z, Crosson W L, Estes Jr M G, Estes S M, Quattrochi D A, Puttaswamy S J and Liu Y. 2014. Estimating ground-level PM2.5 concentrations in the southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sensing of Environment, 140: 220-232 [DOI: 10.1016/j.rse.2013.08.032http://dx.doi.org/10.1016/j.rse.2013.08.032]
Hu Z Y. 2009. Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary heart disease. International Journal of Health Geographics, 8: 27 [DOI: 10.1186/1476-072X-8-27http://dx.doi.org/10.1186/1476-072X-8-27]
Jeffrey I. Steinfeld. 1998. Atmospheric Chemistry and Physics: From Air Pollution to Global Change. Environment: Science and Policy for Sustainable Development, 40:7. 26. [DOI:10.1080/00139157.1999.10544295http://dx.doi.org/10.1080/00139157.1999.10544295]
Kahn R A and Gaitley B J. 2015. An analysis of global aerosol type as retrieved by MISR. Journal of Geophysical Research: Atmospheres, 120: 4248–4281 [DOI: 10.1002/2015JD023322http://dx.doi.org/10.1002/2015JD023322]
Kahn R, Banerjee P and McDonald D. 2001. Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. Journal of Geophysical Research: Atmospheres, 106(D16): 18219-18238 [DOI: 10.1029/2000JD900497http://dx.doi.org/10.1029/2000JD900497]
Kahn R, Banerjee P, McDonald D and Diner D J. 1998. Sensitivity of multiangle imaging to aerosol optical depth and to pure-particle size distribution and composition over ocean. Journal of Geophysical Research: Atmospheres, 103(D24): 32195-32213 [DOI: 10.1029/98JD01752http://dx.doi.org/10.1029/98JD01752]
Kaufman Y J, Gobron N, Pinty B, Widlowski J L and Verstraete M M. 2002. Relationship between surface reflectance in the visible and mid-IR used in MODIS aerosol algorithm - theory. Geophysical Research Letters, 29(23): 31-1-31-4 [DOI: 10.1029/2001GL014492http://dx.doi.org/10.1029/2001GL014492]
Kloog I, Koutrakis P, Coull B A, Lee H J and Schwartz J. 2011. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmospheric Environment, 45(35): 6267-6275 [DOI: 10.1016/j.atmosenv.2011.08.066http://dx.doi.org/10.1016/j.atmosenv.2011.08.066]
Kloog I, Nordio F, Coull B A and Schwartz J. 2012. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states. Environmental Science and Technology, 46(21): 11913-11921 [DOI: 10.1021/es302673ehttp://dx.doi.org/10.1021/es302673e]
Kloog I, Sorek-Hamer M, Lyapustin A, Coull B, Wang Y J, Just A C, Schwartz J and Broday D M. 2015. Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data. Atmospheric Environment, 122: 409-416 [DOI: 10.1016/j.atmosenv.2015.10.004http://dx.doi.org/10.1016/j.atmosenv.2015.10.004]
Koelemeijer R B A, Homan C D and Matthijsen J. 2006. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmospheric Environment, 40(27): 5304-5315 [DOI: 10.1016/j.atmosenv.2006.04.044http://dx.doi.org/10.1016/j.atmosenv.2006.04.044]
Lee H J, Liu Y, Coull B A, Schwartz J and Koutrakis P. 2011. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmospheric Chemistry and Physics, 11(15): 7991-8002 [DOI: 10.5194/acp-11-7991-2011http://dx.doi.org/10.5194/acp-11-7991-2011]
Lee M, Kloog I, Chudnovsky A, Lyapustin A, Wang Y J, Melly S, Coull B, Koutrakis P and Schwartz J. 2016. Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the southeastern US 2003-2011. Journal of Exposure Science and Environmental Epidemiology, 26(4): 377-384 [DOI: 10.1038/jes.2015.41http://dx.doi.org/10.1038/jes.2015.41]
Lelieveld J, Evans J S, Fnais M, Giannadaki D and Pozzer A. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569): 367-371 [DOI: 10.1038/nature15371http://dx.doi.org/10.1038/nature15371]
Lepeule J, Laden F, Dockery D and Schwartz J. 2012. Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard six cities study from 1974 to 2009. Environmental Health Perspectives, 120(7): 965-970 [DOI: 10.1289/ehp.1104660http://dx.doi.org/10.1289/ehp.1104660]
Levy R C, Remer L A, Kleidman R G, Mattoo S, Ichoku C, Kahn R and Eck T F. 2010. Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21): 10399-10420 [DOI: 10.5194/acp-10-10399-2010http://dx.doi.org/10.5194/acp-10-10399-2010]
Liang F C, Gao M, Xiao Q Y, Carmichael G R, Pan X C and Liu Y. 2017. Evaluation of a data fusion approach to estimate daily PM2.5 levels in North China. Environmental Research, 158: 54-60 [DOI: 10.1016/j.envres.2017.06.001http://dx.doi.org/10.1016/j.envres.2017.06.001]
Liang F C, Xiao Q Y, Wang Y J, Lyapustin A, Li G X, Gu D F, Pan X C and Liu Y. 2018. MAIAC-based long-term spatiotemporal trends of PM2.5 in Beijing, China. Science of the Total Environment, 616-617: 1589-1598 [DOI: 10.1016/j.scitotenv.2017.10.155http://dx.doi.org/10.1016/j.scitotenv.2017.10.155]
Li C C, Mao J T, Lau A K H, Yuan Z B, Wang M H and Liu X Y. 2005. Application of MODIS satellite products to the air pollution research in Beijing. Science in China, Series D: Earth Sciences, 48(S2): 209-219
李成才, 毛节泰, 刘启汉, 袁自冰, 王美华 刘晓阳. 2005. MODIS卫星遥感气溶胶产品在北京市大气污染研究中的应用. 中国科学(D辑: 地球科学), 35(S1): 177-186 [DOI: 10.3969/j.issn.1674-7240.2005.z1.017http://dx.doi.org/10.3969/j.issn.1674-7240.2005.z1.017]
Li S, Kahn R, Chin M, Garay M J and Liu Y. 2015. Improving satellite-retrieved aerosol microphysical properties using GOCART data. Atmospheric Measurement Techniques, 8(3): 1157-1171 [DOI: 10.5194/amt-8-1157-2015http://dx.doi.org/10.5194/amt-8-1157-2015]
Li S S, Garay M J, Chen L F, Rees E and Liu Y. 2013. Comparison of GEOS-chem aerosol optical depth with AERONET and MISR data over the contiguous United States. Journal of Geophysical Research: Atmospheres, 118(19): 11228-11241 [DOI: 10.1002/jgrd.50867http://dx.doi.org/10.1002/jgrd.50867]
Li T W, Shen H F, Yuan Q Q and Zhang L P. 2020. Geographically and temporally weighted neural networks for satellite-based mapping of ground-level PM2.5. ISPRS Journal of Photogrammetry and Remote Sensing, 167: 178-188 [DOI: 10.1016/j.isprsjprs.2020.06.019http://dx.doi.org/10.1016/j.isprsjprs.2020.06.019]
Li T W, Shen H F, Yuan Q Q, Zhang X C and Zhang L P. 2017a. Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach. Geophysical Research Letters, 44(23): 11985-11993 [DOI: 10.1002/2017GL075710http://dx.doi.org/10.1002/2017GL075710]
Li T W, Shen H F, Zeng C, Yuan Q Q and Zhang L P. 2017b. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: methods and assessment. Atmospheric Environment, 152: 477-489 [DOI: 10.1016/j.atmosenv.2017.01.004http://dx.doi.org/10.1016/j.atmosenv.2017.01.004]
Li T W, Zhang C Y, Shen H F, Yuan Q Q and Zhang L P. 2018. Real-time and seamless monitoring of ground-level PM2.5 using satellite remote sensing. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-3: 143-147 [DOI: 10.5194/isprs-annals-IV-3-143-2018http://dx.doi.org/10.5194/isprs-annals-IV-3-143-2018]
Liu Y, Koutrakis P and Kahn R. 2007a. Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 1—method development. Journal of the Air and Waste Management Association, 57(11): 1351-1359 [DOI: 10.3155/1047-3289.57.11.1351http://dx.doi.org/10.3155/1047-3289.57.11.1351]
Liu Y, Koutrakis P, Kahn R, Turquety S and Yantosca R M. 2007b. Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2—a case study. Journal of the Air and Waste Management Association, 57(11): 1360-1369 [DOI: 10.3155/1047-3289.57.11.1360http://dx.doi.org/10.3155/1047-3289.57.11.1360]
Liu Y, Paciorek C J and Koutrakis P. 2009a. Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environmental Health Perspectives, 117(6): 886-892 [DOI: 10.1289/ehp.0800123http://dx.doi.org/10.1289/ehp.0800123]
Liu Y, Park R J, Jacob D J, Li Q B, Kilaru V and Sarnat J A. 2004. Mapping annual mean ground-level PM2.5 concentrations using multiangle imaging spectroradiometer aerosol optical thickness over the contiguous United States. Journal of Geophysical Research: Atmospheres, 109(D22): D22206 [DOI: 10.1029/2004JD005025http://dx.doi.org/10.1029/2004JD005025]
Liu Y, Schichtel B A and Koutrakis P. 2009b. Estimating particle sulfate concentrations using MISR retrieved aerosol properties. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(3): 176-184 [DOI: 10.1109/JSTARS.2009.2030153http://dx.doi.org/10.1109/JSTARS.2009.2030153]
Li X B, Xu Q S, Wei H L and Hu H L. 2008. Study on relationship between extinction coefficient and mass concentration. Acta Optica Sinica, 28(9): 1655-1658
李学彬, 徐青山, 魏合理 胡欢陵. 2008. 气溶胶消光系数与质量浓度的相关性研究. 光学学报, 28(9): 1655-1658 [DOI: 10.3321/j.issn:0253-2239.2008.09.005http://dx.doi.org/10.3321/j.issn:0253-2239.2008.09.005]
Li Z Q, Zhang Y, Shao J, Li B S, Hong J, Liu D, Li D H, Wei P, Li W, Li L, Zhang F X, Guo J, Deng Q, Wang B X, Cui C L, Zhang W C, Wang Z Z, Lv Y, Xu H, Chen X F, Li L and Qie L L. 2016. Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground: method validation using ground-based measurements. Remote Sensing of Environment, 173: 59-68 [DOI: 10.1016/j.rse.2015.11.019http://dx.doi.org/10.1016/j.rse.2015.11.019]
Lu X C, Yao T, Fung J C H and Lin C Q. 2016. Estimation of health and economic costs of air pollution over the Pearl River Delta region in China. Science of the Total Environment, 566-567: 134-143 [DOI: 10.1016/j.scitotenv.2016.05.060http://dx.doi.org/10.1016/j.scitotenv.2016.05.060]
Lv Y, Fu Y, Xin S G and Wang Y. 2017. PM2.5 for the harm to the human body [J]. Liaoning Chemical Industry, 46(6):618-620
吕勇, 付玉, 辛士刚, 王莹. 2017. PM_(2.5)对人体的危害[J]. 辽宁化工, 46(6): 618-620 [DOI: 10.14029/j.cnki.issn1004-0935.2017.06.034http://dx.doi.org/10.14029/j.cnki.issn1004-0935.2017.06.034]
Lyapustin A, Martonchik J, Wang Y J, Laszlo I and Korkin S. 2011a. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. Journal of Geophysical Research: Atmospheres, 116(D3): D03210 [DOI: 10.1029/2010JD014985http://dx.doi.org/10.1029/2010JD014985]
Lyapustin A, Wang Y J, Korkin S and Huang D. 2018. MODIS collection 6 MAIAC algorithm. Atmospheric Measurement Techniques, 11(10): 5741-5765 [DOI: 10.5194/amt-11-5741-2018http://dx.doi.org/10.5194/amt-11-5741-2018]
Lyapustin A, Wang Y, Laszlo I, Kahn R, Korkin S, Remer L, Levy R and Reid J S. 2011b. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. Journal of Geophysical Research: Atmospheres, 116(D3): D03211 [DOI: 10.1029/2010JD014986http://dx.doi.org/10.1029/2010JD014986]
Mahmud A, Hixson M, Hu J, Zhao Z, Chen S H and Kleeman M J. 2010. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods. Atmospheric Chemistry and Physics, 10(22): 11097-11114 [DOI: 10.5194/acp-10-11097-2010http://dx.doi.org/10.5194/acp-10-11097-2010]
Ma Z W, Hu X F, Huang L, Bi J and Liu Y. 2014. Estimating ground-level PM2.5 in China using satellite remote sensing. Environmental Science and Technology, 48(13): 7436-7444 [DOI: 10.1021/es5009399http://dx.doi.org/10.1021/es5009399]
Ma Z W, Liu Y, Zhao Q Y, Liu M M, Zhou Y C and Bi J. 2016. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta region of China using improved linear mixed effects model. Atmospheric Environment, 133: 156-164 [DOI: 10.1016/j.atmosenv.2016.03.040http://dx.doi.org/10.1016/j.atmosenv.2016.03.040]
Meng X, Garay M J, Diner D J, Kalashnikova O V, Xu J and Liu Y. 2018. Estimating PM2.5 speciation concentrations using prototype 4.4 km-resolution MISR aerosol properties over southern California. Atmospheric Environment, 181: 70-81 [DOI: 10.1016/j.atmosenv.2018.03.019http://dx.doi.org/10.1016/j.atmosenv.2018.03.019]
Mhawish A, Banerjee T, Broday D M, Misra A and Tripathi S N. 2017. Evaluation of MODIS collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: implications of aerosols types and mass loading. Remote Sensing of Environment, 201: 297-313 [DOI: 10.1016/j.rse.2017.09.016http://dx.doi.org/10.1016/j.rse.2017.09.016]
Moon T, Wang Y, Liu Y, and Yu B. 2015. Evaluation of a MISR-based high-resolution aerosol retrieval method using AERONET DRAGON campaign data. IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4328-4339. [DOI:10.1109/TGRS.2015.2395722http://dx.doi.org/10.1109/TGRS.2015.2395722]
Nussenzveig H M and Wiscombe W J. 1980. Efficiency factors in mie scattering. Physical Review Letters, 45(18): 1490-1494 [DOI: 10.1103/PhysRevLett.45.1490http://dx.doi.org/10.1103/PhysRevLett.45.1490]
Omar A H, Winker D M, Tackett J L, Giles D M, Kar J, Liu Z, Vaughan M A, Powell K A and Trepte C R. 2013. CALIOP and AERONET aerosol optical depth comparisons: one size fits none. Journal of Geophysical Research: Atmospheres, 118(10): 4748-4766 [DOI: 10.1002/jgrd.50330http://dx.doi.org/10.1002/jgrd.50330]
Paciorek C J, Liu Y, Moreno-Macias H and Kondragunt S. 2008. Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5. Environmental Science and Technology, 42(15): 5800-5806 [DOI: 10.1021/es703181jhttp://dx.doi.org/10.1021/es703181j]
Park Y, Kwon B, Heo J, Hu X F, Liu Y and Moon T. 2020. Estimating PM2.5 concentration of the conterminous United States via interpretable convolutional neural networks. Environmental Pollution, 256: 113395 [DOI: 10.1016/j.envpol.2019.113395http://dx.doi.org/10.1016/j.envpol.2019.113395]
Peng Z R, Wang D S, Wang Z Y, Gao Y and Lu S J. 2015. A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: a case in Hangzhou, China. Atmospheric Environment, 123: 357-369 [DOI: 10.1016/j.atmosenv.2015.10.074http://dx.doi.org/10.1016/j.atmosenv.2015.10.074]
Pope III C A, Burnett R T, Thun M J, Calle E E, Krewski D, Ito K and Thurston G D. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. The Journal of the American Medical Association, 287(9): 1132-1141 [DOI: 10.1001/jama.287.9.1132http://dx.doi.org/10.1001/jama.287.9.1132]
Remer L A, Kaufman Y J, Tanré D, Mattoo S, Chu D A, Martins J V, Li R R, Ichoku C, Levy R C, Kleidman R G, Eck T F, Vermote E, and Holben B N. 2005. The MODIS Aerosol Algorithm, Products, and Validation. Journal of the Atmospheric Sciences, 62(4): 947-973. [DOI:10.1175/JAS3385.1http://dx.doi.org/10.1175/JAS3385.1]
Remer L A, Mattoo S, Levy R C and Munchak L. 2013. MODIS 3 km aerosol product: algorithm and global perspective. Atmospheric Measurement Techniques Discussions, 6: 69-112 [DOI: 10.5194/amtd-6-69-2013http://dx.doi.org/10.5194/amtd-6-69-2013]
Saldiva P H N, Clarke R W, Coull B A, Stearns R C, Lawrence J, Murthy G G K, Diaz E, Koutrakis P, Suh H, Tsuda A and Godleski J J. 2002. Lung inflammation induced by concentrated ambient air particles is related to particle composition. American Journal of Respiratory and Critical Care Medicine, 165(12): 1610-1617 [DOI: 10.1164/rccm.2106102http://dx.doi.org/10.1164/rccm.2106102]
Salwa K. Hassan, Mamdouh I. Khoder. 2017. Chemical characteristics of atmospheric PM2.5 loads during air pollution episodes in Giza, Egypt. Atmospheric Environment, 150: 346-355 [DOI:10.1016/j.atmosenv.2016.11.026http://dx.doi.org/10.1016/j.atmosenv.2016.11.026]
Smyth S C, Jiang W M, Roth H, Moran M D, Makar P A, Yang F Q, Bouchet V S and Landry H. 2009. A comparative performance evaluation of the AURAMS and CMAQ air-quality modelling systems. Atmospheric Environment, 43(5): 1059-1070 [DOI: 10.1016/j.atmosenv.2008.11.027http://dx.doi.org/10.1016/j.atmosenv.2008.11.027]
Song C B, He J J, Wu L, Jin T S, Chen X, Li R P, Ren P P, Zhang L and Mao H J. 2017. Health burden attributable to ambient PM2.5 in China. Environmental Pollution, 223: 575-586 [DOI: 10.1016/j.envpol.2017.01.060http://dx.doi.org/10.1016/j.envpol.2017.01.060]
Song W Z, Jia H F, Huang J F and Zhang Y Y. 2014. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sensing of Environment, 154: 1-7 [DOI: 10.1016/j.rse.2014.08.008http://dx.doi.org/10.1016/j.rse.2014.08.008]
Sorek-Hamer M, Strawa A W, Chatfield R B, Esswein R, Cohen A and Broday D M. 2013. Improved retrieval of PM2.5 from satellite data products using non-linear methods. Environmental Pollution, 182: 417-423 [DOI: 10.1016/j.envpol.2013.08.002http://dx.doi.org/10.1016/j.envpol.2013.08.002]
Su X, Goloub P, Chiapello I, Chen H, Ducos F and Li Z. 2010. Aerosol variability over east Asia as seen by POLDER space-borne sensors. Journal of Geophysical Research: Atmospheres, 115(D24): D24215 [DOI: 10.1029/2010JD014286http://dx.doi.org/10.1029/2010JD014286]
Tang Y M, Deng R R, Liu Y M and Xiong L H. 2018. Research review of remote sensing for atmospheric aerosol retrieval. Remote Sensing Technology and Application, 33(1): 25-34
汤玉明, 邓孺孺, 刘永明, 熊龙海. 2018. 大气气溶胶遥感反演研究综述. 遥感技术与应用, 33(1): 25-34 [DOI: 10.11873/j.issn.1004-0323.2018.1.0025http://dx.doi.org/10.11873/j.issn.1004-0323.2018.1.0025]
Tao M H, Chen L F, Su L and Tao J H. 2012. Satellite observation of regional haze pollution over the North China Plain. Journal of Geophysical Research: Atmospheres, 117(D12): D12203 [DOI: 10.1029/2012JD017915http://dx.doi.org/10.1029/2012JD017915]
Tao M H, Chen L F, Wang Z F, Tao J H and Su L. 2013. Satellite observation of abnormal yellow haze clouds over East China during summer agricultural burning season. Atmospheric Environment, 79: 632-640 [DOI: 10.1016/j.atmosenv.2013.07.033http://dx.doi.org/10.1016/j.atmosenv.2013.07.033]
Tao M H, Chen L F, Wang Z F, Tao J H, Che H Z, Wang X H and Wang Y. 2015. Comparison and evaluation of the MODIS Collection 6 aerosol data in China. Journal of Geophysical Research: Atmospheres, 120(14): 6992-7005 [DOI: 10.1002/2015JD023360http://dx.doi.org/10.1002/2015JD023360]
Tao M H, Chen L F, Wang Z F, Wang J, Che H Z, Xu X G, Wang W C, Tao J H, Zhu H and Hou C. 2017. Evaluation of MODIS deep blue aerosol algorithm in desert region of East Asia: ground validation and intercomparison. Journal of Geophysical Research: Atmospheres, 122(19): 10357-10368 [DOI: 10.1002/2017JD026976http://dx.doi.org/10.1002/2017JD026976]
Tao M H, Wang J, Li R, Chen L F, Xu X G, Wang L C, Tao J H, Wang Z F and Xiang J. 2020. Characterization of aerosol type over east Asia by 4.4 km MISR product: first insight and general performance. Journal of Geophysical Research: Atmospheres, 125(13): e2019JD031909 [DOI: 10.1029/2019JD031909http://dx.doi.org/10.1029/2019JD031909]
Tao M H, Wang J, Li R, Wang L L, Wang L C, Wang Z F, Tao J H, Che H Z and Chen L F. 2019. Performance of MODIS high-resolution MAIAC aerosol algorithm in China: characterization and limitation. Atmospheric Environment, 213: 159-169 [DOI: 10.1016/j.atmosenv.2019.06.004http://dx.doi.org/10.1016/j.atmosenv.2019.06.004]
Tian J, Chen D. 2010. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements[J]. Remote Sensing of Environment, 114(2):221-229. [DOI:10.1016/j.rse.2009.09.011http://dx.doi.org/10.1016/j.rse.2009.09.011]
Toth T D, Zhang J L, Reid J S and Vaughan M A. 2019. A bulk-mass-modeling-based method for retrieving particulate matter pollution using CALIOP observations. Atmospheric Measurement Techniques, 12(3): 1739-1754 [DOI: 10.5194/amt-12-1739-2019http://dx.doi.org/10.5194/amt-12-1739-2019]
Tsai T C, Jeng Y J, Chu D A, Chen J P and Chang S C. 2011. Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmospheric Environment, 45(27): 4777-4788 [DOI: 10.1016/j.atmosenv.2009.10.006http://dx.doi.org/10.1016/j.atmosenv.2009.10.006]
Van Donkelaar A, Martin R V and Park R J. 2006. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. Journal of Geophysical Research: Atmospheres, 111(D21): D21201 [DOI: 10.1029/2005JD006996http://dx.doi.org/10.1029/2005JD006996]
Van Donkelaar A, Martin R V, Brauer M, Kahn R, Levy R, Verduzco C and Villeneuve P J. 2010. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environmental Health Perspectives, 118(6): 847-855 [DOI: 10.1289/ehp.0901623http://dx.doi.org/10.1289/ehp.0901623]
Van Donkelaar A, Martin R V, Levy R C, da Silva A M, Krzyzanowski M, Chubarova N E, Semutnikova E and Cohen A J. 2011. Satellite-based estimates of ground-level fine particulate matter during extreme events: a case study of the Moscow fires in 2010. Atmospheric Environment, 45(34): 6225-6232 [DOI: 10.1016/j.atmosenv.2011.07.068http://dx.doi.org/10.1016/j.atmosenv.2011.07.068]
Van Donkelaar A, Martin R V, Li C and Burnett R T. 2019. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Environmental Science and Technology, 53(5): 2595-2611 [DOI: 10.1021/acs.est.8b06392http://dx.doi.org/10.1021/acs.est.8b06392]
Wang J, Aegerter C, Xu X G and Szykman J J. 2016. Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space. Atmospheric Environment, 124: 55-63 [DOI: 10.1016/j.atmosenv.2015.11.013http://dx.doi.org/10.1016/j.atmosenv.2015.11.013]
Wang J and Christopher S A. 2003. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophysical Research Letters, 30(21): 2095 [DOI: 10.1029/2003GL018174http://dx.doi.org/10.1029/2003GL018174]
Wang J, Yang F M, Wang D Y and He K B. 2010. Characteristics and relationship of aerosol optical thickness and PM2.5 concentration over Beijing. Journal of the Graduate School of the Chinese Academy of Sciences, 27(1): 10-16
王静, 杨复沫, 王鼎益 贺克斌. 2010. 北京市MODIS气溶胶光学厚度和PM2.5质量浓度的特征及其相关性. 中国科学院研究生院学报, 27(1): 10-16
Wang W, Mao F Y, Du L, Pan Z X, Gong W and Fang S H. 2017. Deriving hourly PM2.5 concentrations from himawari-8 AODs over Beijing-Tianjin-Hebei in China. Remote Sensing, 9(8): 858 [DOI: 10.3390/rs9080858http://dx.doi.org/10.3390/rs9080858]
Wang X M, Chen W H, Chen D H, Wu Z Y, and Fan Q. 2016. Long-term trends of fine particulate matter and chemical composition in the Pearl River Delta Economic Zone (PRDEZ), China. Frontiers of Environmental Science & Engineering,10(1): 53-62 [DOI: 10.1007/s11783-014-0728-zhttp://dx.doi.org/10.1007/s11783-014-0728-z]
Wang X P, Sun W B, Zheng K N, Ren X Y and Han P W. 2020. Estimating hourly PM2.5 concentrations using MODIS 3 km AOD and an improved spatiotemporal model over Beijing-Tianjin-Hebei, China. Atmospheric Environment, 222: 117089 [DOI: 10.1016/j.atmosenv.2019.117089http://dx.doi.org/10.1016/j.atmosenv.2019.117089]
Wang Y, Yuan Q Q, Li T W, Shen H F, Zheng L and Zhang L P. 2019a. Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces. Atmospheric Environment, 200: 280-301 [DOI: 10.1016/j.atmosenv.2018.12.023http://dx.doi.org/10.1016/j.atmosenv.2018.12.023]
Wang Y, Yuan Q Q, Li T W, Shen H F, Zheng L and Zhang L P. 2019b. Large-scale MODIS AOD products recovery: spatial-temporal hybrid fusion considering aerosol variation mitigation. ISPRS Journal of Photogrammetry and Remote Sensing, 157: 1-12 [DOI: 10.1016/j.isprsjprs.2019.08.017http://dx.doi.org/10.1016/j.isprsjprs.2019.08.017]
Wang Z F, Chen L F, Tao J H, Zhang Y and Su L. 2010. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method. Remote Sensing of Environment, 114(1): 50-63 [DOI: 10.1016/j.rse.2009.08.009http://dx.doi.org/10.1016/j.rse.2009.08.009]
Wei J, Li Z Q, Peng Y R and Sun L. 2019. MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison. Atmospheric Environment, 201: 428-440 [DOI: 10.1016/j.atmosenv.2018.12.004http://dx.doi.org/10.1016/j.atmosenv.2018.12.004]
Winker D M, Vaughan M A, Omar A, Hu Y X, Powell K A, Liu Z Y, Hunt W H and Young S A. 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26(11): 2310-2323 [DOI: 10.1175/2009JTECHA1281.1http://dx.doi.org/10.1175/2009JTECHA1281.1]
Wu Y R, Guo J P, Zhang X Y, Tian X, Zhang J H, Wang Y Q, Duan J and Li X W. 2012. Synergy of satellite and ground based observations in estimation of particulate matter in Eastern China. Science of the Total Environment, 433: 20-30 [DOI: 10.1016/j.scitotenv.2012.06.033http://dx.doi.org/10.1016/j.scitotenv.2012.06.033]
Xie Y Y, Wang Y Y, Zhang K, Dong W H, Lv B L and Bai Y Q. 2015. Daily estimation of ground-level PM2.5 concentrations over beijing using 3 km resolution MODIS AOD. Environmental Science and Technology, 49(20): 12280-12288 [DOI: 10.1021/acs.est.5b01413http://dx.doi.org/10.1021/acs.est.5b01413]
Xu S, Zou B, Lin Y, Zhao X G, Li S X and Hu C X. 2019. Strategies of method selection for fine-scale PM2.5 mapping in an intra-urban area using crowdsourced monitoring. Atmospheric Measurement Techniques, 12(5): 2933-2948 [DOI: 10.5194/amt-12-2933-2019http://dx.doi.org/10.5194/amt-12-2933-2019]
Yahya K, Zhang Y and Vukovich J M. 2014. Real-time air quality forecasting over the southeastern United States using WRF/Chem-MADRID: multiple-year assessment and sensitivity studies. Atmospheric Environment, 92: 318-338 [DOI: 10.1016/j.atmosenv.2014.04.024http://dx.doi.org/10.1016/j.atmosenv.2014.04.024]
Yamamoto G and Tanaka M. 1969. Determination of aerosol size distribution from spectral attenuation measurements. Applied Optics, 8(2): 447-453 [DOI: 10.1364/AO.8.000447http://dx.doi.org/10.1364/AO.8.000447]
Yao F, Si M L, Li W F and Wu J S. 2018. A multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2.5 concentrations over a heavily polluted region in China. Science of the Total Environment, 618: 819-828 [DOI: 10.1016/j.scitotenv.2017.08.209http://dx.doi.org/10.1016/j.scitotenv.2017.08.209]
Yao F, Wu J S, Li W F and Peng J. 2019. A spatially structured adaptive two-stage model for retrieving ground-level PM2.5 concentrations from VIIRS AOD in China. ISPRS Journal of Photogrammetry and Remote Sensing, 151: 263-276 [DOI: 10.1016/j.isprsjprs.2019.03.011http://dx.doi.org/10.1016/j.isprsjprs.2019.03.011]
Yao L and Lu N. 2014. Spatiotemporal distribution and short-term trends of particulate matter concentration over China, 2006—2010. Environmental Science and Pollution Research, 21(16): 9665-9675 [DOI: 10.1007/s11356-014-2996-3http://dx.doi.org/10.1007/s11356-014-2996-3]
Yu J H, Yu T, Wei Q, Wang X, Shi J G and Li H J. 2004. Characteristics of mass concentration variations of PM10 and PM2.5 in Beijing Area. Research of Environmental Sciences, 17(1): 45-47
于建华, 虞统, 魏强, 王欣, 时建纲, 李海军. 2004. 北京地区PM10和PM2.5质量浓度的变化特征. 环境科学研究, 17(1): 45-47 [DOI: 10.3321/j.issn:1001-6929.2004.01.010http://dx.doi.org/10.3321/j.issn:1001-6929.2004.01.010]
Yumimoto K, Nagao T M, Kikuchi M, Sekiyama T T, Murakami H, Tanaka T Y, Ogi A, Irie H, Khatri P, Okumura H, Arai K, Morino I, Uchino O and Maki T. 2016. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophysical Research Letters, 43(11): 5886-5894 [DOI: 10.1002/2016GL069298http://dx.doi.org/10.1002/2016GL069298]
Zang L, Mao F Y, Guo J P, Gong W, Wang W and Pan Z X. 2018. Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China. Environmental Pollution, 241: 654-663 [DOI: 10.1016/j.envpol.2018.05.100http://dx.doi.org/10.1016/j.envpol.2018.05.100]
Zeger S L, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D, Cohen A. 2000. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environmental Health Perspectives, 108: 419e426 [DOI:10.1289/ehp.00108419http://dx.doi.org/10.1289/ehp.00108419]
Zhang J and Reid J S. 2006. MODIS aerosol product analysis for data assimilation: Assessment of over-ocean level 2 aerosol optical thickness retrievals. Journal of Geophysical Research: Atmospheres,111(D22) [DOI: 1029/2005JD006898]
Zhang J L and Reid J S. 2009. An analysis of clear sky and contextual biases using an operational over ocean MODIS aerosol product. Geophysical Research Letters, 36(15): L15824 [DOI: 10.1029/2009GL038723http://dx.doi.org/10.1029/2009GL038723]
Zhang L P and Shen H F. 2016. Progress and future of remote sensing data fusion. Journal of Remote Sensing, 20(5): 1050-1061
张良培, 沈焕锋. 2016. 遥感数据融合的进展与前瞻. 遥感学报, 20(5): 1050-1061 [DOI: 10.11834/jrs.20166243http://dx.doi.org/10.11834/jrs.20166243]
Zhang T X, Zang L, Wan Y C, Wang W and Zhang Y. 2019. Ground-level PM2.5 estimation over urban agglomerations in China with high spatiotemporal resolution based on Himawari-8. Science of the Total Environment, 676: 535-544 [DOI: 10.1016/j.scitotenv.2019.04.299http://dx.doi.org/10.1016/j.scitotenv.2019.04.299]
Zhang Z L, Chang L Y, Lau A K H, Chan T C, Chieh Chuang Y, Chan J, Lin C Q, Kai Jiang W, Dear K, Zee B C Y, Yeoh E K, Hoek G, Tam T and Qian Lao X. 2017. Satellite-based estimates of long-term exposure to fine particulate matter are associated with C-reactive protein in 30 034 Taiwanese adults. International Journal of Epidemiology, 46(4): 1126-1136 [DOI: 10.1093/ije/dyx069http://dx.doi.org/10.1093/ije/dyx069]
Zhao X R, Shi H Q, Yu H and Yang P L. 2016. Inversion of nighttime PM2.5 mass concentration in beijing based on the viirs day-night band. Atmosphere, 7(10): 136 [DOI: 10.3390/atmos7100136http://dx.doi.org/10.3390/atmos7100136]
Zheng Y X, Zhang Q, Liu Y, Geng G N and He K B. 2016. Estimating ground-level PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements. Atmospheric Environment, 124: 232-242 [DOI: 10.1016/j.atmosenv.2015.06.046http://dx.doi.org/10.1016/j.atmosenv.2015.06.046]
Zou B, Chen J E, Zhai L, Fang X, and Zheng Z. 2017. Satellite based mapping of ground PM2.5 concentration using generalized additive modeling. Remote Sensing, 9(1): 1. [DOI:10.3390/rs9010001http://dx.doi.org/10.3390/rs9010001]
相关作者
相关机构