遥感知识图谱创建及其典型场景应用技术
Remote sensing knowledge graph construction and its application in typical scenarios
- 2023年27卷第2期 页码:249-266
纸质出版日期: 2023-02-07
DOI: 10.11834/jrs.20210469
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-02-07 ,
扫 描 看 全 文
张永军,王飞,李彦胜,欧阳松,魏东,刘晓建,孔德宇,陈瑞贤,张斌.2023.遥感知识图谱创建及其典型场景应用技术.遥感学报,27(2): 249-266
Zhang Y J,Wang F,Li Y S,Ouyang S,Wei D,Liu X J, Kong D Y,Chen R X and Zhang B. 2023. Remote sensing knowledge graph construction and its application in typical scenarios. National Remote Sensing Bulletin, 27(2):249-266
相对于当前指数级增长的强大遥感数据获取能力,遥感大数据的智能处理和知识服务能力相对滞后,海量多源化遥感数据堆积与有限信息孤岛并存的矛盾日益突出,亟需有效的遥感领域知识建模技术来辅助挖掘遥感大数据的有用信息并形成知识服务能力。知识图谱技术以符号形式描述物理世界中的概念及其相互关系,具有强大的知识建模与推理应用能力,在搜索引擎、电子商务、社交网络分析等领域已经得到成功应用。在通用知识图谱技术启发下,本文首次提出建立遥感领域知识图谱研究构想,可以为遥感领域知识建模与知识服务提供支撑。本文首先回顾通用知识图谱的发展历程,然后探讨遥感知识图谱的构建技术、遥感知识图谱驱动的典型地学应用案例,最后对遥感知识图谱的应用现状与未来研究方向进行分析论述。总体来说,遥感知识图谱的研究有利于更好的归纳遥感领域学科概念化知识、管理遥感大数据所蕴含的新增信息与知识,可以向多领域众多用户提供灵活便捷的遥感知识查询与知识服务能力,有助于全面提升海量多源遥感观测成果的应用能力,在全球遥感地表覆盖分类、气候变化、国际人道主义援助等方面都将发挥重要作用。
Compared with the current powerful acquisition capabilities of remote sensing data
its intelligent processing and knowledge service capabilities are relatively lagging. The contradiction between the accumulation of massive multisource remote sensing data and the limited information island is becoming increasingly prominent. Therefore
there is an urgent need for effective remote sensing domain knowledge modeling technology to assist in mining the useful information of remote sensing big data and form knowledge service capabilities. A Knowledge Graph (KG) describes the concepts and their relationships in the physical world in symbolic form. It has strong knowledge modeling and reasoning capabilities and has been successfully applied in search engines
e-commerce
social network analysis and other fields. Inspired by the general KGs
this paper conceives of establishing a remote sensing domain KG for the first time
which can provide support for knowledge modeling and knowledge services in the remote sensing field.
First
this paper reviews the development history of general KGs. Second
it discusses the technologies of constructing remote sensing KGs. Compared with general KGs
remote sensing KGs are oriented to the field of remote sensing geosciences. They have significant disciplinary characteristics and spatiotemporal graph characteristics in terms of graph nodes
graph relationships and graph reasoning. Specific performances are as follows: (1) Images are an important part of remote sensing
which play an irreplaceable role and are ignored by general KGs. (2) Remote sensing knowledge is oriented to spatial entities. In addition to semantic relationships
the description of entity relationships also requires spatial and temporal relationships. (3) Traditional logical reasoning and natural language processing learning reasoning cannot effectively deal with image entities and spatial relationships. To solve the above problems
this paper draws on the construction scheme of the general KG and related domain KG and proposes the basic construction process of the remote sensing KG.
Third
it introduces typical geoscience application cases driven by remote sensing KGs
which include three cases: (1) Marine oil spill monitoring. Marine oil spill KG is used for oil pollution identification
cause reasoning
and spill risk assessment
etc. (2) Land cover classification. Coupling remote sensing KG reasoning and deep learning for land cover classification. Numerous experiments have proven that KG can improve the classification results. (3) Evaluation of the carrying capacity of resources and the environment and suitability of land and space development. Ontology can not only express the knowledge system of evaluation in a standardized manner but also infer the evaluation results based on the constructed knowledge. Finally
it analyzes the application status and future research directions of remote sensing KGs. This paper points out four feasible and important research directions: (1) Exploring the theories and methods of creating multimodal remote sensing KGs; (2) Cooperative update and alignment fusion of remote sensing KGs; (3) Intelligent remote sensing image classification based on remote sensing KG representation learning; and (4) Scientific decision support analysis assisted by remote sensing KGs.
Generally
the research of remote sensing KGs is conducive to better summarizing the conceptual knowledge of remote sensing
managing the new knowledge contained in remote sensing big data
and providing flexible and convenient remote sensing knowledge query and service capabilities to users in multiple fields
and it will help comprehensively improve the application capabilities of massive multisource remote sensing observation results and will play an important role in the study of global remote sensing land cover classification
climate change
international humanitarian assistance
and so on.
遥感知识图谱典型场景应用人工智能知识服务知识图谱表示学习领域知识建模
remote sensing knowledge graphknowledge graph applicationartificial intelligenceknowledge servicerepresentation learningdomain knowledge modeling
Aksoy S. 2006. Modeling of remote sensing image content using attributed relational graphs//Proceedings of the Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR). Hong Kong, China: Springer: 475-483
Alirezaie M, Längkvist M, Sioutis M and Loutfi A. 2019. Semantic referee: a neural-symbolic framework for enhancing geospatial semantic segmentation. Semantic Web, 10(5): 863-880 [DOI: 10.3233/SW-190362http://dx.doi.org/10.3233/SW-190362]
Biederman I. 1987. Recognition-by-components: a theory of human image understanding. Psychological Review, 94(2): 115-147 [DOI: 10.1037/0033-295X.94.2.115http://dx.doi.org/10.1037/0033-295X.94.2.115]
Bordes A, Usunier N, Garcia-Durán A and Weson J. 2013. Translating embeddings for modeling multi-relational data//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe Nevada: Curran Associates Inc.: 2787-2795
Bruna J, Zaremba W, Szlam A and LeCun Y. 2014. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
Cao X, Chen X H, Zhang W W, Liao A P, Chen L J, Chen Z G and Chen J. 2016. Global cultivated land mapping at 30 m spatial resolution. Science China Earth Sciences, 59(12): 2275-2284
曹鑫, 陈学泓, 张委伟, 廖安平, 陈利军, 陈志刚, 陈晋. 2016. 全球30m空间分辨率耕地遥感制图研究. 中国科学: 地球科学, 46(11): 1426-1435 [DOI: 10.1360/N072015-00291http://dx.doi.org/10.1360/N072015-00291]
Chen J, Liu W Z, Wu H, Li Z L, Zhao Y and Zhang L. 2019. Basic issues and research agenda of geospatial knowledge service. Geomatics and Information Science of Wuhan University, 44(1): 38-47
陈军, 刘万增, 武昊, 李志林, 赵勇, 张蓝. 2019. 基础地理知识服务的基本问题与研究方向. 武汉大学学报(信息科学版), 44(1): 38-
[DOI 10.13203/j.whugis20180441http://dx.doi.org/10.13203/j.whugis20180441]
Chen J, Xiang L G and Gong J Y. 2013. Virtual globe-based integration and sharing service method of GeoSpatial information. Science China Earth Sciences, 56(10): 1780-1790
陈静, 向隆刚, 龚健雅. 2013. 基于虚拟地球的网络地理信息集成共享服务方法. 中国科学: 地球科学, 43(11): 1770-1784 [DOI: 10.1007/s11430-013-4627-0http://dx.doi.org/10.1007/s11430-013-4627-0]
De Cao N, Aziz W and Titov I. 2019. Question answering by reasoning across documents with graph convolutional networks//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis: ACL: 2306-2317
Devlin J, Chang M W, Lee K and Toutanova K. 2019. BERT: pre-training of deep bidirectional transformers for language understanding//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis: ACL: 4171-4186
Ding M, Zhou C, Chen Q B, Yang H X and Tang J. 2019. Cognitive graph for multi-hop reading comprehension at scale//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence: ACL [DOI: 10.18653/v1/P19-1259http://dx.doi.org/10.18653/v1/P19-1259]
Dong J W, Kuang W H and Liu J Y. 2017. Continuous land cover change monitoring in the remote sensing big data era. Science China Earth Sciences, 60(12): 2223-2224
董金玮, 匡文慧, 刘纪远. 2018. 遥感大数据支持下的全球土地覆盖连续动态监测. 中国科学: 地球科学, 48(2): 259-260 [DOI: 10.1007/s11430-017-9143-3http://dx.doi.org/10.1007/s11430-017-9143-3]
Ehrlinger L and Wöß W. 2016. Towards a definition of knowledge graphs//Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems. Leipzig, Germany: CEUR-WS.org
Fan J, Yu W Z, Wu W and Shen Y. 2017. Knowledge-guided fitting method for sparse time series remote sensing data. Journal of Remote Sensing, 21(5): 749-756
范菁, 余维泽, 吴炜, 沈瑛. 2017. 知识引导的稀疏时间序列遥感数据拟合. 遥感学报, 21(5): 749-756 [DOI: 10.11834/jrs.20176434http://dx.doi.org/10.11834/jrs.20176434]
Färber M, Bartscherer F, Menne C and Rettinger A. 2018. Linked data quality of DBpedia, freebase, OpenCyc, wikidata, and YAGO. Semantic Web, 9(1): 77-129 [DOI: 10.3233/SW-170275http://dx.doi.org/10.3233/SW-170275]
Gruber T R. 1995. Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies, 43(5/6): 907-928 [DOI: 10.1006/ijhc.1995.1081http://dx.doi.org/10.1006/ijhc.1995.1081]
Gu H Y, Li H T, Yan L, Han Y S, Yu F, Yang Y and Liu Z J. 2018. A geographic object-based image analysis methodology based on geo-ontology. Geomatics and Information Science of Wuhan University, 43(1): 31-36
顾海燕, 李海涛, 闫利, 韩颜顺, 余凡, 杨懿, 刘正军. 2018. 地理本体驱动的遥感影像面向对象分析方法. 武汉大学学报(信息科学版), 43(1): 31-36 [DOI: 10.13203/j.whugis20150468http://dx.doi.org/10.13203/j.whugis20150468]
Hamilton W L, Ying R and Leskovec J. 2017. Inductive representation learning on large graphs//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc.: 1025-1035
He L, Shao B, Xiao Y H, Li Y T, Liu T Y, Chen E H and Xia H H. 2018. Neurally-guided semantic navigation in knowledge graph. IEEE Transactions on Big Data, 8(3): 607-615 [DOI: 10.1109/TBDATA.2018.2805363http://dx.doi.org/10.1109/TBDATA.2018.2805363]
Horrocks I, Patel-Schneider P F and van Harmelen F. 2003. From SHIQ and RDF to OWL: the making of a web ontology language. Journal of Web Semantics, 1(1): 7-26 [DOI: 10.1016/j.websem.2003.07.001http://dx.doi.org/10.1016/j.websem.2003.07.001]
Hou Z W, Zhu Y Q, Gao X, Pan P, Luo K and Wang D X. 2015. Time-ontology and its application in geodata retrieval. Journal of Geo-Information Science, 17(4): 379-390
侯志伟, 诸云强, 高星, 潘鹏, 罗侃, 王东旭. 2015. 时间本体及其在地学数据检索中的应用. 地球信息科学学报, 17(4): 379-390 [DOI: 10.3724/SP.J.1047.2015.00379http://dx.doi.org/10.3724/SP.J.1047.2015.00379]
Hu T Y, Li X C, Gong P, Yu W C and Huang X C. 2020. Evaluating the effect of plain afforestation project and future spatial suitability in Beijing. Science China Earth Sciences, 63(10): 1587-1598
胡腾云, 李雪草, 宫鹏, 喻文承, 黄晓春. 2020. 北京市平原造林遥感监测与未来空间适宜性评价模拟. 中国科学: 地球科学, 50(10): 1455-1467 [DOI: 10.1007/s11430-019-9636-0http://dx.doi.org/10.1007/s11430-019-9636-0]
Huang J L. 2020. Research and Application of Text Classification Algorithm in Patent Field Based on Knowledge Graph. Changchun: Jilin University
黄金来. 2020. 基于知识图谱的专利领域文本分类算法研究与应用. 长春: 吉林大学
Huang M F. 2016. Remote Sensing Detection Mechanism and Information Extraction Method of Water Petroleum Pollution. Beijing: Science Press
黄妙芬. 2016. 水体石油类污染遥感探测机理与信息提取方法. 北京: 科学出版社
Jiang B C, Wan G, Xu J, Li F and Wen H Q. 2018. Geographic knowledge graph building extracted from multi-sourced heterogeneous data. Acta Geodaetica et Cartographica Sinica, 47(8): 1051-1061
蒋秉川, 万刚, 许剑, 李锋, 温荟琦. 2018. 多源异构数据的大规模地理知识图谱构建. 测绘学报, 47(8): 1051-1061 [DOI: 10.11947/j.AGCS.2018.20180113http://dx.doi.org/10.11947/j.AGCS.2018.20180113]
Kalfoglou Y and Schorlemmer M. 2003. Ontology mapping: the state of the art. The knowledge Engineering Review, 18(1): 1-31 [DOI: 10.1017/S0269888903000651http://dx.doi.org/10.1017/S0269888903000651]
Karpatne A, Atluri G, Faghmous J H, Steinbach M, Banerjee A, Ganguly A, Shekhar S, Samatova N and Kumar V. 2017. Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering, 29(10): 2318-2331 [DOI: 10.1109/TKDE.2017.2720168http://dx.doi.org/10.1109/TKDE.2017.2720168]
Kipf T N and Welling M. 2017. Semi-supervised classification with graph convolutional networks//Proceedings of the 5th International Conference on Learning Representations. Toulon: OpenReview.net
Krishna R, Zhu Y K, Groth O, Johnson J, Hata K, Kravitz J, Chen S, Kalantidis Y, Li L J, Shamma D A, Bernstein M S and Li F F. 2017. Visual genome: connecting language and vision using crowdsourced dense image annotations. International Journal of Computer Vision, 123(1): 32-73 [DOI: 10.1007/s11263-016-0981-7http://dx.doi.org/10.1007/s11263-016-0981-7]
Kroetsch M and Weikum G. 2016. Special issue on knowledge graphs. Journal of Web Semantics, 37(38): 53-54
Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes P N, Hellmann S, Morsey M, van Kleef P, Auer S and Bizer C. 2015. DBpedia-A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web, 6(2): 167-195 [DOI: 10.3233/SW-140134http://dx.doi.org/10.3233/SW-140134]
Li D R. 2016. Towards geo-spatial information science in big data era. Acta Geodaetica et Cartographica Sinica, 45(4): 379-384
李德仁. 2016. 展望大数据时代的地球空间信息学. 测绘学报, 45(4): 379-384 [DOI: 10.11947/j.AGCS.2016.20160057http://dx.doi.org/10.11947/j.AGCS.2016.20160057]
Li Y S, Kong D Y, Zhang Y J, Ji Z and Xiao R. 2020. Zero-shot remote sensing image scene classification based on robust cross-domain mapping and gradual refinement of semantic space. Acta Geodaetica et Cartographica Sinica, 49(12): 1564-1574
李彦胜, 孔德宇, 张永军, 季铮, 肖锐. 2020. 联合稳健跨域映射和渐进语义基准修正的零样本遥感影像场景分类. 测绘学报, 49(12): 1564-1574 [DOI: 10.11947/j.AGCS.2020.20200139http://dx.doi.org/10.11947/j.AGCS.2020.20200139]
Li Y S, Ouyang S and Zhang Y J. 2022. Combining deep learning and ontology reasoning for remote sensing image semantic segmentation . Knowledge-Based Systems. 243, 108469.
Li Y S, Zhu Z H, Yu J G and Zhang Y J. 2021. Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification. IEEE Transactions on Geoscience and Remote Sensing, 59(12): 10590-10603 [DOI: 10.1109/TGRS.2020.3047447http://dx.doi.org/10.1109/TGRS.2020.3047447]
Lin B Y, Chen X Y, Chen J M and Ren X. 2019. KagNet: knowledge-aware graph networks for commonsense reasoning//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong, China: ACL: 2829-2839 [DOI: 10.18653/v1/D19-1282http://dx.doi.org/10.18653/v1/D19-1282]
Lin H and You L. 2015. A tentative study on knowledge engineering for virtual geographic environments. Journal of Geo-Information Science, 17(12): 1423-1430
林珲, 游兰. 2015. 虚拟地理环境知识工程初探. 地球信息科学学报, 17(12): 1423-1430 [DOI: 10.3724/SP.J.1047.2015.01423http://dx.doi.org/10.3724/SP.J.1047.2015.01423]
Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P and Zitnick C L. 2014. Microsoft COCO: common objects in context//Proceedings of the 13th European Conference on Computer Vision. Zurich: Springer: 740-755 [DOI: 10.1007/978-3-319-10602-1_48http://dx.doi.org/10.1007/978-3-319-10602-1_48]
Liu J N, Liu H Y, Chen X H, Guo X, Guo W Y, Zhu X M, Zhao Q B and Li J. 2022. Terrorism event model by knowledge graph. Geomatics and Information Science of Wuhan University, 47(2): 313-322
刘俊楠, 刘海砚, 陈晓慧, 郭漩, 郭文月, 朱新铭, 赵清波, 李佳. 2022. 利用知识图谱的恐怖主义事件模型. 武汉大学学报(信息科学版), 47(2): 313-322 [DOI: 10.13203/j.whugis20190428http://dx.doi.org/10.13203/j.whugis20190428]
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y and Berg A C. 2016. SSD: single shot MultiBox detector//Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer: 21-37 [DOI: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2]
Lu F, Yu L and Qiu P Y. 2017. On geographic knowledge graph. Journal of Geo-Information Science, 19(6): 723-734
陆锋, 余丽, 仇培元. 2017. 论地理知识图谱. 地球信息科学学报, 19(6): 723-734 [DOI: 10.3969/j.issn.1560-8999.2017.06.001http://dx.doi.org/10.3969/j.issn.1560-8999.2017.06.001]
Lü G N. 2011. Geographic analysis-oriented Virtual Geographic Environment: framework, structure and functions. Science China Earth Sciences, 54(5): 733-743
闾国年. 2011. 地理分析导向的虚拟地理环境: 框架、结构与功能. 中国科学: 地球科学, 41(4): 549-561 [DOI: 10.1360/zd-2011-41-4-549http://dx.doi.org/10.1360/zd-2011-41-4-549]
Mikolov T, Sutskever I, Chen K, Corrado G and Dean J. 2013. Distributed representations of words and phrases and their compositionality//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc.: 3111-3119
Paulheim H. 2017. Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic Web, 8(3): 489-508 [DOI: 10.3233/SW-160218http://dx.doi.org/10.3233/SW-160218]
Pujara J, Miao H, Getoor L and Cohen W. 2013. Knowledge graph identification//Proceedings of the 12th International Semantic Web Conference. Sydney: Springer: 542-557 [DOI: 10.1007/978-3-642-41335-3_34http://dx.doi.org/10.1007/978-3-642-41335-3_34]
Redmon J, Divvala S, Girshick R and Farhadi A. 2016. You only look once: unified, real-time object detection//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 779-788 [DOI: 10.1109/CVPR.2016.91http://dx.doi.org/10.1109/CVPR.2016.91]
Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N and Prabhat. 2019. Deep learning and process understanding for data-driven earth system science. Nature, 566(7743): 195-204 [DOI: 10.1038/s41586-019-0912-1http://dx.doi.org/10.1038/s41586-019-0912-1]
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/TPAMI.2016.2577031http://dx.doi.org/10.1109/TPAMI.2016.2577031]
Ronneberger O, Fischer P and Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer: 234-241 [DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Schuster M and Paliwal K K. 1997. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11): 2673-2681 [DOI: 10.1109/78.650093http://dx.doi.org/10.1109/78.650093]
Singhal A. 2012. Introducing the Knowledge Graph: Things, Not Strings. Official Google Blog
Spaulding M L. 2017. State of the art review and future directions in oil spill modeling. Marine Pollution Bulletin, 115(1/2): 7-19 [DOI: 10.1016/j.marpolbul.2017.01.001http://dx.doi.org/10.1016/j.marpolbul.2017.01.001]
Suchanek F M, Kasneci G and Weikum G. 2007. Yago: a core of semantic knowledge//Proceedings of the 16th international conference on World Wide Web. Banff: ACM: 697-706 [DOI: 10.1145/1242572.1242667http://dx.doi.org/10.1145/1242572.1242667]
Vashishth S, Jain P and Talukdar P. 2018. CESI: canonicalizing open knowledge bases using embeddings and side information//Proceedings of the 2018 World Wide Web Conference. Lyon: ACM
Wang D X, Zhu Y Q, Pan P, Luo K and Hou Z W. 2016. Construction of geodata spatial ontology and its application in data retrieval. Journal of Geo-Information Science, 18(4): 443-452
王东旭, 诸云强, 潘鹏, 罗侃, 侯志伟. 2016. 地理数据空间本体构建及其在数据检索中的应用. 地球信息科学学报, 18(4): 443-452 [DOI: 10.3724/SP.J.1047.2016.00443http://dx.doi.org/10.3724/SP.J.1047.2016.00443]
Wang M, Qi G, Wang H F and Zheng Q. 2020. Richpedia: a comprehensive multi-modal knowledge graph//Joint International Semantic Technology Conference. Cham:Springer: 130-145 [DOI:10.1007/978-3-030-41407-8_9http://dx.doi.org/10.1007/978-3-030-41407-8_9]
Wang Q, Mao Z D, Wang B and Guo L. 2017. Knowledge graph embedding: A survey of approaches and applications. IEEE Transactions on knowledge & Data Engineering, 29(12): 2724-2743
Xie R, Luo Z W, Wang Y C and Chen W. 2017. Key techniques for establishing domain specific large scale knowledge graph of remote sensing satellite. Radio Engineering, 47(4): 1-6
谢榕, 罗知微, 王雨晨, 陈文. 2017. 遥感卫星特定领域大规模知识图谱构建关键技术. 无线电工程, 47(4): 1-6 [DOI: 10.3969/j.issn.1003-3106.2017.04.01http://dx.doi.org/10.3969/j.issn.1003-3106.2017.04.01]
Xu B, Xu Y, Liang J Q, Xie C H, Liang B, Cui W Y and Xiao Y H. 2017. CN-DBpedia: a never-ending Chinese knowledge extraction system//Proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Arras, France: Springer: 428-438 [DOI: 10.1007/978-3-319-60045-1_44http://dx.doi.org/10.1007/978-3-319-60045-1_44]
Yang Y J, Xu B, Hu J W, Tong M H, Zhang P and Zheng L. 2018. Accurate and efficient method for constructing domain knowledge graph. Journal of Software, 29(10): 2931-2947
杨玉基, 许斌, 胡家威, 仝美涵, 张鹏, 郑莉. 2018. 一种准确而高效的领域知识图谱构建方法. 软件学报, 29(10): 2931-2947 [DOI: 10.13328/j.cnki.jos.005552http://dx.doi.org/10.13328/j.cnki.jos.005552]
Zaremba W, Sutskever I and Vinyals O. 2014. Recurrent neural network regularization. arXiv preprint arXiv: 1409.2329
Zhang F J, Liu X, Tang J, Dong Y X, Yao P R, Zhang J, Gu X T, Wang Y, Shao B, Li R and Wang K S. 2019a. OAG: toward linking large-scale heterogeneous entity graphs//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage: ACM [DOI: 10.1145/3292500.3330785http://dx.doi.org/10.1145/3292500.3330785]
Zhang H M, Wang M C, Chen X Y, Wang F Y, Yang G D and Gao S. 2022. Remote sensing change detection based on deep belief networks optimized by domain knowledge. Geomatics and Information Science of Wuhan University, 47(5): 762-768, 788
张海明, 王明常, 陈学业, 王凤艳, 杨国东, 高苏. 2022. 领域知识优化深度置信网络的遥感变化检测. 武汉大学学报(信息科学版), 47(5): 762-768, 788 [DOI: 10.13203/j.whugis20190471http://dx.doi.org/10.13203/j.whugis20190471]
Zhang N Y, Deng S M, Sun Z L, Wang G Y, Chen X, Zhang W and Chen H J. 2019b. Long-tail relation extraction via knowledge graph embeddings and graph convolution networks//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Minneapolis: ACL: 3016-3025 [DOI: 10.18653/v1/N19-1306http://dx.doi.org/10.18653/v1/N19-1306]
Zhang X Y, Zhang C J, Wu M G and Lü G N. 2020. Spatiotemporal features based geographical knowledge graph construction. SCIENTIA SINICA: Informationis, 50(7): 1019-1032
张雪英, 张春菊, 吴明光, 闾国年. 2020. 顾及时空特征的地理知识图谱构建方法. 中国科学: 信息科学, 50(7): 1019-1032
Zhang Y H, Qi P and Manning C D. 2018. Graph convolution over pruned dependency trees improves relation extraction//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels: ACL: 2205-2215
Zhao J, Liu K, He S Z and Chen Y B. 2018. Knowledeg Graph. Beijing: Higher Education Press: 20-29
赵军, 刘康, 何世柱, 陈玉博. 2018. 知识图谱. 北京: 高等教育出版社: 20-29
Zhou X R, Shao Z F and Liu J. 2012. Geographic ontology driven hierarchical semantic of remote sensing image//Proceedings of 2012 International Conference on Computer Vision in Remote Sensing. Xiamen, China: IEEE [DOI: 10.1109/CVRS.2012.6421223http://dx.doi.org/10.1109/CVRS.2012.6421223]
相关作者
相关机构