海洋三维遥感与海洋剖面激光雷达
Three dimensional remote sensing for oceanography and the
Guanlan ocean profiling Lidar- 2021年25卷第1期 页码:460-500
纸质出版日期: 2021-01-07
DOI: 10.11834/jrs.20210495
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-01-07 ,
扫 描 看 全 文
唐军武,陈戈,陈卫标,赵朝方,贺岩,吴松华,刘秉义,毛志华,何惠馨,杨杰,陈树果,胡连波,何兴道,史久林,郑永超,刘建强,林明森,吴立新,郭华东,蒋兴伟,潘德炉,顾逸东.2021.海洋三维遥感与海洋剖面激光雷达.遥感学报,25(1): 460-500
Tang J W,Chen G,Chen W B,Zhao C F,He Y,Wu S H,Liu B Y,Mao Z H,He H X,Yang J,Chen S G,Hu L B,He X D,Shi J L,Zheng Y C,Liu J Q,Lin M S,Wu L X,Guo H D,Jiang X W,Pan D L and Gu Y D. 2021. Three dimensional remote sensing for oceanography and the Guanlan ocean profiling Lidar. National Remote Sensing Bulletin, 25(1):460-500
本文从海洋与气候变化等重大前沿科学与应用对空间海洋观测系统的需求出发,基于当前国内外空间激光技术水平与前期海洋激光遥感的探索,提出了海洋遥感从二维向三维发展的紧迫性,并将海洋剖面探测激光雷达作为未来“海洋三维遥感”的主要技术手段。本文对近50年国内外激光海洋剖面探测技术的理论与应用、基础性关键探测机理问题,尤其是近10年来的试验性探索及其在多个海洋科学问题中的应用进行了综述。结合中国自主“观澜号”海洋科学卫星计划中海洋剖面探测激光雷达的系统论证与指标要求,提出了未来海洋剖面探测激光雷达发展路线图建议以及中国有望率先在空间海洋剖面激光探测领域取得突破的设想。
Ocean observation is one of the major parts of the global integrated observation system
where ocean remote sensing (or satellite oceanography) takes a key position. Nowadays
there are stronger requirements than ever that ocean remote sensing technology should make direct detection of three-dimensional (3D) stratification structure of the upper ocean. Traditional two-dimensional (2D) remote sensing
based on ocean color (OC)
thermal infrared
and microwave sensors (radiometer
scatterometer
altimeter
and SAR
etc.)
can only detect sea-surface or sea-skin properties
and then retrieve or deduce the profile-structures of the water body. Global Climate Observing System (GCOS) has defined 31 ocean variables as ECVs (Essential Climate Variables)
which is identical to the EOVs (Essential Ocean Variables) defined by the Global Ocean Observation System (GOOS). But
only 11 in those 31 variables can be measured by traditional 2D remote sensing technologies
and yet with some accuracy or uncertainty problems. If 3D remote sensing technology could be developed
half a dozen more variables (namely the subsurface ones) would be acquired from space
which could bring forth great benefits to the ocean and earth observation system. Besides the observation subsurface variables
other critical defects of traditional 2D sensors are the inability of measuring the ecosystem activities and changes under low-light conditions
as that in the arctic ocean
and the incapability of monitoring the vast diel-vertical-migration of zooplankton at dawn/dusk and night. It seems that the active optical sensing system
i.e.
the ocean profiling lidar or oceanographic lidar (not the ones for shallow water bathymetry or mapping)
is currently the only feasible technology that can make direct 3D detection for the upper ocean profiles and work in a whole diel cycle to monitor the plankton activities to facilitate the studies of the life system in ocean. This paper aims to give an overall but concise review of the progress of ocean profiling lidar technology for the past 50 years
especially those of recent 15 years
including the theory
models
techniques
and preliminary experiments and applications practiced in-lab
in-situ and by airborne or spaceborne systems. The airborne oceanic lidar systems mainly refer to elastic polarimetric lidar or HSRL ones from NOAA or NASA
and the spaceborne lidars and their ocean profiling applications
refer mainly to the CALIOP onboard CALIPSO and the ATLAS onboard ICESat-II
though with limited sensing capability and coarse resolution. Some of the key issues of oceanographic lidar sensing are discussed
including the Mueller matrix
volume scattering function (VSF) of complex water constituents
blue-green dual-bands elastic polarimetric
the maximum detecting depth
inelastic scatterings (Brillouin
Raman)
and the stringent engineering restraints
etc. The methods and mechanisms of oceanic lidar to probe the stratified bio-optic properties
NPP and carbon stocks of the euphotic layer
thermal structures of the upper ocean
plankton migration
fish flocks
air-sea interface properties
internal waves
etc.
are given in the view of applications other than in that of instrumentation. The specific and effective applications
based on LiDAR’s unique profiling and night-time sensing ability
include the sensing of changes in the arctic ocean ecosystem during the polar nights
and the vertical-diel-migration of zooplanktons
these are largely missing in traditional ocean color. Monte Carlo (MC) models are powerful and versatile tools for the researches and system designs of oceanic lidars. Lidar MCs are capable of dealing with ray-tracing and polarimetric radiative transfer in a real-3D time and space frame. The MC models from distinguished research groups in ocean optics and lidar sensing are briefly reviewed. From the early 1990s
though left behind by international counterparts in some degree
Chinese experts on oceanographic lidar technology have also made many achievements in almost every aspect concerned
which are reviewed also in this paper. One of the outstanding achievements is the ~90m world record of the deepest detection depth in May 2019
obtained in the Southern China Sea by an airborne lidar system—the blue-green dual-bands oceanic lidar
developed jointly by SIOM/CAS and other institutes. The successful launch of CALIPSO-CALIOP in 2006 was the dawn of spaceborne oceanographic lidar technology. With CALIOP’s residual subsurface signals of backscattering
some tremendous oceanic applications have tried out and well demonstrated the necessity and revolutionary contributions of dedicated future spaceborne missions of oceanic lidar sensing. The technology of lasers and receivers for spaceborne system is much more matured and feasible than 15 years before
at least for the elastic polarimetric profiling lidar. As simulated by various Monte Carlo models
the detection depth of an affordable and engineeringly reliable oceanic lidar
no matter elastic
HSRL
or inelastic
is quite limited within 100m to 150 m with a vertical resolution of 1m or less. This depth may not be satisfactory to those serious oceanographers
but the ability of upper ocean profiling is definitely a break-through of the three dimensional ocean sensing technology. This depth may penetrate over 80% of the global euphotic zone or photosynthetic depth in which most of the ocean-NPP is originated. Along with the introduction of the Guanlan (means watching the waters) satellites project
an ocean science mission focused on three dimensional sensing of the upper ocean and sub-mesoscale phenomena
proposed and initiated by the National Laboratory of Marine Science & Technology (Qingdao)
a road-map of oceanographic profiling lidar series is suggested in 4 stages
from elastic
HSRL
Brillouin and multi-beam push-broom. As the primary and promising candidate sensor of 3D ocean sensing
spaceborne oceanic profiling lidar can be realized in near future. Technically
China has the ability and chance to be the leading runner.
海洋遥感海洋三维遥感激光雷达海洋剖面探测海洋科学卫星
ocean remote sensingocean three-dimensional remote sensingLidarocean profile detectionmarine science satellite
Abshire J B, Riris H, Allan G R, Kawa S R, Sun X L, Hasselbrack W E, Weaver C, Rodriguez M R and Mao J P. 2012. Measuring atmospheric CO2 for the NASA ascends mission: the CO2 laser sounder approach//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany: IEEE: 5665-5668 [DOI: 10.1109/IGARSS.2012.6352326http://dx.doi.org/10.1109/IGARSS.2012.6352326]
Abshire J B, Sun X L, Riris H, Sirota J M, McGarry J F, Palm S, Yi D H and Liiva P. 2005. Geoscience Laser Altimeter System (GLAS) on the ICESat mission: on-orbit measurement performance. Geophysical Research Letters, 32(21): L21S02 [DOI: 10.1029/2005GL024028http://dx.doi.org/10.1029/2005GL024028]
ACE Science Study Team. 2020. Aerosol, Cloud, Ecosystems (ACE) Final Study Report. Center Hampton, VA: National Aeronautics and Space Administration
Adams J T, Aas E, Højerslev N K and Lundgren B. 2002. Comparison of radiance and polarization values observed in the Mediterranean Sea and simulated in a Monte Carlo model. Applied Optics, 41(15): 2724-2733 [DOI: 10.1364/ao.41.002724http://dx.doi.org/10.1364/ao.41.002724]
Adams J T and Kattawar G W. 1997. Polarimetric lidar returns in the ocean: a Monte Carlo simulation//Proceedings Volume 2963, Ocean Optics XIII. Halifax, Nova Scotia, Canada: SPIE: 54-59 [DOI: 10.1117/12.266497http://dx.doi.org/10.1117/12.266497]
Albinet C, Whitehurst A S, Jewell L A, Bugbee K, Laur H, Murphy K J, Frommknecht B, Scipal K, Costa G, Jai B, Ramachandran R, Lavalle M and Duncanson L. 2019. A joint ESA-NASA multi-mission algorithm and analysis platform (MAAP) for biomass, NISAR, and GEDI. Surveys in Geophysics, 40(4): 1017-1027 [DOI: 10.1007/s10712-019-09541-zhttp://dx.doi.org/10.1007/s10712-019-09541-z]
Alford M H, Peacock T, Mackinnon J A, Nash J D, Buijsman M C, Centuroni L R, Chao S Y, Chang M H, Farmer D M, Fringer O B, Fu K H, Gallacher P C, Graber H C, Helfrich K R, Jachec S M, Jackson C R, Klymak J M, Ko D S, Jan S, Johnston T M S, Legg S, Lee I H, Lien R C, Mercier M J, Moum J N, Musgrave R, Park J H, Pickering A I, Pinkel R, Rainville L, Ramp S R, Rudnick D L, Sarkar S, Scotti A, Simmons H L, St Laurent L C, Venayagamoorthy S K, Wang Y H, Wang J, Yang Y J, Paluszkiewicz T, Tang T Y. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550): 65-69 [DOI: 10.1038/nature14399http://dx.doi.org/10.1038/nature14399]
Alpers W. 1985. Theory of radar imaging of internal waves. Nature, 314(6008): 245-247 [DOI: 10.1038/314245a0http://dx.doi.org/10.1038/314245a0]
Andersen V, Nival P, Caparroy P and Gubanova A. 2001. Zooplankton community during the transition from spring bloom to oligotrophy in the open NW Mediterranean and effects of wind events. 1. Abundance and specific composition. Journal of Plankton Research, 23(3): 227-242 [DOI: 10.1093/plankt/23.3.227http://dx.doi.org/10.1093/plankt/23.3.227]
Ansmann A, Wandinger U, Le Rille O, Lajas D and Straume A G. 2007. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations. Applied Optics, 46(26): 6606-6622 [DOI: 10.1364/AO.46.006606http://dx.doi.org/10.1364/AO.46.006606]
Arnone R, Derada S, Ladner S and Trees C. 2012. Probing the subsurface ocean processes using ocean LIDARS//Proceedings Volume 8372, Ocean Sensing and Monitoring IV. Baltimore, Maryland, United States: SPIE: 83720O [DOI: 10.1117/12.921103http://dx.doi.org/10.1117/12.921103]
Artlett C P and Pask H M. 2015. Optical remote sensing of water temperature using Raman spectroscopy. Optics Express, 23(25): 31844-31856 [DOI: 10.1364/oe.23.031844http://dx.doi.org/10.1364/oe.23.031844]
Artlett C P and Pask H M. 2017. New approach to remote sensing of temperature and salinity in natural water samples. Optics Express, 25(3): 2840-2851 [DOI: 10.1364/oe.25.002840http://dx.doi.org/10.1364/oe.25.002840]
Behrendt A. 2005. Temperature measurements with lidar//Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. New York: Springer: 273-305 [DOI: 10.1007/0-387-25101-4_10http://dx.doi.org/10.1007/0-387-25101-4_10]
Behrenfeld M J, Gaube P, Della Penna A, O’Malley R T, Burt W J, Hu Y X, Bontempi P S, Steinberg D K, Boss E S, Siegel D A, Hostetler C A, Tortell P D and Doney S C. 2019. Global satellite-observed daily vertical migrations of ocean animals. Nature, 576(7786): 257-261 [DOI: 10.1038/s41586-019-1796-9http://dx.doi.org/10.1038/s41586-019-1796-9]
Behrenfeld M J, Hu Y X, Hostetler C A, Dall’Olmo G, Rodier S D, Hair J W and Trepte C R. 2013. Space-based lidar measurements of global ocean carbon stocks. Geophysical Research Letters, 40(16): 4355-4360 [DOI: 10.1002/grl.50816http://dx.doi.org/10.1002/grl.50816]
Behrenfeld M J, Hu Y X, O’Malley R T, Boss E S, Hostetler C A, Siegel D A, Sarmiento J L, Schulien J, Hair J W, Lu X M, Rodier S and Scarino A J. 2017. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nature Geoscience, 10(2): 118-122 [DOI: 10.1038/ngeo2861http://dx.doi.org/10.1038/ngeo2861]
Bogucki D J and Spiers G. 2013. What percentage of the oceanic mixed layer is accessible to marine lidar? Global and the Gulf of Mexico prospective. Optics Express, 21(20): 23997-24014 [DOI: 10.1364/oe.21.023997http://dx.doi.org/10.1364/oe.21.023997]
Boyd P W, Claustre H, Levy M, Siegel D A and Weber T. 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568(7752): 327-335 [DOI: 10.1038/s41586-019-1098-2http://dx.doi.org/10.1038/s41586-019-1098-2]
Buesseler K O, Boyd P W, Black E E and Siegel D A. 2020. Metrics that matter for assessing the ocean biological carbon pump. Proceedings of the National Academy of Sciences of the United States of America, 117(18): 9679-9687 [DOI: 10.1073/pnas.1918114117http://dx.doi.org/10.1073/pnas.1918114117]
Bunkin A F, Klinkov V K, Lednev V N, Lushnikov D L, Marchenko A V, Morozov E G, Pershin S M and Yulmetov R N. 2012. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman lidar. Applied Optics, 51(22): 5477-5485 [DOI: 10.1364/AO.51.005477http://dx.doi.org/10.1364/AO.51.005477]
Burt W J and Tortell P D. 2018. Observations of zooplankton diel vertical migration from high-resolution surface ocean optical measurements. Geophysical Research Letters, 45(24): 13396-13404 [DOI: 10.1029/2018GL079992http://dx.doi.org/10.1029/2018GL079992]
Cao F M, Jin W Q, Huang Y W, Li H L, Wang X, Chu K L and Liu J. 2011. Review of underwater opto-electrical imaging technology and equipment (I)—Underwater laser range-gated imaging technology. Infrared Technology, 33(2): 63-69
曹峰梅, 金伟其, 黄有为, 李海兰, 王霞, 储开丽, 刘敬. 2011. 水下光电成像技术与装备研究进展(上)——水下激光距离选通技术. 红外技术, 33(2): 63-69
Cao X Z, Lu F Y, Wang X and Liu Q. 2019. Frequency stabilization of an injection seeded Nd:YAG ring oscillator by ramp-fire technique with a RbTiOPO4 modulator. Applied Physics B, 125(9): 164 [DOI: 10.1007/s00340-019-7278-9http://dx.doi.org/10.1007/s00340-019-7278-9]
Carrera P, Churnside J H, Boyra G, Marques V, Scalabrin C and Uriarte A. 2006. Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe. ICES Journal of Marine Science, 63(9): 1736-1750 [DOI: 10.1016/j.icesjms.2006.07.004http://dx.doi.org/10.1016/j.icesjms.2006.07.004]
Chami M, Thirouard A and Harmel T. 2014. POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols. Optics Express, 22(21): 26403-26428 [DOI: 10.1364/oe.22.026403http://dx.doi.org/10.1364/oe.22.026403]
Chance K and Kurucz R L. 2010. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(9): 1289-1295 [DOI: 10.1016/j.jqsrt.2010.01.036http://dx.doi.org/10.1016/j.jqsrt.2010.01.036]
Chen G, Tang J W, Zhao C F, Wu S S, Yu F J, Ma C Y, Xu Y S, Chen W B, Zhang Y H, Liu J and Wu L X. 2019. Concept design of the “Guanlan” science mission: China’s novel contribution to space oceanography. Frontiers in Marine Science, 6: 194 [DOI: 10.3389/fmars.2019.00194http://dx.doi.org/10.3389/fmars.2019.00194]
Chen J, He X Q, Xing X G, Xing Q G, Liu Z L and Pan D L. 2020. An inherent optical properties data processing system for achieving consistent ocean color products from different ocean color satellites. Journal of Geophysical Research: Oceans, 125(1): e2019JC015811 [DOI: 10.1029/2019JC015811http://dx.doi.org/10.1029/2019JC015811]
Chen P and Pan D L. 2019. Ocean optical profiling in South China Sea Using Airborne LiDAR. Remote Sensing, 11(15): 1826 [DOI: 10.3390/rs11151826http://dx.doi.org/10.3390/rs11151826]
Chen P, Pan D L, Mao Z H and Liu H. 2019a. Semi-analytic Monte Carlo model for oceanographic lidar systems: lookup table method used for randomly choosing scattering angles. Applied Sciences (Switzerland), 9(1): 48 [DOI: 10.3390/app9010048http://dx.doi.org/10.3390/app9010048]
Chen P, Pan D L, Mao Z H and Liu H. 2019b. Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer. Optics and Laser Technology, 111: 1-5 [DOI: 10.1016/j.optlastec.2018.09.028http://dx.doi.org/10.1016/j.optlastec.2018.09.028]
Chen S G, Xue C, Zhang T L, Hu L B, Chen G and Tang J W. 2019. Analysis of the optimal wavelength for oceanographic lidar at the global scale based on the inherent optical properties of water. Remote Sensing, 11(22): 2705 [DOI: 10.3390/rs11222705http://dx.doi.org/10.3390/rs11222705]
Chen S Z, Zhang X L, Wang B, Zhao W J, Zhang K K, Zhao Q and Wu Y S. 2016. Review on the progress of water surface acoustic wave inspection for the laser-acoustic detection technique. Journal of Ocean Technology, 35(3): 1-7
陈世哲, 张晓琳, 王波, 赵维杰, 张可可, 赵强, 吴玉尚. 2016. 激光-声联合探测中水表面声波检测方法进展. 海洋技术学报, 35(3): 1-7 [DOI: 10.3969/j.issn.1003-2029.2016.03.001http://dx.doi.org/10.3969/j.issn.1003-2029.2016.03.001]
Chen W B and Hou X. 2016. Laser in Space Application. Beijing: National Defense Industry Press
陈卫标, 侯霞. 2016. 空间应用激光器. 北京: 国防工业出版社
Chen W B, Wu D, Zhang T L and Liu Z S. 1998. Method and experiment for measuring sea surface chlorophyll concentration using Lidar. Oceanlogia et Limnologia Sinica, 29(3): 255-260
陈卫标, 吴东, 张亭禄, 刘智深. 1998. 海洋表层叶绿素浓度的激光雷达测量方法和海上实验. 海洋与湖沼, 29(3): 255-260
Chen X Z and Fan W. 2015. Theory and Technology of Fishery Remote Sensing Application. Beijing: Science Press
陈雪中, 樊伟. 2015. 渔业遥感应用理论与技术. 北京: 科学出版社
Chen Z W, Li Q X and Li Y. 2018. Comparison and analysis of sea surface salinity measurement method and data between SMOS and Aquarius. Aerospace Shanghai, 35(2): 37-48
陈之薇, 李青侠, 李炎. 2018. SMOS与Aquarius卫星海表盐度测量方法及数据的对比分析. 上海航天, 35(2): 37-48
Chipman R A. 1995. Polarimetry//Handbook of Optics II. 2nd ed. New York: McGraw-Hill
Chipman R A. 2010. Mueller matrices//Bass M. Handbook of Optics I. 3rd ed. New York: McGraw-Hill
Churnside J H. 2010. Lidar signature from bubbles in the sea. Optics Express, 18(8): 8294-8299 [DOI: 10.1364/oe.18.008294http://dx.doi.org/10.1364/oe.18.008294]
Churnside J H. 2014. Review of profiling oceanographic lidar. Optical Engineering, 53(5): 051405 [DOI: 10.1117/1.oe.53.5.051405http://dx.doi.org/10.1117/1.oe.53.5.051405]
Churnside J H. 2015. Bio-optical model to describe remote sensing signals from a stratified ocean. Journal of Applied Remote Sensing, 9(1): 095989 [DOI: 10.1117/1.jrs.9.095989http://dx.doi.org/10.1117/1.jrs.9.095989]
Churnside J H, Bravo H E, Naugolnykh K A and Fuks I M. 2008. Effects of underwater sound and surface ripples on scattered laser light. Acoustical Physics, 54(2): 204-209 [DOI: 10.1134/S1063771008020073http://dx.doi.org/10.1134/S1063771008020073]
Churnside J H, Hair J W, Hostetler C A and Scarino A J. 2018. Ocean backscatter profiling using high-spectral-resolution lidar and a perturbation retrieval. Remote Sensing, 10(12): 2003 [DOI: 10.3390/rs10122003http://dx.doi.org/10.3390/rs10122003]
Churnside J H, Hanan D A, Hanan Z D and Marchbanks R D. 2011. Lidar as a tool for fisheries management//Proceedings Volume 8159, Lidar Remote Sensing for Environmental Monitoring XII. San Diego, California, United States: SPIE [DOI: 10.1117/12.892560http://dx.doi.org/10.1117/12.892560]
Churnside J H and Hunter J R. 1996. Laser remote sensing of epipelagic fishes//Proceedings Volume 2964, CIS Selected Papers: Laser Remote Sensing of Natural Waters: From Theory to Practice. St. Petersburg, Russian Federation: SPIE: 38-53 [DOI: 10.1117/12.258352http://dx.doi.org/10.1117/12.258352]
Churnside J H, Marchbanks R D, Donaghay P L, Sullivan J M, Graham W M and Wells R J D. 2016. Hollow aggregations of moon jellyfish (Aurelia spp.). Journal of Plankton Research, 38(1): 122-130 [DOI: 10.1093/plankt/fbv092http://dx.doi.org/10.1093/plankt/fbv092]
Churnside J H, Marchbanks R D, Lee J H, Shaw J A, Weidemann A and Donaghay P L. 2012. Airborne lidar detection and characterization of internal waves in a shallow fjord. Journal of Applied Remote Sensing, 6(1): 063611 [DOI: 10.1117/1.jrs.6.063611http://dx.doi.org/10.1117/1.jrs.6.063611]
Churnside J H, Marchbanks R D, Vagle S, Bell S W and Stabeno P J. 2020. Stratification, plankton layers, and mixing measured by airborne lidar in the Chukchi and Beaufort seas. Deep Sea Research Part II: Topical Studies in Oceanography, 177: 104742 [DOI: 10.1016/j.dsr2.2020.104742http://dx.doi.org/10.1016/j.dsr2.2020.104742]
Churnside J H, McCarty B J and Lu X M. 2013. Subsurface ocean signals from an orbiting polarization lidar. Remote Sensing, 5(7): 3457-3475 [DOI: 10.3390/rs5073457http://dx.doi.org/10.3390/rs5073457]
Churnside J H and McGillivary P A. 1991. Optical properties of several Pacific fishes. Applied Optics, 30(21): 2925-2927 [DOI: 10.1364/ao.30.002925http://dx.doi.org/10.1364/ao.30.002925]
Churnside J H, Ostrovsky L A and Veenstra T S. 2009. Thermal footprints of whales. Oceanography, 22(1): 206-209 [DOI: 10.5670/oceanog.2009.20http://dx.doi.org/10.5670/oceanog.2009.20]
Churnside J H, Sawada K and Okumura T. 2001a. A comparison of airborne LIDAR and echo sounder performance in fisheries. The Journal of the Marine Acoustics Society of Japan, 28(3): 175-187
Churnside J H and Shaw J A. 2020. Lidar remote sensing of the aquatic environment: invited. Applied Optics, 59(10): C92-C99 [DOI: 10.1364/ao.59.000c92http://dx.doi.org/10.1364/ao.59.000c92]
Churnside J H, Tatarskii V V and Wilson J J. 1998. Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight. Applied Optics, 37(15): 3105-3112 [DOI: 10.1364/ao.37.003105http://dx.doi.org/10.1364/ao.37.003105]
Churnside J H, Tenningen E and Wilson J J. 2009. Comparison of data-processing algorithms for the lidar detection of mackerel in the Norwegian Sea. ICES Journal of Marine Science, 66(6): 1023-1028 [DOI: 10.1093/icesjms/fsp026http://dx.doi.org/10.1093/icesjms/fsp026]
Churnside J H and Thorne R E. 2005. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton. Applied Optics, 44(26): 5504-5511 [DOI: 10.1364/AO.44.005504http://dx.doi.org/10.1364/AO.44.005504]
Churnside J H, Wells R J D, Boswell K M, Quinlan J A, Marchbanks R D, McCarty B J and Sutton T T. 2017. Surveying the distribution and abundance of flying fishes and other epipelagics in the northern Gulf of Mexico using airborne lidar. Bulletin of Marine Science, 93(2): 591-609 [DOI: 10.5343/bms.2016.2017http://dx.doi.org/10.5343/bms.2016.2017]
Churnside J H, Wilson J J and Tatarskii V V. 1997. Lidar profiles of fish schools. Applied Optics, 36(24): 6011-6020 [DOI: 10.1364/ao.36.006011http://dx.doi.org/10.1364/ao.36.006011]
Churnside J H, Wilson J J and Tatarskii V V. 2001b. Airborne lidar for fisheries applications. Optical Engineering, 40(3): 406-414 [DOI: 10.1117/1.1348000http://dx.doi.org/10.1117/1.1348000]
Collins D J, Bell J A, Zanoni R, McDermid I S, Breckinridge J B and Sepulveda C A. 1984. Recent progress in the measurement of temperature and salinity by optical scattering//Proceedings Volume 0489, Ocean Optics VII. Monterey, United States: SPIE [DOI: 10.1117/12.943311http://dx.doi.org/10.1117/12.943311]
Cox C and Munk W. 1954. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. Journal of the Optical Society of America, 44(11): 838-850 [DOI: 10.1364/josa.44.000838http://dx.doi.org/10.1364/josa.44.000838]
Coyle D B, Rabine D L, Poulios D, Blair J B, Stysley P R, Kay R, Clarke G and Bufton J. 2013. Fiber scanning array for 3 dimensional topographic imaging//Optics InfoBase Conference Papers. Arlington, Virginia United States: OSA [DOI: 10.1364/aopt.2013.jtu4a.24http://dx.doi.org/10.1364/aopt.2013.jtu4a.24]
Crowell S, Rayner P, Zaccheo S and Moore B. 2015. Impacts of atmospheric state uncertainty on O2 measurement requirements for the ASCENDS mission. Atmospheric Measurement Techniques, 8: 2685-2697 [DOI: 10.5194/amt-8-2685-2015http://dx.doi.org/10.5194/amt-8-2685-2015]
Cui X Y, Tao Y T, Liu Q, Xu P T, Liu Z P, Wang X B, Chen Y, Zhou Y D and Liu D. 2020. Software to simulate spaceborne oceanic lidar returns using semianalytic Monte Carlo technique. Infrared and Laser Engineering, 49(2): 0203009
崔晓宇, 陶雨婷, 刘群, 徐沛拓, 刘志鹏, 王晓彬, 陈扬, 周雨迪, 刘东. 2020. 采用半解析蒙特卡洛技术模拟星载海洋激光雷达回波信号的软件. 红外与激光工程, 49(2): 0203009 [DOI: 10.3788/IRLA202049.0203009http://dx.doi.org/10.3788/IRLA202049.0203009]
Cullen J J. 2015. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?. Annual Review of Marine Science, 7: 207-239 [DOI: 10.1146/annurev-marine-010213-135111http://dx.doi.org/10.1146/annurev-marine-010213-135111]
da Silva J C B, Buijsman M C and Magalhaes J M. 2015. Internal waves on the upstream side of a large sill of the Mascarene Ridge: a comprehensive view of their generation mechanisms and evolution. Deep Sea Research Part I: Oceanographic Research Papers, 99: 87-104 [DOI: 10.1016/j.dsr.2015.01.002http://dx.doi.org/10.1016/j.dsr.2015.01.002]
Dai S T, Shi F, Huang J H, Deng J, Zheng H, Liu H G, Wu H C, Weng W, Ge Y, Li J H and Lin W X. 2015. High-repetition-rate single-frequency electro-optic Q-switched Nd:YAG laser with feedback controlled prelase//Proceedings Volume 9671, AOPC 2015: Advances in Laser Technology and Applications. Beijing, China: SPIE [DOI: 10.1117/12.2197169http://dx.doi.org/10.1117/12.2197169]
de Boyer Montégut C, Madec G, Fischer A S, Lazar A and Iudicone D. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003 [DOI: 10.1029/2004JC002378http://dx.doi.org/10.1029/2004JC002378]
de Lima Ribeiro A, Artlett C and Pask H. 2019. A LIDAR-compatible, multichannel Raman spectrometer for remote sensing of water temperature. Sensors, 19(13): 2933 [DOI: 10.3390/s19132933http://dx.doi.org/10.3390/s19132933]
de Lima Ribeiro A and Pask H. 2020. Remote sensing of natural waters using a multichannel, lidar-compatible Raman spectrometer and blue excitation. Frontiers in Marine Science, 7: 43 [DOI: 10.3389/fmars.2020.00043http://dx.doi.org/10.3389/fmars.2020.00043]
Deng Q. 2019. Research on self-calibration method of Raman Lidar water vapor detection and development of all-solid-sate system. Hefei: University of Science and Technology of China
邓迁. 2019. 拉曼激光雷达水汽探测自标定方法研究与全固态系统研制. 合肥: 中国科学技术大学
deRada S, Ladner S and Arnone R A. 2012. Coupling ocean models and satellite derived optical fields to estimate LIDAR penetration and detection performance//Proceedings Volume 8532, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2012.
(Edinburgh, United Kingdom: SPIE) [DOI: 10.1117/12.2007323http://dx.doi.org/10.1117/12.2007323]
Diaz J C F, Carter W E, Shrestha R L and Glennie C L. 2013. Lidar remote sensing//Handbook of Satellite Applications. New York: Springer: 757-808 [DOI: 10.1007/978-1-4419-7671-0http://dx.doi.org/10.1007/978-1-4419-7671-0]
Dinnat E P and Yin X. 2019. Remote Sensing Special Issue on Sea Surface Salinity Remote Sensing[EB/OL]. [2020-10-26]https://www.mdpi.com/journal/remotesensing/special_issues/sea_salinityhttps://www.mdpi.com/journal/remotesensing/special_issues/sea_salinity
Dionisi D, Brando V E, Volpe G, Colella S and Santoleri R. 2020. Seasonal distributions of ocean particulate optical properties from spaceborne lidar measurements in Mediterranean and Black sea. Remote Sensing of Environment, 247: 111889 [DOI: 10.1016/j.rse.2020.111889http://dx.doi.org/10.1016/j.rse.2020.111889]
Dolin L S and Dolina I S. 2014. Model of lidar images of nonlinear internal waves. Izvestiya, Atmospheric and Oceanic Physics, 50(2): 196-203 [DOI: 10.7868/s0002351514020023http://dx.doi.org/10.7868/s0002351514020023]
do Carmo J P, Hélière A, Chassat F, Toulemont Y and LeFevre A. 2017. Atlid, ESA atmospheric lidar: manufacture and test results of instrument units//Proceedings Volume 10562, International Conference on Space Optics — ICSO 2016.
(Biarritz, France: SPIE) [DOI: 10.1117/12.2296136http://dx.doi.org/10.1117/12.2296136]
Dolin L S and Dolina I S. 2020. Algorithms for determining the spectral-energy characteristics of a random field of internal waves from fluctuations of lidar echo signals. Applied Optics, 59(10): C78-C86 [DOI: 10.1364/AO.381675http://dx.doi.org/10.1364/AO.381675]
Dolin L S, Dolina I S and Savel’ev V A. 2012. A lidar method for determining internal wave characteristics. Izvestiya, Atmospheric and Oceanic Physics, 48(4): 444-453 [DOI: 10.1134/S0001433812040068http://dx.doi.org/10.1134/S0001433812040068]
Du Z F, Zhang X and Zheng R E. 2020. Research progress and prospect of laser Raman spectroscopy for in-situ detection in deep ocean. Journal of Atmospheric and Environmental Optics, 15(1): 2-12
杜增丰, 张鑫, 郑荣儿. 2020. 拉曼光谱技术在深海原位探测中的研究进展. 大气与环境光学学报, 15(1): 2-12
Ehret G, Bousquet P, Pierangelo C, Alpers M, Millet B, Abshire J B, Bovensmann H, Burrows J P, Chevallier F, Ciais P, Crevoisier C, Fix A, Flamant P, Frankenberg C, Gibert F, Heim B, Heimann M, Houweling S, Hubberten H W, Jöckel P, Law K, Löw A, Marshall J, Agusti-Panareda A, Payan S, Prigent C, Rairoux P, Sachs T, Scholze M and Wirth M. 2017. MERLIN: a French-German space lidar mission dedicated to atmospheric methane. Remote Sensing, 9(10): 1052 [DOI: 10.3390/rs9101052http://dx.doi.org/10.3390/rs9101052]
Emery Y and Fry E S. 1997. Laboratory development of a lidar for measurement of sound velocity in the ocean using Brillouin scattering//Proceedings Volume 2963, Ocean Optics XIII. Halifax, Nova Scotia, Canada: SPIE: 210-215 [DOI: 10.1117/12.266444http://dx.doi.org/10.1117/12.266444]
ESA. 2020. Our Mission[EB/OL]. [2020-10-26]https://www.esa.int/ESA/Our_Missionshttps://www.esa.int/ESA/Our_Missions
Fairall C W, Pezoa S, Moran K and Wolfe D. 2014. An observation of sea-spray microphysics by airborne Doppler radar. Geophysical Research Letters, 41(10): 3658-3665 [DOI: 10.1002/2014GL060062http://dx.doi.org/10.1002/2014GL060062]
Fan W, Zhou S F and Shen J H. 2005. An application of satellite remote sensing-derived marine environment factors to marine fisheries: a review. Marine Sciences, 29(11): 67-72
樊伟, 周甦芳, 沈建华. 2005. 卫星遥感海洋环境要素的渔场渔情分析应用. 海洋科学, 29(11): 67-72
Fennel K and Boss E. 2003. Subsurface maxima of phytoplankton and chlorophyll. Limnology and Oceanography, 48(4): 1521-1534 [DOI: 10.4319/lo.2003.48.4.1521http://dx.doi.org/10.4319/lo.2003.48.4.1521]
Fitzpatrick F, Rudd J, Albert M, Puffenburger K, Schum T, Litvinovitch S, Jones D and Hovis F. 2018. Lifetime testing of a 355-nm, space-qualifiable laser//Proceedings Volume 10779, Lidar Remote Sensing for Environmental Monitoring XVI. Honolulu, Hawaii, United States: SPIE [DOI: 10.1117/12.2325015http://dx.doi.org/10.1117/12.2325015]
Flatau P J, Flatau M, Zaneveld J R V and Mobley C D. 2000. Remote sensing of bubble clouds in sea water. Quarterly Journal of the Royal Meteorological Society, 126(568): 2511-2523 [DOI: 10.1002/qj.49712656808http://dx.doi.org/10.1002/qj.49712656808]
Flatau P J, Piskozub J, Ronald J and Zaneveld V. 1999. Asymptotic light field in the presence of a bubble-layer. Optics Express, 5(5): 120-124 [DOI: 10.1364/oe.5.000120http://dx.doi.org/10.1364/oe.5.000120]
Folkner W M, deVine G, Klipstein W M, McKenzie K, Shaddock D, Spero R, Thompson R, Wuchenich D, Yu N, Stephens M, Leitch J, Davis M, DeCino J, Pace C and Pierce R. 2010. Laser frequency stabilization for GRACE-II. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration [2020-10-26]http://hdl.handle.net/2014/41635http://hdl.handle.net/2014/41635
Freeman A, Donnellan A, Rosen P, Evans D, Graf J, Loverro A, Treuhaft R, Oberto R, Johnson W T K, Simard M, Farr T, Rignot E, Kwok R and Pi X Q. 2008. Deformation, ecosystem structure, and dynamics of ice (DESDynI)//Proceedings of the 7th European Conference on Synthetic Aperture Radar. Friedrichshafen, Germany: EUSAR
Fry E S. 2012. Remote sensing of sound speed in the ocean via Brillouin scattering//Proceedings Volume 8372, Ocean Sensing and Monitoring IV. Baltimore, Maryland, United States: SPIE [DOI: 10.1117/12.923920http://dx.doi.org/10.1117/12.923920]
Fry E S, Emery Y, Quan X H and Katz J W. 1997. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean. Applied Optics, 36(27):6887-6894 [DOI: 10.1364/ao.36.006887http://dx.doi.org/10.1364/ao.36.006887]
Fry E S, Katz J, Liu D H and Walther T. 2002. Temperature dependence of the Brillouin linewidth in water. Journal of Modern Optics, 49(3/4): 411-418 [DOI: 10.1080/09500340110088551http://dx.doi.org/10.1080/09500340110088551]
Garcia H E, Boyer T P, Baranova O K, Locarnini R A, Mishonov A V, Grodsky A, Paver C R, Weathers K W, Smolyar I V, Reagan J R, Seidov D and Zweng M M. 2018. WORLD OCEAN ATLAS 2018: Product Documentation.[EB/OL]. [2020-10-26].https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18documentation.pdfhttps://www.ncei.noaa.gov/sites/default/files/2020-04/woa18documentation.pdf
GCOS. 2016. The Global Observing System for Climate: Implementation Needs. World Meteorological Organization.[EB/OL]. [2020-10-26].https://unfccc.int/sites/default/files/gcos_ip_10oct2016.pdfhttps://unfccc.int/sites/default/files/gcos_ip_10oct2016.pdf
Getzewich B J, Vaughan M A, Hunt W H, Avery M A, Powell K A, Tackett J L, Winker D M, Kar J, Lee K P and Toth T D. 2018. CALIPSO lidar calibration at 532 nm: version 4 daytime algorithm. Atmospheric Measurement Techniques, 11: 6309-6326 [DOI: 10.5194/amt-11-6309-2018http://dx.doi.org/10.5194/amt-11-6309-2018]
Gong W, Dai R, Sun Z, Ren X, Shi J, Li G and Liu D. 2004. Detecting submerged objects by Brillouin scattering. Applied Physics B: Lasers and Optics, 79(5): 635-639 [DOI: 10.1007/s00340-004-1590-7http://dx.doi.org/10.1007/s00340-004-1590-7]
Gordon H R. 1982. Interpretation of airborne oceanic lidar: effects of multiple scattering. Applied Optics, 21(16): 2996-3001 [DOI: 10.1364/AO.21.002996http://dx.doi.org/10.1364/AO.21.002996]
Gordon H R. 1992. Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile. Applied Optics, 31(12): 2116-2129 [DOI: 10.1364/ao.31.002116http://dx.doi.org/10.1364/ao.31.002116]
Gordon H R. 2019. Physical principles of ocean color remote sensing[EB/OL]. [2020-10-26].https://doi.org/10.33596/ppocrs-19https://doi.org/10.33596/ppocrs-19
Gordon H R, Brown O B and Jacobs M M. 1975. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Applied Optics, 14(2): 417-427 [DOI: 10.1364/ao.14.000417http://dx.doi.org/10.1364/ao.14.000417]
Guagliardo J L and Dufilho H L. 1980. Range-resolved Brillouin scattering using a pulsed laser. Review of Scientific Instruments, 51(1): 79-81 [DOI: 10.1063/1.1136023http://dx.doi.org/10.1063/1.1136023]
Guo J J and Liu Z S. 2011. Water Raman spectrum suppression with low-pass filter in underwater in-situ Raman spectroscopy. Spectroscopy and Spectral Analysis, 31(9): 2428-2430
郭金家, 刘智深. 2011. 水下拉曼光谱探测低通滤光片水拉曼信号抑制. 光谱学与光谱分析, 31(9): 2428-2430 [DOI: 10.3964/j.issn.1000-0593.2011.09.027http://dx.doi.org/10.3964/j.issn.1000-0593.2011.09.027]
Guo J J, Zhang F, Liu C H, Li Y and Zheng R E. 2017. Raman-fluorescence spectroscopy for underwater in-situ application. Spectroscopy and Spectral Analysis, 37(10): 3099-3102
郭金家, 张锋, 刘春昊, 李颖, 郑荣儿. 2017. 拉曼-荧光联合光谱水下原位探测技术研究. 光谱学与光谱分析, 37(10): 3099-3102) [DOI: 10.3964/j.issn.1000-0593(201710-3099-04]
Guo Y L, Tao B Y, Huang H Q, Wu C F, Song H and Leng J X. 2020. Wide angle volume scattering function measurement methods for particles in water. Infrared and Laser Engineering, 49(2): 0203011
郭乙陆, 陶邦一, 黄海清, 吴超钒, 宋宏, 冷建兴. 2020. 水中颗粒物大角度范围体散射函数测量方法. 红外与激光工程, 49(2): 0203011 [DOI: 10.3788/IRLA202049.0203011http://dx.doi.org/10.3788/IRLA202049.0203011]
Hair J, Hostetler C, Hu Y X, Behrenfeld M, Butler C, Harper D, Hare R, Berkoff T, Cook A, Collins J, Stockley N, Twardowski M, Cetinić I, Ferrar, R and Mack T. 2016. Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar. EPJ Web of Conferences, 119: 22001 [DOI: 10.1051/epjconf/201611922001http://dx.doi.org/10.1051/epjconf/201611922001]
Han G J, Zhu J and Zhou G Q. 2004. Salinity estimation using the T-S relation in the context of variational data assimilation. Journal of Geophysical Research: Oceans, 109(C3): C03018 [DOI: 10.1029/2003jc001781http://dx.doi.org/10.1029/2003jc001781]
Hancock S, Armston J, Hofton M, Sun X L, Tang H, Duncanson L I, Kellner J R and Dubayah R. 2019. The GEDI simulator: a large-footprint waveform lidar simulator for calibration and validation of spaceborne missions. Earth and Space Science, 6(2): 294-310 [DOI: 10.1029/2018EA000506http://dx.doi.org/10.1029/2018EA000506]
Harmel T, Hieronymi M, Slade W, Röttgers R, Roullier F and Chami M. 2016. Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols. Optics Express, 24(2): A234-A256 [DOI: 10.1364/oe.24.00a234http://dx.doi.org/10.1364/oe.24.00a234]
He Q Y and Zong S G. 2019. Analysis and thinking about the development of air and water crossed laser acoustic technology. Laser and Infrared, 49(1): 3-8
何奇毅, 宗思光. 2019. 跨空水介质激光声技术发展分析与思考. 激光与红外, 49(1): 3-8
He X D, Wei H J, Shi J L, Liu J, Li S J, Chen W and Mo X F. 2012. Experimental measurement of bulk viscosity of water based on stimulated Brillouin scattering. Optics Communications, 285(20): 4120-4124 [DOI: 10.1016/j.optcom.2012.05.062http://dx.doi.org/10.1016/j.optcom.2012.05.062]
He X D, Shi J L, Chen X G, Liu J and Li S J. 2014. Research on laser Brillouin scattering in fluid//The 15th National Optical Testing Academic Exchange Conference. Nanchang: Nanchang Hangkong University (何兴道, 史久林, 陈学岗, 刘娟, 李淑静. 2014. 流体中的激光布里渊散射研究//第十五届全国光学测试学术交流会. 南昌: 南昌航空大学)
He Y, Hu S J, Chen W B, Zhu X L, Wang Y X, Yang Z, Zhu X, Lv D L, Yu J Y, Huang T C, Xi X H, Qu S and Yao B. 2018. Research progress of domestic airborne dual-frequency Lidar detection technology. Laser and Optoelectronics Progress, 55(8): 6-16
贺岩, 胡善江, 陈卫标, 朱小磊, 王永星, 杨忠, 朱霞, 吕德亮, 俞家勇, 黄田程, 习小环, 瞿帅, 姚斌. 2018. 国产机载双频激光雷达探测技术研究进展. 激光与光电子学进展, 55(8): 6-16 [DOI: 10.3788/LOP55.082801http://dx.doi.org/10.3788/LOP55.082801]
He Y, Tian M Y, Lv D L, Chen W B, Zhu X L, Hu S J, Geng L M and Liu J Q. 2015. Parameter design and performance analysis of airborne dual-frequency lidar system//2015 Infrared and Remote Sensing Technology and Application Seminar and Interdisciplinary Forum Proceedings. Shanghai: Shanghai Infrared and Remote Sensing Society (贺岩, 田茂义, 吕德亮, 陈卫标, 朱小磊, 胡善江, 耿立明, 刘继桥. 2015. 机载双频激光雷达系统参数设计和性能分析//2015年红外、遥感技术与应用研讨会暨交叉学科论坛论文集. 上海: 上海市红外与遥感学会)
He Y, Zhou T H, Chen W B, Zhu X L and Hu S J. 2016. Key technology research of laser communication between underwater and airborne platform. Science and Technology Information, 14(1): 176
贺岩, 周田华, 陈卫标, 朱小磊, 胡善江. 2016. 水下与空中平台蓝绿激光通信关键技术研究. 科技资讯, 14(1): 176 [DOI: 10.3969/j.issn.1672-3791.2016.01.101http://dx.doi.org/10.3969/j.issn.1672-3791.2016.01.101]
He Y J, Zuo X Z and Zheng Y J. 2020. Comparison of UAVs between China and the United States and its enlightenment. China Modern Educational Equipment, (5): 36-39
何江彦, 左宪章, 郑翌洁. 2020. 中美无人机对比及其启示. 中国现代教育装备, (5): 36-39 [DOI: 10.13492/j.cnki.cmee.2020.05.013]
Henson R. 2008. Satellite Observations to benefit Science and Society: Recommended Missions for the Next Decade. National Research Council[EB/OL]. [2020-10-26]http://www.nap.edu/catalog/11952.htmlhttp://www.nap.edu/catalog/11952.html
Hickman G D, Harding J M, Carnes M, Pressman A, Kattawar G W and Fry E S. 1991. Aircraft laser sensing of sound velocity in water: Brillouin scattering. Remote Sensing of Environment, 36(3): 165-178 [DOI: 10.1016/0034-4257(91)90054-Ahttp://dx.doi.org/10.1016/0034-4257(91)90054-A]
Hill V J and Zimmerman R C. 2010. Estimates of primary production by remote sensing in the Arctic Ocean: assessment of accuracy with passive and active sensors. Deep Sea Research Part I: Oceanographic Research Papers, 57(10): 1243-1254 [DOI: 10.1016/j.dsr.2010.06.011http://dx.doi.org/10.1016/j.dsr.2010.06.011]
Hirschberg J G and Byrne J D. 1984. Rapid underwater ocean measurements using Brillouin scattering//Proceedings Volume 0489, Ocean Optics VII. Monterey, United States: SPIE: 270-276 [DOI: 10.1117/12.943312http://dx.doi.org/10.1117/12.943312]
Hirschberg J G, Byrne J D and Wouters A W. 1979. Use of Brillouin and Raman scattering to measure temperature and salinity below the water surface//Proceedings of Waste Heat Management and Utilization Conference. New York, USA: Hemisphere Publishing Corporation: 1427-1435
Hooper W P and James J E. 2000. Lidar observations of ship spray plumes. Journal of the Atmospheric Sciences, 57(16): 2649-2655 [DOI: 10.1175/1520-0469(2000)057<2649:LOOSSP>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(2000)057<2649:LOOSSP>2.0.CO;2]
Hostetler C A, Behrenfeld M J, Hu Y X, Hair J W and Schulien J A. 2018. Spaceborne lidar in the study of marine systems. Annual Review of Marine Science, 10: 121-147 [DOI: 10.1146/annurev-marine-121916-063335http://dx.doi.org/10.1146/annurev-marine-121916-063335]
Hostetler C, Hair J, Ferrare R, Hu Y X, Behrenfeld M, Burton S, Butler C, Scarino A J, Mueller D, Chemyakin E and Sawamura P. 2015. Aerosol-cloud-ocean lidar mission concepts and airborne science demonstration[EB/OL]. [2020-10-26].http://hdl.handle.net/2060/20160007430http://hdl.handle.net/2060/20160007430
Hovenier J W. 1994. Structure of a general pure Mueller matrix. Applied Optics, 33(36): 8318-8324 [DOI: 10.1364/AO.33.008318http://dx.doi.org/10.1364/AO.33.008318]
Hovis F E, Edelman J, Schum T, Rudd J and Andes K. 2008. Recent progress on single frequency lasers for space and high altitude aircraft applications//Proceedings Volume 6871, Solid State Lasers XVII: Technology and Devices. San Jose, California, United States: SPIE: 68710E [DOI: 10.1117/12.768278http://dx.doi.org/10.1117/12.768278]
Hu C M. 2011. An empirical approach to derive MODIS ocean color patterns under severe sun glint. Geophysical Research Letters, 38(1): L01603 [DOI: 10.1029/2010GL045422http://dx.doi.org/10.1029/2010GL045422]
Hu Q X. 2018. US AN/AES-1 airborne laser mine detection system. Ordnance Knowledge, (4): 36-39
胡群星. 2018. 美国AN/AES-1机载激光水雷探测系统. 兵器知识, (4): 36-39 [DOI: 10.19437/j.cnki.11-1470/tj.2018.04.010]
Hu S J, He Y, Chen W B, Zhu X L, Zang H G, Lv D L, Tian M Y, Yu J Y, Tao B Y, Huang T C, Wang C, Xi X H, Zhang X L and Qu S. 2018. Design of airborne dual-frequency laser radar system. Infrared and Laser Engineering, 47(9): 0930001
胡善江, 贺岩, 陈卫标, 朱小磊, 臧华国, 吕德亮, 田茂义, 俞家勇, 陶邦一, 黄田程, 王成, 习晓环, 张晓丽, 瞿帅. 2018. 机载双频激光雷达系统设计和研制. 红外与激光工程, 47(9): 0930001 [DOI: 10.3788/IRLA201847.0930001http://dx.doi.org/10.3788/IRLA201847.0930001]
Hu Y X, Arnone R A and Churnside J H. 2009. An overview of ocean lidar studies at NRL Stennis, NOAA ESRL and NASA LaRC (Invited)//AGU Fall Meeting Abstracts. San Francisco: AGU
Hu Y X, Behrenfeld M, Hostetler C, Pelon J, Trepte C, Hair J, Slade W, Cetinic I, Vaughan M, Lu X M, Zhai P W, Weimer C, Winker D, Verhappen C C, Butler C, Liu Z Y, Hunt B, Omar A, Rodier S, Lifermann A, Josset D, Hou W L, MacDonnell D and Rhew R. 2016. Ocean lidar measurements of beam attenuation and a roadmap to accurate phytoplankton biomass estimates. EPJ Web of Conferences, 119: 22003 [DOI: 10.1051/epjconf/201611922003http://dx.doi.org/10.1051/epjconf/201611922003]
Hu Y X, Stamnes K, Vaughan M, Pelon J, Weimer C, Wu D, Cisewski M, Sun W, Yang P, Lin B, Omar A, Flittner D, Hostetler C, Trepte C, Winker D, Gibson G and Santa-Maria M. 2008. Sea surface wind speed estimation from space-based lidar measurements. Atmospheric Chemistry and Physics, 8(13): 3593-3601 [DOI: 10.5194/acp-8-3593-2008http://dx.doi.org/10.5194/acp-8-3593-2008]
Hua D X and Wang J. 2018. Research progress of ocean laser remote sensing technology(invited). Infrared and Laser Engineering, 47(9): 903003
华灯鑫, 王骏. 2018. 海洋激光遥感技术研究进展(特邀). 红外与激光工程, 47(9): 903003 [DOI: 10.3788/IRLA201847.0903003http://dx.doi.org/10.3788/IRLA201847.0903003]
Illingworth A J, Barker H W, Beljaars A, Ceccaldi M, Chepfer H, Clerbaux N, Cole J, Delanoë J, Domenech C, Donovan D P, Fukuda S, Kikuchi M, Hogan R J, Hünerbein A, Kollias P, Kubota T, Nakajima T, Nakajima T Y, Nishizawa T, Ohno Y, Okamoto H, Oki R, Sato K, Satoh M, Shephard M W, Velázquez-Blázquez A, Wandinger U, Wehr T and Van Zadelhoff G J. 2015. The earthcare satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bulletin of the American Meteorological Society, 96(8): 1311-1332 [DOI: 10.1175/BAMS-D-12-00227.1http://dx.doi.org/10.1175/BAMS-D-12-00227.1]
Ingmann P, Bensi P and Durand Y. 2008. A-SCOPE-Advanced Space Carbon and climate Observation of Planet Earth. ESA SP-1313/1 Candidate Earth Explorer Core Missions – Reports for Assessment[EB/OL]. [2020-10-26].https://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdfhttps://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf
Jamet C, Ibrahim A, Ahmad Z, Angelini F, Babin M, Behrenfeld M J, Boss E, Cairns B, Churnside J, Chowdhary J, Davis A B, Dionisi D, Duforêt-Gaurier L, Franz B, Frouin R, Gao M, Gray D, Hasekamp O, He X, Hostetler C, Kalashnikova O V, Knobelspiesse K, Lacour L, Loisel H, Martins V, Rehm E, Remer L, Sanhaj I, Stamnes K, Stamnes S, Victori S, Werdell J and Zhai P W. 2019. Going beyond standard ocean color observations: lidar and polarimetry. Frontiers in Marine Science, 6: 251 [DOI: 10.3389/fmars.2019.00251http://dx.doi.org/10.3389/fmars.2019.00251]
Jiang X W, He X Q, Lin M S, Gong F, Ye X M and Pan D L. 2019. Progresses on ocean satellite remote sensing application in China. Haiyang Xuebao, 41(10): 113-124
蒋兴伟, 何贤强, 林明森, 龚芳, 叶小敏, 潘德炉. 2019. 中国海洋卫星遥感应用进展. 海洋学报, 41(10): 113-124 [DOI: 10.3969/j.issn.0253-4193.2019.10.007http://dx.doi.org/10.3969/j.issn.0253-4193.2019.10.007]
Jin X C, Zhu Q K, Pan D L, Gong F and He X Q. 2017. Impact of sea surface temperature on sea surface salinity retrieval by SMOS microwave radiometer. Journal of Remote Sensing, 21(6): 939-947
金旭晨, 朱乾坤, 潘德炉, 龚芳, 何贤强. 2017. 海表温度对SMOS盐度遥感反演精度的影响. 遥感学报, 21(6): 939-947 [DOI: 10.11834/jrs.20176261http://dx.doi.org/10.11834/jrs.20176261]
Kavaya M J, Yu J R, Koch G J, Amzajerdian F, Singh U N and Emmitt G D. 2007. Requirements and technology advances for global wind measurement with a coherent lidar: a shrinking gap//Proceedings Volume 6681, Lidar Remote Sensing for Environmental Monitoring VIII. San Diego, California, United States: SPIE [DOI: 10.1117/12.737428http://dx.doi.org/10.1117/12.737428]
Ketten D R. 2002. Marine mammal auditory systems: a summary of audiometric and anatomical data and implications for underwater acoustic impacts. Polarforschung, 72(2/3): 79-92
Kitchen J C and Zaneveld J R V. 1992. A three-layered sphere model of the optical properties of phytoplankton. Limnology and Oceanography, 37(8): 1680-1690 [DOI: 10.4319/lo.1992.37.8.1680http://dx.doi.org/10.4319/lo.1992.37.8.1680]
Klemas V. 2013. Fisheries applications of remote sensing: an overview. Fisheries Research, 148: 124-136 [DOI: 10.1016/j.fishres.2012.02.027http://dx.doi.org/10.1016/j.fishres.2012.02.027]
Klotz B W, Neuenschwander A and Magruder L A. 2020. High-resolution ocean wave and wind characteristics determined by the ICESat-2 land surface algorithm. Geophysical Research Letters, 47(1): e2019GL085907 [DOI: 10.1029/2019GL085907http://dx.doi.org/10.1029/2019GL085907]
Koestner D, Stramski D and Reynolds R A. 2020. Assessing the effects of particle size and composition on light scattering through measurements of size-fractionated seawater samples. Limnology and Oceanography, 65(1): 173-190 [DOI: 10.1002/lno.11259http://dx.doi.org/10.1002/lno.11259]
Kokhanovsky A A. 2003. Parameterization of the Mueller matrix of oceanic waters. Journal of Geophysical Research: Oceans, 108(6): 3175 [DOI: 10.1029/2001jc001222http://dx.doi.org/10.1029/2001jc001222]
Kong X J, Liu B Y, Yang Q and Li Z P. 2020. Simulation of water optical property measurement with shipborne lidar. Infrared and Laser Engineering, 49(2): 0205010
孔晓娟, 刘秉义, 杨倩, 李忠平. 2020. 船载激光雷达测量水体光学参数的仿真模拟研究. 红外与激光工程, 49(2): 0205010 [DOI: 10.3788/IRLA202049.0205010http://dx.doi.org/10.3788/IRLA202049.0205010]
Kostianoy A G, Ginzburg A I, Kopelevich O V, Kudryavtsev V N, Lavrova O Y, Lebedev S A, Mitnik L M, Mityagina M I, Smirnov V G, Stanichny S V and Troitskaya Y I. 2018. Ocean remote sensing in Russia//Liang S. Comprehensive Remote Sensing, Vol. 8. Oxford: Elsevier: 284-325
Krekov G M, Krekova M M and Shamanaev V S. 1998a. Laser sensing of a subsurface oceanic layer. I. Effect of the atmosphere and wind-driven sea waves. Applied Optics, 37(9): 1589-1595 [DOI: 10.1364/AO.37.001589http://dx.doi.org/10.1364/AO.37.001589]
Krekov G M, Krekova M M and Shamanaev V S. 1998b. Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals. Applied Optics, 37(9): 1596-1601 [DOI: 10.1364/AO.37.001596http://dx.doi.org/10.1364/AO.37.001596]
Krekova M M, Krekov G M, Samokhvalov I V and Shamanaev V S. 1994. Numerical evaluation of the possibilities of remote laser sensing of fish schools. Applied Optics, 33(24): 5715-5720 [DOI: 10.1364/ao.33.005715http://dx.doi.org/10.1364/ao.33.005715]
Lancaster R S, Spinhirne J D and Palm S P. 2005. Laser pulse reflectance of the ocean surface from the GLAS satellite lidar. Geophysical Research Letters, 32(22): L22S10 [DOI: 10.1029/2005GL023732http://dx.doi.org/10.1029/2005GL023732]
Langen J. 2004. ESA SP-12793 ()–WALES–Water Vapour Lidar Experiment in Space. ESA Publications Division.[EB/OL]. [2020-10-26].https://www.esa.int/esapub/sp/sp1279/sp1279_3_WALES.pdfhttps://www.esa.int/esapub/sp/sp1279/sp1279_3_WALES.pdf
Lee K J, Park Y, Bunkin A, Nunes R, Pershin S and Voliak K. 2002. Helicopter-based lidar system for monitoring the upper ocean and terrain surface. Applied Optics, 41(3): 401-406 [DOI: 10.1364/AO.41.000401http://dx.doi.org/10.1364/AO.41.000401]
Lee M E and Lewis M R. 2003. A new method for the measurement of the optical volume scattering function in the Upper Ocean. Journal of Atmospheric and Oceanic Technology, 20(4): 563-571 [DOI: 10.1175/1520-0426(2003)20<563:ANMFTM>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(2003)20<563:ANMFTM>2.0.CO;2]
Lee Z P, Du K P and Arnone R. 2005. A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research: Oceans, 110(C2): C02016 [DOI: 10.1029/2004JC002275http://dx.doi.org/10.1029/2004JC002275]
Lei L. 2016. Remote Sensing of Fishery. Beijing: Ocean Press
雷林. 2016. 海洋渔业遥感. 北京: 海洋出版社
Leonard D A, Caputo B and Hoge F E. 1979. Remote sensing of subsurface water temperature by Raman scattering. Applied Optics, 18(11): 1732-1745 [DOI: 10.1364/AO.18.001732http://dx.doi.org/10.1364/AO.18.001732]
Leonard D A and Sweeney H E. 1988. Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques//Proceedings Volume 0925, Ocean Optics IX. Orlando, FL, United States: SPIE [DOI: 10.1117/12.945749http://dx.doi.org/10.1117/12.945749]
Leonard D A and Sweeney H E. 1990. Comparison of stimulated and spontaneous laser-radar methods for the remote sensing of ocean physical properties//Proceedings Volume 1302, Ocean Optics X. Orlando, FL, United States: SPIE [DOI: 10.1117/12.21471http://dx.doi.org/10.1117/12.21471]
Li G Y, Gao X M, Chen J Y, Zhao Y M, Mo F and Zhang Y. 2019. Data quality analysis of ZY-3 02 satellite laser altimeter. Journal of Remote Sensing, 23(6): 1159-1166
李国元, 高小明, 陈继溢, 赵严铭, 莫凡, 张悦. 2019. 资源三号02星激光测高数据质量分析. 遥感学报, 23(6): 1159-1166 [DOI: 10.11834/jrs.20197548http://dx.doi.org/10.11834/jrs.20197548]
Li K P, He Y, Ma J, Jiang Z Y, Hou C H, Chen W B, Zhu X L, Chen P, Tang J W, Wu S H, Liu F H, Luo Y, Zhang Y F and Chen Y Q. 2020. A dual-wavelength ocean lidar for vertical profiling of oceanic backscatter and attenuation. Remote Sensing, 12(17): 2844 [DOI: 10.3390/rs12172844http://dx.doi.org/10.3390/rs12172844]
Li X P, Liao R, Zhou J L, Leung P T Y, Yan M and Ma H. 2017. Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks. Applied Optics, 56(23): 6520-6530 [DOI: 10.1364/AO.56.006520http://dx.doi.org/10.1364/AO.56.006520]
Li Y, Gao H L, Jasinski M F, Zhang S and Stoll J D. 2019. Deriving high-resolution reservoir bathymetry from ICESat-2 prototype photon-counting lidar and landsat imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7883-7893 [DOI: 10.1109/TGRS.2019.2917012http://dx.doi.org/10.1109/TGRS.2019.2917012]
Li Y, Wan L Y and Liu Q Z. 2011. Application of satellite altimeter data in three-dimension sea temperature and salinity numerical prediction. Acta Oceanologica Sinica, 33(6): 64-72
李云, 万莉颖, 刘钦政. 2011. 卫星高度计资料在三维海温和盐度数值预报中的应用. 海洋学报, 33(6): 64-72
Lian X P, Tan Y H, Huang L M and Zhou L B. 2017. Striking taxonomic differences in summer zooplankton in the northern South China Sea: implication of an extreme cold anomaly. Acta Oceanologica Sinica, 36(10): 87-96 [DOI: 10.1007/s13131-017-0975-5http://dx.doi.org/10.1007/s13131-017-0975-5]
Liang B, Zhu H and Chen W B. 2007. Simulation of laser communication channel from atmosphere to ocean. Acta Optica Sinica, 27(7): 1166-1172
梁波, 朱海, 陈卫标. 2007. 大气到海洋激光通信信道仿真. 光学学报, 27(7): 1166-1172 [DOI: 10.3321/j.issn:0253-2239.2007.07.005http://dx.doi.org/10.3321/j.issn:0253-2239.2007.07.005]
Liang K, Ma Y, Yu Y, Huang J and Li H. 2012. Research on simultaneous measurement of ocean temperature and salinity using Brillouin shift and linewidth. Optical Engineering, 51(6): 066002 [DOI: 10.1117/1.oe.51.6.066002http://dx.doi.org/10.1117/1.oe.51.6.066002]
Liang K, Ma Y, Cheng F, Wang H Y and Lin H. 2008. Error analysis of measuring sea surface temperature based on brim detecting technology. Opto-Electronic Engineering, 35(8): 92-96
梁琨, 马泳, 程飞, 王宏远, 林宏. 2008. 采用边缘探测技术的海表温度测量精度及误差分析. 光电工程, 35(8): 92-96 [DOI: 10.3969/j.issn.1003-501X.2008.08.019http://dx.doi.org/10.3969/j.issn.1003-501X.2008.08.019]
Liang K, Ma Y, Huang J, Li H and Yu Y. 2011. Precise measurement of Brillouin scattering spectrum in the ocean using F-P etalon and ICCD. Applied Physics B, 105(2): 421-425 [DOI: 10.1007/s00340-011-4719-5http://dx.doi.org/10.1007/s00340-011-4719-5]
Lin M S, He X Q, Jia Y J, Bai Y, Ye X M and Gong F. 2019. Advances in marine satellite remote sensing technology in China. Haiyang Xuebao, 41(10): 99-112
林明森, 何贤强, 贾永君, 白雁, 叶小敏, 龚芳. 2019. 中国海洋卫星遥感技术进展. 海洋学报, 41(10): 99-112 [DOI: 10.3969/j.issn.0253-4193.2019.10.007http://dx.doi.org/10.3969/j.issn.0253-4193.2019.10.007]
Liu C L, Kirchengast G, Syndergaard S, Kursinski E R, Sun Y Q, Bai W H and Du Q F. 2017. A review of low Earth orbit occultation using microwave and infrared-laser signals for monitoring the atmosphere and climate. Advances in Space Research, 60(12): 2776-2811 [DOI: 10.1016/j.asr.2017.05.011http://dx.doi.org/10.1016/j.asr.2017.05.011]
Liu D, Xu P T, Zhou Y D, Chen W B, Han B, Zhu X L, He Y, Mao Z H, Le C F, Chen P, Che H C, Liu Z P, Liu Q, Song Q J and Chen S J. 2019a. Lidar remote sensing of seawater optical properties: experiment and Monte Carlo simulation. IEEE Transactions on Geoscience and Remote Sensing, 57(11): 9489-9498 [DOI: 10.1109/TGRS.2019.2926891http://dx.doi.org/10.1109/TGRS.2019.2926891]
Liu D, Zhou Y D, Chen W B, Liu Q, Huang T Y, Liu W, Chen Q K, Liu Z P, Xu P T, Cui X Y, Wang X B, Le C F and Liu C. 2019b. Phase function effects on the retrieval of oceanic high-spectral-resolution lidar. Optics Express, 27(12): A654-A668 [DOI: 10.1364/oe.27.00a654http://dx.doi.org/10.1364/oe.27.00a654]
Liu D, Zhou Y D, Zhu X L, Chen Y, Xu P T, Liu C, Wang C N and Shen X. 2020. Investigation on discrimination characteristics of atmospheric and oceanic high-spectral-resolution lidar. Journal of Atmospheric and Environmental Optics, 15(1): 48-54
刘东, 周雨迪, 朱小磊, 陈扬, 徐沛拓, 刘崇, 王南朝, 沈雪. 2020. 大气海洋高光谱分辨率激光雷达鉴频特性研究. 大气与环境光学学报, 15(1): 48-54 [DOI: 10.3969/j.issn.1673-6141.2020.01.005http://dx.doi.org/10.3969/j.issn.1673-6141.2020.01.005]
Liu D H. 1998. Real time measurement of sound speed in sea water using Brillouin scattering. Acta Acustica, 23(2): 184-188
刘大禾. 1998. 用布里渊散射实现海水中声速的实时遥测. 声学学报, 23(2): 184-188
Liu D H and Katz J W. 1999. Edge technique for the measurements of Brillouin scattering in water. Chinese Journal of Lasers, 26(4): 307-311
刘大禾, Katz J W. 1999. 水中布里渊散射的边缘探测方法. 中国激光, 26(4): 307-311 [DOI: 10.3321/j.issn:0258-7025.1999.04.005http://dx.doi.org/10.3321/j.issn:0258-7025.1999.04.005]
Liu D H, Wang H Y and Zhou J. 2000. Measurements of sound speed in sea water with different salinity and temperature by Brillouin scattering method. Chinese Journal of Lasers, 27(4): 381-384
刘大禾, 汪华英, 周静. 2000. 布里渊散射法测量盐度及温度不同的海水中的声速. 中国激光, 27(4): 381-384
Liu D H, Xu J F, Li R S, Dai R and Gong W P. 2002. Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser. Optics Communications, 203(3/6): 335-340 [DOI: 10.1016/S0030-4018(02)01181-1http://dx.doi.org/10.1016/S0030-4018(02)01181-1]
Liu J, Shi J L, He X D, Li S J, Chen X G and Liu D H. 2015. Comparison of three technique of Brillouin lidar for remote sensing of the ocean. Optics Communications, 352: 161-165 [DOI: 10.1016/j.optcom.2015.04.086http://dx.doi.org/10.1016/j.optcom.2015.04.086]
Liu J T, Chen W B, Song X Q and Liu Z S. 2002. Potential for measurement of water Brillouin scattering with heterodyne lidar. Journal of Ocean University of Qingdao, 32(1): 139-144
刘金涛, 陈卫标, 宋小全, 刘智深. 2002. 外差激光雷达测量水体布里渊散射可行性研究. 青岛海洋大学学报, 32(1): 139-144 [DOI: 10.3969/j.issn.1672-5174.2002.01.018http://dx.doi.org/10.3969/j.issn.1672-5174.2002.01.018]
Liu M G, He Y, Chen W B, Wang Y X, Zhu X, Shi X G, Huang T C and Zhang Y F. 2018. Adaptive depth extraction algorithm for ocean lidar. Chinese Journal of Lasers, 45(10): 271-278
刘梦庚, 贺岩, 陈卫标, 王永星, 朱霞, 石先高, 黄田程, 张宇飞. 2018. 海洋激光雷达的自适应深度提取算法. 中国激光, 45(10): 271-278 [DOI: 10.3788/CJL201845.1010001http://dx.doi.org/10.3788/CJL201845.1010001]
Liu Q, Cui X Y, Chen W B, Liu C, Bai J, Zhang Y P, Zhou Y D, Liu Z P, Xu P T, Che H C and Liu D. 2019c. A semianalytic Monte Carlo radiative transfer model for polarized oceanic lidar: experiment-based comparisons and multiple scattering effects analyses. Journal of Quantitative Spectroscopy and Radiative Transfer, 237: 106638 [DOI: 10.1016/j.jqsrt.2019.106638http://dx.doi.org/10.1016/j.jqsrt.2019.106638]
Liu Q, Liu D, Bai J, Zhang Y P, Zhou Y D, Xu P T, Liu Z P, Chen S J, Che H C, Wu L, Shen Y B and Liu C. 2018. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater. Optics Express, 26(23): 30278-30291 [DOI: 10.1364/oe.26.030278http://dx.doi.org/10.1364/oe.26.030278]
Liu Y X, Guo K, He X F, Xu W X and Feng Y K. 2017. Research progress of airborne laser bathymetry technology. Geomatics and Information Science of Wuhan University, 42(9): 1185-1194
刘焱雄, 郭锴, 何秀凤, 徐文学, 冯义楷. 2017. 机载激光测深技术及其研究进展. 武汉大学学报·信息科学版, 42(9): 1185-1194 [DOI: 10.13203/j.whugis20150779http://dx.doi.org/10.13203/j.whugis20150779]
Liu Z P, Liu D, Xu P T, Wu L, Zhou Y D, Han B, Liu Q, Song Q J, Mao Z H, Zhang Y P, Cui X Y and Chen P. 2019. Retrieval of seawater optical properties with an oceanic lidar. Journal of Remote Sensing, 23(5): 944-951
刘志鹏, 刘东, 徐沛拓, 吴兰, 周雨迪, 韩冰, 刘群, 宋庆君, 毛志华, 张与鹏, 崔晓宇, 陈鹏. 2019. 海洋激光雷达反演水体光学参数. 遥感学报, 23(5): 944-951 [DOI: 10.11834/jrs.20198354http://dx.doi.org/10.11834/jrs.20198354]
Liu Z S. 1990. Estimate of maximum penetration depth of lidar in coastal water of the China Sea//Proceedings Volume 1302, Ocean Optics X. Orlando, FL, United States: SPIE [DOI: 10.1117/12.21476http://dx.doi.org/10.1117/12.21476]
Liu Z S, Liu B Y, Wu S H, Li Z G and Wang Z J. 2008a. High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements. Optics Letters, 33(13): 1485-1487 [DOI: 10.1364/ol.33.001485http://dx.doi.org/10.1364/ol.33.001485]
Liu Z S, Ma J, Zhang J L and Chen W Z. 1991. New, simple method of extracting temperature of liquid water from Raman scattering//Proceedings Volume 1558, Wave Propagation and Scattering in Varied Media II. San Diego, CA, United States: SPIE: 306-316 [DOI: 10.1117/12.49636http://dx.doi.org/10.1117/12.49636]
Liu Z S, Ma S, Wang X and Li Z G. 2008b. Field detection of chlorophyll-a concentration in the sea surface layer by an airborne oceanographic lidar. Journal of Ocean University of China, 7(1): 108-112 [DOI: 10.1007/s11802-008-0108-zhttp://dx.doi.org/10.1007/s11802-008-0108-z]
Liu Z S Zhang J L, Chen W Z, Huang X S and Ma J. 1992. Remote sensing of subsurface water temperature using Raman lidar//Proceedings Volume 1633, Laser Radar VII: Advanced Technology for Applications. Los Angeles, CA, United States: SPIE: 321-329 [DOI: 10.1117/12.59227http://dx.doi.org/10.1117/12.59227]
Lu X M, Hu Y X, Pelon J, Trepte C, Liu K, Rodier S, Zeng S, Lucker P, Verhappen R, Wilson J, Audouy C, Ferrier C, Haouchine S, Hunt B and Getzewich B. 2016. Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements. Optics Express, 24(25): 29001-29008 [DOI: 10.1364/oe.24.029001http://dx.doi.org/10.1364/oe.24.029001]
Lu X M, Hu Y X, Trepte C, Zeng S and Churnside J H. 2014. Ocean subsurface studies with the CALIPSO spaceborne lidar. Journal of Geophysical Research: Oceans, 119(7): 4305-4317 [DOI: 10.1002/2014JC009970http://dx.doi.org/10.1002/2014JC009970]
Luan X N, Li J W, Guo J J and Zheng R E. 2014. Ocean lidar for fishery resources survey and ecological environment monitoring. Acta Laser Biology Sinica, 23(6): 534-541
栾晓宁, 李菁文, 郭金家, 郑荣儿. 2014. 海洋激光雷达在渔业资源调查和生态环境监测中的应用. 激光生物学报, 23(6): 534-541 [DOI: 10.3969/j.issn.1007-7146.2014.06.005http://dx.doi.org/10.3969/j.issn.1007-7146.2014.06.005]
Ma Y, Li H, Yu Y, Yao Y, Fang Y, Zhou B, Huang J, Min J and Liang K. 2013. Experimental analysis on calibration of instrument broadening in a lidar system with Fabry-Perot etalon. Journal of Modern Optics, 60(21): 1967-1975 [DOI: 10.1080/09500340.2013.868552http://dx.doi.org/10.1080/09500340.2013.868552]
Ma Y, Liang K, Lin H and Ji H. 2008. Study on simultaneous measurement of temperature and salinity based on Brillouin scattering. Acta Optica Sinica, 28(8): 1508-1512
马泳, 梁琨, 林宏, 冀航. 2008. 基于布里渊后向散射的海水温度与盐度同步测量研究. 光学学报, 28(8): 1508-1512 [DOI: 10.3321/j.issn:0253-2239.2008.08.015http://dx.doi.org/10.3321/j.issn:0253-2239.2008.08.015]
Maes C and Behringer D. 2000. Using satellite-derived sea level and temperature profiles for determining the salinity variability: a new approach. Journal of Geophysical Research: Oceans, 105(C4): 8537-8547 [DOI: 10.1029/1999jc900279http://dx.doi.org/10.1029/1999jc900279]
Mao Z H, Yuan D P, Chen P, Zhang Z H, Liu H and Liu J Y. 2020. A high spectral resolution lidar system for detecting ocean optical parameters. CN, 201911080500.
X (毛志华, 袁大鹏, 陈鹏, 张镇华, 刘航, 刘建阳. 2020. 一种探测海洋光学参数的高光谱分辨率激光雷达系统. 中国, 201911080500.X)
Marcos, Seymour J R, Luhar M, Durham W M, Mitchell J G, Macke A and Stocker R. 2011. Microbial alignment in flow changes ocean light climate. Proceedings of the National Academy of Sciences of the United States of America, 108(10): 3860-3864 [DOI: 10.1073/pnas.1014576108http://dx.doi.org/10.1073/pnas.1014576108]
Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C K, Schutz B E, Smith B, Yang Y K and Zwally J. 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sensing of Environment, 190: 260-273 [DOI: 10.1016/j.rse.2016.12.029http://dx.doi.org/10.1016/j.rse.2016.12.029]
McClain C, Behrenfeld M, Wilson M, Monosmith B, Quijada M, Meister G, Shu P, Sparr L, Thompson P, Blumentstock K, Holmes A, Martin B and Patt F. 2012. The ocean radiometer for carbon assessment (ORCA): development history within an advanced ocean mission concept, science objectives, design rationale, and sensor prototype description. Greenbelt, Maryland: NASA
McFarland M, Nayak A R, Stockley N, Twardowski M and Sullivan J. 2020. Enhanced light absorption by horizontally oriented diatom colonies. Frontiers in Marine Science, 7: 494 [DOI: 10.3389/fmars.2020.00494http://dx.doi.org/10.3389/fmars.2020.00494]
McGill M J, Yorks J E, Scott V S, Kupchock A W and Selmer P A. 2015. The cloud-aerosol transport system (CATS): a technology demonstration on the International Space Station//Proceedings Volume 9612, Lidar Remote Sensing for Environmental Monitoring XV. San Diego, California, United States: SPIE [DOI: 10.1117/12.2190841http://dx.doi.org/10.1117/12.2190841]
McLean J W, Freeman J D and Walker R E. 1998. Beam spread function with time dispersion. Applied Optics, 37(21): 4701-4711 [DOI: 10.1364/ao.37.004701http://dx.doi.org/10.1364/ao.37.004701]
McManamon P F. 2014. Laser radar: progress and opportunities in active electro-optical sensing//Laser Radar: Progress and Opportunities in Active Electro-Optical Sensing. Washington, DC: The National Academies Press
Menzies R T, Tratt D M and Hunt W H. 1998. Lidar In-space Technology Experiment measurements of sea surface directional reflectance and the link to surface wind speed. Applied Optics, 37(24): 5550-5559 [DOI: 10.1364/ao.37.005550http://dx.doi.org/10.1364/ao.37.005550]
Mignot A, Claustre H, D’Ortenzio F, Xing X, Poteau A and Ras J. 2011. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration. Biogeosciences, 8(8): 2391-2406 [DOI: 10.5194/bg-8-2391-2011http://dx.doi.org/10.5194/bg-8-2391-2011]
Mignot A, Claustre H, Uitz J, Poteau A, D’Ortenzio F and Xing X G. 2014. Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a Bio-Argo float investigation. Global Biogeochemical Cycles, 28(8): 856-876 [DOI: 10.1002/2013GB004781http://dx.doi.org/10.1002/2013GB004781]
Mobley C D. 1994. Light and Water: Radiative Transfer in Natural Waters. San Diego, CA: Academic Press
Montes M A, Churnside J, Lee Z, Gould R, Arnone R and Weidemann A. 2011. Relationships between water attenuation coefficients derived from active and passive remote sensing: a case study from two coastal environments. Applied Optics, 50(18): 2990-2999 [DOI: 10.1364/AO.50.002990http://dx.doi.org/10.1364/AO.50.002990]
Morel A, Claustre H and Gentili B. 2010. The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences, 7(10): 3139-3151 [DOI: 10.5194/bg-7-3139-2010http://dx.doi.org/10.5194/bg-7-3139-2010]
Morel A, Gentili B, Claustre H, Babin M, Bricaud A, Ras J and Tièche F. 2007. Optical properties of the “clearest” natural waters. Limnology and Oceanography, 52(1): 217-229 [DOI: 10.4319/lo.2007.52.1.0217http://dx.doi.org/10.4319/lo.2007.52.1.0217]
NASA. 2017. Calipso Mission[EB/OL]. [2020-10-26].https://www.nasa.gov/mission_pages/calipso/main/index.htmlhttps://www.nasa.gov/mission_pages/calipso/main/index.html
NASA. 2019. Airborne Science Program [EB/OL]. [2020-10-26].https://airbornescience.nasa.gov/https://airbornescience.nasa.gov/
NASA. 2020. NASA Science Mission Posters[EB/OL]. [2020-10-26].https://science.nasa.gov/toolkits/nasa-science-mission-postershttps://science.nasa.gov/toolkits/nasa-science-mission-posters
Ocean Color Team. 2019. Overview of Ocean Color. Xiamen: Xiamen University Press
水色学概览编写组. 2019. 水色学概览. 厦门: 厦门大学出版社
Oh M K, Kang H, Yu N E, Kim B H, Kim J, Lee J and Hyung G W. 2015. Ultimate sensing resolution of water temperature by remote Raman spectroscopy. Applied Optics, 54(10): 2639-3646 [DOI: 10.1364/ao.54.002639http://dx.doi.org/10.1364/ao.54.002639]
Organelli E, Dall’Olmo G, Brewin R J W, Tarran G A, Boss E and Bricaud A. 2018. The open-ocean missing backscattering is in the structural complexity of particles. Nature Communications, 9: 5439 [DOI: 10.1038/s41467-018-07814-6http://dx.doi.org/10.1038/s41467-018-07814-6]
Pan D L and Gong F. 2011. Progress in application technology of satellite ocean remote sensing in China. Journal of Hangzhou Normal University (Natural Science Edition), 10(1): 1-10
潘德炉, 龚芳. 2011. 中国卫星海洋遥感应用技术的新进展. 杭州师范大学学报(自然科学版), 10(1): 1-10 [DOI: 10.3969/j.issn.1674-232x.2011.01.001http://dx.doi.org/10.3969/j.issn.1674-232x.2011.01.001]
Parrish C E, Magruder L A, Neuenschwander A L, Forfinski-Sarkozi N, Alonzo M and Jasinski M. 2019. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sensing, 11(14): 1634 [DOI: 10.3390/rs11141634http://dx.doi.org/10.3390/rs11141634]
Pelton J N, Madry S and Camacho-Lara S. 2013. Handbook of Satellite Applications. New York: Springer [DOI: 10.1007/978-1-4419-7671-0http://dx.doi.org/10.1007/978-1-4419-7671-0]
Peng Z X, Zhou B Z, Chen H, Zhang Z and Tan P. 2018. Study on detection depth of underwater target based on spaceborne laser single photon detection. Laser and Infrared, 48(7): 809-814
彭志兴, 周保琢, 陈华, 张志, 谭平. 2018. 基于单光子的星载激光水下目标探测深度研究. 激光与红外, 48(7): 809-814 [DOI: 10.3969/j.issn.1001-5078.2018.07.002http://dx.doi.org/10.3969/j.issn.1001-5078.2018.07.002]
Pierangelo C, Millet B, Esteve F, Alpers M, Ehret G, Flamant P, Berthier S, Gibert F, Chomette O, Edouart D, Deniel C, Bousquet P and Chevallier F. 2016. MERLIN (Methane Remote Sensing Lidar Mission): an overview. EPJ Web of Conferences, 119: 26001 [DOI: 10.1051/epjconf/201611926001http://dx.doi.org/10.1051/epjconf/201611926001]
Pitarch J, Odermatt D, Kawka M and Wüest A. 2014. Retrieval of vertical particle concentration profiles by optical remote sensing: a model study. Optics Express, 22(S3): A947-A959 [DOI: 10.1364/oe.22.00a947http://dx.doi.org/10.1364/oe.22.00a947]
Popescu A, Schorstein K and Walther T. 2004. A novel approach to a Brillouin-LIDAR for remote sensing of the ocean temperature. Applied Physics B, 79: 955-961 [DOI: 10.1007/s00340-004-1666-4http://dx.doi.org/10.1007/s00340-004-1666-4]
Popescu A and Walther T. 2010. On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime. Applied Physics B, 98(4): 667-675 [DOI: 10.1007/s00340-009-3857-5http://dx.doi.org/10.1007/s00340-009-3857-5]
Poulin C, Zhang X D, Yang P and Huot Y. 2018. Diel variations of the attenuation, backscattering and absorption coefficients of four phytoplankton species and comparison with spherical, coated spherical and hexahedral particle optical models. Journal of Quantitative Spectroscopy and Radiative Transfer, 217: 288-304 [DOI: 10.1016/j.jqsrt.2018.05.035http://dx.doi.org/10.1016/j.jqsrt.2018.05.035]
Proestakis E, Amiridis V, Marinou E, Binietoglou I, Ansmann A, Wandinger U, Hofer J, Yorks J E, Nowottnick E, Makhmudov A, Papayannis A, Pietruczuk A, Gialitaki A G, Apituley A, Szkop A, Muñoz Porcar C, Bortoli D, Dionisi D, Althausen D, Mamali D, Balis D, Nicolae D, Tetoni E, Liberti G L, Baars H, Mattis I, Stachlewska I S, Voudouri K A, Mona L, Mylonaki M, Perrone M R, Costa M J, Sicard M, Papagiannopoulos N, Siomos N, Pasquale B, Pauly R, Engelmann R, Abdullaev S F and Pappalardo G. 2019. EARLINET evaluation of the CATS L2 aerosol backscatter coefficient product. Atmospheric Chemistry and Physics, 19: 1-30 [DOI: 10.5194/acp-2019-45http://dx.doi.org/10.5194/acp-2019-45]
Raković M J, Kattawar G W, Mehrűbeoğlu M, Cameron B D, Wang L V, Rastegar S and Coté G L. 1999. Light backscattering polarization patterns from turbid media: theory and experiment. Applied Optics, 38(15): 3399-3408 [DOI: 10.1364/ao.38.003399http://dx.doi.org/10.1364/ao.38.003399]
Reitebuch O, Lemmerz C, Nagel E, Paffrath U, Durand Y, Endemann M, Fabre F and Chaloupy M. 2009. The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: Instrument design and comparison to satellite instrument. Journal of Atmospheric and Oceanic Technology, 26(12): 2501-2515 [DOI: 10.1175/2009JTECHA1309.1http://dx.doi.org/10.1175/2009JTECHA1309.1]
Ren X Y, Tian Z S, Cui Z H, Xu T C, Liu L B, Yang J G, Wang J and Fu S Y. 2011. Analysis of Brillouin LIDAR equation and maximum detection depth in ocean telemetry//2011 Academic International Symposium on Optoelectronics and Microelectronics Technology. Harbin, China: IEEE: 97-100 [DOI: 10.1109/AISMOT.2011.6159326http://dx.doi.org/10.1109/AISMOT.2011.6159326]
Ren X Y. 2016. Research on Seawater Temperature Remote Sensing Technology based on Laser Scattering. Harbin: Harbin Institute of Technology
任秀云. 2016. 基于激光散射的海水温度遥感技术研究. 哈尔滨: 哈尔滨工业大学
Ren X Y, Cui Z H, Tian Z S, Yang J G, Liu L B and Fu S Y. 2011a. Key technologies and development of Brillouin lidar in ocean telemetry. Laser Technology, 35(6): 808-812, 816
任秀云, 崔子浩, 田兆硕, 杨君国, 刘立宝, 付石友. 2011a. 海洋探测布里渊雷达的关键技术及发展概况. 激光技术, 35(6): 808-812, 816 [DOI: 10.3969/j.issn.1001-3806.2011.06.023http://dx.doi.org/10.3969/j.issn.1001-3806.2011.06.023]
Ren X Y, Liu L B, Yang J G, Wang J and Tian Z S. 2011b. Development and applications of airborne lidar profilometer. Remote Sensing Technology and Application, 26(3): 392-398
任秀云, 刘立宝, 杨君国, 王静, 田兆硕. 2011b. 机载脉冲激光雷达剖面测量技术的进展及应用. 遥感技术与应用, 26(3): 392-398
Ren X Y, Tian Z S, Sun L J and Fu S Y. 2014a. Effects of laser wavelength on both water temperature measurement precision and detection depth of Raman scattering lidar system. Acta Physica Sinica, 63(16): 164209
任秀云, 田兆硕, 孙兰君, 付石友. 2014a. 激光波长对拉曼散射水温遥感系统测温精度及探测深度的影响. 物理学报, 63(16): 164209 [DOI: 10.7498/aps.63.164209http://dx.doi.org/10.7498/aps.63.164209]
Ren X Y, Tian Z S, Yang M, Sun L J and Fu S Y. 2014b. Theoretical study on measuring underwater temperature based on coherent Rayleigh scattering. Acta Physica Sinica, 63(8): 083302
任秀云, 田兆硕, 杨敏, 孙兰君, 付石友. 2014b. 相干瑞利散射海水水下温度测量技术的理论研究. 物理学报, 63(8): 083302 [DOI: 10.7498/aps.63.083302http://dx.doi.org/10.7498/aps.63.083302]
Robinson I S. 2004. Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography. Berlin, Heidelberg: Springer
Roddewig M R, Churnside J H, Hauer F R, Williams J, Bigelow P E, Koel T M and Shaw J A. 2018. Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake. Applied Optics, 57(15): 4111-4116 [DOI: 10.1364/ao.57.004111http://dx.doi.org/10.1364/ao.57.004111]
Rudolf A and Walther T. 2014. Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean. Optical Engineering, 53(5): 051407 [DOI: 10.1117/1.oe.53.5.051407http://dx.doi.org/10.1117/1.oe.53.5.051407]
Sathyendranath S and Platt T. 1989. Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile. Applied Optics, 28(3): 490-495 [DOI: 10.1364/ao.28.000490http://dx.doi.org/10.1364/ao.28.000490]
Savenkov S N. 2015. Principles of the Mueller matrix measurements//Kokhanovsky A, ed. Light Scattering Reviews 9: Light Scattering and Radiative Transfer. Berlin, Heidelberg: Springer: 213-255 [DOI: 10.1007/978-3-642-37985-7_6http://dx.doi.org/10.1007/978-3-642-37985-7_6]
Schorstein K, Fry E S and Walther T. 2009. Depth-resolved temperature measurements of water using the Brillouin lidar technique. Applied Physics B, 97(4): 931-934 [DOI: 10.1007/s00340-009-3661-2http://dx.doi.org/10.1007/s00340-009-3661-2]
Schulien J A, Behrenfeld M J, Hair J W, Hostetler C A and Twardowski M S. 2017. Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar. Optics Express, 25(12): 13577-13587 [DOI: 10.1364/oe.25.013577http://dx.doi.org/10.1364/oe.25.013577]
Shao B, Jaffe J S, Chachisvilis M and Esener S C. 2006. Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements. Optics Express, 14(25): 12473-12484 [DOI: 10.1364/oe.14.012473http://dx.doi.org/10.1364/oe.14.012473]
Shi J, Li G, Gong W, Bai J, Huang Y, Liu Y, Li S and Liu D. 2007. A lidar system based on stimulated Brillouin scattering. Applied Physics B, 86(1): 177-179 [DOI: 10.1007/s00340-006-2305-zhttp://dx.doi.org/10.1007/s00340-006-2305-z]
Shi J, Ouyang M, Gong W, Li S and Liu D. 2008. A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean. Applied Physics B, 90(3/4): 569-571 [DOI: 10.1007/s00340-007-2866-5http://dx.doi.org/10.1007/s00340-007-2866-5]
Shi J L, Tang Y J, Wei H J, Zhang L, Zhang D, Shi J W, Gong W P, He X D, Yang K C and Liu D H. 2012. Temperature dependence of threshold and gain coefficient of stimulated Brillouin scattering in water. Applied Physics B, 108(4): 717-720 [DOI: 10.1007/s00340-012-5142-2http://dx.doi.org/10.1007/s00340-012-5142-2]
Shi J L, Xu J, Luo N N, Wang Q, Zhang Y B, Zhang W W and He X D. 2019. Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water. Acta Physica Sinica, 68(4): 044201
史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道. 2019. 水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制. 物理学报, 68(4): 044201 [DOI: 10.7498/aps.68.20181548http://dx.doi.org/10.7498/aps.68.20181548]
Shu R and Kong W. 2019. Current status and development of space-based active opto-electronics remote sensing technology. Aerospace Shanghai, 36(3): 1-14
舒嵘, 孔伟. 2019. 空间主动光电遥感现状及发展. 上海航天, 36(3): 1-14 [DOI: 10.19328/j.cnki.1006-1630.2019.03.001http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.03.001]
Singh U N, Kavaya M J, Yu J R, Petros M and Koch G J. 2012. Coherent Doppler wind Lidar development at NASA langley research center for NASA space-based 3-D winds mission//26th International Laser Radar Conference. Porto Heli, Greece: [s.n.]
Somavilla R, Rodriguez C, Lavín A, Viloria A, Marcos E and Cano D. 2019. Atmospheric control of deep chlorophyll maximum development. Geosciences, 9(4): 178 [DOI: 10.3390/geosciences90 40178http://dx.doi.org/10.3390/geosciences9040178]
Stegmann P G, Sun B Q, Ding J C, Yang P and Zhang X D. 2019. Study of the effects of phytoplankton morphology and vertical profile on lidar attenuated backscatter and depolarization ratio. Journal of Quantitative Spectroscopy and Radiative Transfer, 225: 1-15 [DOI: 10.1016/j.jqsrt.2018.12.009http://dx.doi.org/10.1016/j.jqsrt.2018.12.009]
Steinberg D K and Landry M R. 2017. Zooplankton and the ocean carbon cycle. Annual Review of Marine Science, 9(1): 413-444 [DOI: 10.1146/annurev-marine-010814-015924http://dx.doi.org/10.1146/annurev-marine-010814-015924]
Stephens G, Winker D, Pelon J, Trepte C, Vane D, Yuhas C, L’Ecuyer T and Lebsock M. 2018. Cloudsat and calipso within the a-train: ten years of actively observing the earth system. Bulletin of the American Meteorological Society, 99(3): 569-581 [DOI: 10.1175/BAMS-D-16-0324.1http://dx.doi.org/10.1175/BAMS-D-16-0324.1]
Stoffelen A, Pailleux J, Källén E, Vaughan J M, Isaksen L, Flamant P, Wergen W, Andersson E, Schyberg H, Culoma A, Meynart R, Endemann M and Ingmann P. 2005. The atmospheric dynamics mission for global wind field measurement. Bulletin of the American Meteorological Society, 86(1): 73-87 [DOI: 10.1175/BAMS-86-1-73http://dx.doi.org/10.1175/BAMS-86-1-73]
Stramski D, Boss E, Bogucki D and Voss K J. 2004. The role of seawater constituents in light backscattering in the ocean. Progress in Oceanography, 61(1): 27-56 [DOI: 10.1016/j.pocean.2004.07.001http://dx.doi.org/10.1016/j.pocean.2004.07.001]
Stramski D and Kiefer D A. 1991. Light scattering by microorganisms in the open ocean. Progress in Oceanography, 28(4): 343-383 [DOI: 10.1016/0079-6611(91)90032-Hhttp://dx.doi.org/10.1016/0079-6611(91)90032-H]
Stramski D, Reynolds R A, Kahru M and Mitchell B G. 1999. Estimation of particulate organic carbon in the ocean from satellite remote sensing. Science, 285(5425): 239-242 [DOI: 10.1126/science.285.5425.239http://dx.doi.org/10.1126/science.285.5425.239]
Suess E. 1980. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, 288(5788): 260-263 [DOI: 10.1038/288260a0http://dx.doi.org/10.1038/288260a0]
Sun D, Zhang D S, Zhang R Y and Wang C S. 2019. Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux. Acta Oceanologica Sinica, 38(6): 32-45 [DOI: 10.1007/s13131-018-1237-xhttp://dx.doi.org/10.1007/s13131-018-1237-x]
Sun L J. 2016. Research on Remote Sensing Technology of ocean Environmental Parameters based on Laser Induced Fluorescence. Harbin: Harbin Institute of Technology
孙兰君. 2016. 基于激光诱导荧光的海洋环境参量遥感探测技术研究. 哈尔滨: 哈尔滨工业大学
Sun W W, Yang G, Chen C, Chang M H, Huang K, Meng X Z and Liu L Y. 2020. Development status and literature analysis of China’s earth observation remote sensing satellites. Journal of Remote Sensing, 24(5): 479-510
孙伟伟, 杨刚, 陈超, 常明会, 黄可, 孟祥珍, 刘良云. 2020. 中国地球观测遥感卫星发展现状及文献分析. 遥感学报, 24(5): 479-510 [DOI: 10.11834/jrs.20209464http://dx.doi.org/10.11834/jrs.20209464]
Svensen Ø, Stamnes J J, Kildemo M, Aas L M S, Erga S R and Frette Ø. 2011. Mueller matrix measurements of algae with different shape and size distributions. Applied Optics, 50(26): 5149-5157 [DOI: 10.1364/AO.50.005149http://dx.doi.org/10.1364/AO.50.005149]
Swan B T. 2015. The CloudSat and CALIPSO Missions[EB/OL]. [2020-10-26]https://www.researchgate.net/publication/277890659_The_CloudSat_and_CALIPSO_Missions?channel=doi&linkId=5575e88308ae75363751a431&showFulltext=truehttps://www.researchgate.net/publication/277890659_The_CloudSat_and_CALIPSO_Missions?channel=doi&linkId=5575e88308ae75363751a431&showFulltext=true
Tang X M and Li G Y. 2019. Earth Observing Satellite Laser Altimeter Data Processing Method and Engineer Practice. Beijing: Science Press
唐新明, 李国元. 2019. 对地观测卫星激光测高数据处理方法与工程实践. 北京: 科学出版社
Tenningen E, Churnside J H, Slotte A and Wilson J J. 2006. Lidar target-strength measurements on Northeast Atlantic mackerel (Scomber scombrus). ICES Journal of Marine Science, 63(4): 677-682 [DOI: 10.1016/j.icesjms.2005.11.018http://dx.doi.org/10.1016/j.icesjms.2005.11.018]
Thompson D R and Gasparovic R F. 1986. Intensity modulation in SAR images of internal waves. Nature, 320(6060): 345-348 [DOI: 10.1038/320345a0http://dx.doi.org/10.1038/320345a0]
Valinia A, Tratt D M, Lotshaw W T, Gaab K M and Komar G J. 2016. NASA ESTO Lidar Technologies Investment Strategy: 2016 Decadal Update.//18th Coherent Laser Radar Conference. 1–5.. USA: Boulder [DOI: 10.1364/LSC.2016.LM3B.2http://dx.doi.org/10.1364/LSC.2016.LM3B.2]
Voss K J and Fry E S. 1984. Measurement of the Mueller matrix for ocean water. Applied Optics, 23(23): 4427-4439 [DOI: 10.1364/ao.23.004427http://dx.doi.org/10.1364/ao.23.004427]
Walker R E, Fraser A B, Mastracci L and Hochheimer B F. 1982. Optical sounding for internal waves in the ocean thermocline//OCEANS 82. Washington, DC, USA: IEEE: 247-250 [DOI: 10.1109/OCEANS.1982.1151940http://dx.doi.org/10.1109/OCEANS.1982.1151940]
Walker R E and McLean J W. 1999. Lidar equations for turbid media with pulse stretching. Applied Optics, 38(12): 2384-2397 [DOI: 10.1364/ao.38.002384http://dx.doi.org/10.1364/ao.38.002384]
Walrafen G E. 1967. Raman spectral studies of the effects of temperature on water structure. The Journal of Chemical Physics, 47(1): 114-126 [DOI: 10.1063/1.1711834http://dx.doi.org/10.1063/1.1711834]
Walrafen G E, Fisher M R, Hokmabadi M S and Yang W H. 1986. Temperature dependence of the low- and high-frequency Raman scattering from liquid water. The Journal of Chemical Physics, 85(12): 6970-6982 [DOI: 10.1063/1.451384http://dx.doi.org/10.1063/1.451384]
Walther T and Fry E S. 2008. Remote sensing of sound speed and temperature in the ocean. Sea Technology, 49(1): 41-45
Wang K, Wang R and Gao S W. 2001. Preliminary study on the diurnal vertical migration of zooplankton in the East China Sea. Oceanologia Et Limnologia Sinica, 32(5): 534-540
王克, 王荣, 高尚武. 2001. 东海浮游动物昼夜垂直移动的初步研究. 海洋与湖沼, 32(5): 534-540
Wang L Z, Cao B C, Luan K F, Zhang X and Shen W. 2017. Analysis of shallow-sea bathymatric mapping based on air-borne LiDAR. Marine Sciences, 41(4): 82-87
王林振, 曹彬才, 栾奎峰, 张翔, 沈蔚. 2017. 基于机载激光技术的浅海水深测绘应用分析. 海洋科学, 41(4): 82-87 [DOI: 10.11759/hykx20160906001http://dx.doi.org/10.11759/hykx20160906001]
Wang M H andBailey S W. 2001. Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products. Applied Optics, 40(27): 4790-4798 [DOI: 10.1364/ao.40.004790http://dx.doi.org/10.1364/ao.40.004790]
Wang P, Wang X Q, Chong J S and Lu Y L. 2016. Optimal parameter estimation method of internal solitary waves in SAR images and the Cramér-Rao bound. IEEE Transactions on Geoscience and Remote Sensing, 54(6): 3143-3150 [DOI: 10.1109/TGRS.2015.2512264http://dx.doi.org/10.1109/TGRS.2015.2512264]
Wang X, Pan H Z, Luo S and Yang X L. 2019. Bathymetric technology and research status of airborne lidar. Hydrographic Surveying and Charting, 39(5): 78-82
王鑫, 潘华志, 罗胜, 杨鑫丽. 2019. 机载激光雷达测深技术研究与进展. 海洋测绘, 39(5): 78-82
Wang X W, Zhou T H and Chen W B. 2010. Study on laser backscattering properties by ship wakes. Acta Optica Sinica, 30(1): 14-18
王向伟, 周田华, 陈卫标. 2010. 舰船尾流激光后向散射特性研究. 光学学报, 30(1): 14-18 [DOI: 10.3788/AOS20103001.0014http://dx.doi.org/10.3788/AOS20103001.0014]
Wang Y, Chen X Q, Lin M, Xiang P, Wang C G and Wang Y G. 2014. Distribution and interannual variation of zooplankton community in the northern South China Sea//Proceedings of the 2014 Annual Conference of Fujian Ocean Society and the 14th Annual Conference of Fujian Association for Science and Technology. Pingtan: Fujian Oceanic Society: 630-632
王雨, 陈兴群, 林茂, 项鹏, 王春光, 王彦国. 2014. 南海北部浮游动物群落的组成分布与年际变化//福建省海洋学会2014年学术年会暨福建省科协第十四届学术年会分会场论文集. 平潭: 福建省海洋学会: 630-632
Weitkamp C. 2005. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. New York: Springer
Whiteman D N, Rush K, Rabenhorst S, Welch W, Cadirola M, McIntire G, Russo F, Adam M, Venable D, Connell R, Veselovskii I, Forno R, Mielke B, Stein B, Leblanc T, McDermid S and Vömel H. 2010. Airborne and ground-based measurements using a high-performance Raman Lidar. Journal of Atmospheric and Oceanic Technology, 27(11): 1781-1801 [DOI: 10.1175/2010JTECHA1391.1http://dx.doi.org/10.1175/2010JTECHA1391.1]
Winker D M. 1997. LITE: results, performance characteristics, and data archive//Proceedings Volume 3218, Laser Radar Ranging and Atmospheric Lidar Techniques. London, United Kingdom: SPIE [DOI: 10.1117/12.295639http://dx.doi.org/10.1117/12.295639]
Winker D M, Hunt W H and Hostetler C A. 2004. Status and performance of the CALIOP lidar//Proceedings Volume 5575, Laser Radar Techniques for Atmospheric Sensing. Maspalomas, Canary Islands, Spain: SPIE [DOI: 10.1117/12.571955http://dx.doi.org/10.1117/12.571955]
Wu D, Hu Y X, McCormick M P, Xu K M, Liu Z Y, Smith B, Omar A H and Chang F L. 2008. Deriving marine-boundary-layer lapse rate from collocated CALIPSO, MODIS, and AMSR-E data to study global low-cloud height statistics. IEEE Geoscience and Remote Sensing Letters, 5(4): 649-652 [DOI: 10.1109/LGRS.2008.2002024http://dx.doi.org/10.1109/LGRS.2008.2002024]
Wu D and Liu Z S. 2002. Selection of brillouin shift discriminator for brillouin lidar. Chinese Journal of Oceanology and Limnology, 20(3): 197-201 [DOI: 10.1007/bf02848847http://dx.doi.org/10.1007/bf02848847]
Wu D, Liu Z S, Zhang K L, Zhang B and He Y. 2003. Lidar measurement of ocean suspended matter. Acta Optica Sinica, 23(2): 245-248
吴东, 刘智深, 张凯临, 张博, 贺岩. 2003. 海洋激光雷达测量海中悬移质. 光学学报, 23(2): 245-248
Wu D, Lu B, Zhang T C and Yan F Q. 2015. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection. Journal of Quantitative Spectroscopy and Radiative Transfer, 153: 88-94 [DOI: 10.1016/j.jqsrt.2014.09.021http://dx.doi.org/10.1016/j.jqsrt.2014.09.021]
Wu D, Wang J H and Yan F Q. 2012a. Estimation of air-sea gas transfer velocity using the CALIPSO Lidar measurements. Acta Optica Sinica, 32(9): 0928001
吴东, 王建华, 阎逢旗. 2012a. 激光雷达数据应用于海气界面气体传输速率的估算. 光学学报, 32(9): 0928001 [DOI: 10.3788/AOS201232.0928001http://dx.doi.org/10.3788/AOS201232.0928001]
Wu D, Zhang X X, Yan F Q and Liu Z Y. 2012b. Sea surface wind speed detection by using the data of CALIPSO Lidar. Acta Optica Sinica, 32(8): 0828002
吴东, 张小雪, 阎逢旗, 刘兆岩. 2012b. 基于星载激光雷达数据的海面风速探测. 光学学报, 32(8): 0828002 [DOI: 10.3788/AOS201232.0828002http://dx.doi.org/10.3788/AOS201232.0828002]
Wu S H, Chen W B, Tang J W, Zhao C F and Chen G. 2020. Lidar concept of “Guanlan” mission for space oceanography. EPJ Web of Conferences, 237: 01012 [DOI: 10.1051/epjconf/202023701012http://dx.doi.org/10.1051/epjconf/202023701012]
Wu S H, Dai G Y, Song X Q, Liu B Y and Liu L P. 2015. Observations of water vapor mixing ratio and flux in Tibetan Plateau. Atmospheric Measurement Techniques Discussions, 8(11): 11925-11952 [DOI: 10.5194/amtd-8-11925-2015http://dx.doi.org/10.5194/amtd-8-11925-2015]
Wu S H, Dai G Y, Song X Q, Liu B Y and Liu L P. 2016a. Observations of water vapor mixing ratio profile and flux in the Tibetan Plateau based on the lidar technique. Atmospheric Measurement Techniques, 9(3): 1399-1413 [DOI: 10.5194/amt-9-1399-2016http://dx.doi.org/10.5194/amt-9-1399-2016]
Wu S H, Liu B Y, Liu J T, Zhai X C, Feng C Z, Wang G N, Zhang H W, Yin J P, Wang X T, Li R Z and Gallacher D. 2016b. Wind turbine wake visualization and characteristics analysis by Doppler lidar. Optics Express, 24(10): A762-A780 [DOI: 10.1364/oe.24.00a762http://dx.doi.org/10.1364/oe.24.00a762]
Wu S H, Song X Q and Liu B Y. 2013. Fraunhofer lidar prototype in the green spectral region for atmospheric boundary layer observations. Remote Sensing, 5(11): 6079-6095 [DOI: 10.3390/rs5116079http://dx.doi.org/10.3390/rs5116079]
Wu S H, Zhai X C and Liu B Y. 2019. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar. Optics Express, 27(2): 1142-1163 [DOI:10.1364/oe.27.001142http://dx.doi.org/10.1364/oe.27.001142]
Xie X B, Wei D K, Ma X H, Li S G, Liu J Q, Zhu X L and Chen W B. 2016. High efficiency single frequency 355 nm all-solid-state UV laser. Laser Physics, 26(5): 055403 [DOI: 10.1088/1054-660X/26/5/055403http://dx.doi.org/10.1088/1054-660X/26/5/055403]
Xing X G, Claustre H, Uitz J, Mignot A, Poteau A and Wang H L. 2014. Seasonal variations of bio-optical properties and their interrelationships observed by Bio-Argo floats in the subpolar North Atlantic. Journal of Geophysical Research: Oceans, 119(10): 7372-7388 [DOI: 10.1002/2014JC010189http://dx.doi.org/10.1002/2014JC010189]
Xing X G, Qiu G Q, Boss E and Wang H L. 2019. Temporal and vertical variations of particulate and dissolved optical properties in the South China Sea. Journal of Geophysical Research: Oceans, 124(6): 3779-3795 [DOI: 10.1029/2018JC014880http://dx.doi.org/10.1029/2018JC014880]
Xu J, Su Y and Liang K. 2019. Ocean bathymetry echo classification method and verification for spaceborne LiDAR. Spacecraft Engineering, 28(6): 73-80
徐嘉, 苏云, 梁琨. 2019. 星载海洋激光雷达测深回波分类方法及验证. 航天器工程, 28(6): 73-80
Xu J F, Li R S, Zhou J and Liu D H. 2001. Measurements of bulk viscosity of water using Brillouin scattering. Acta Optica Sinica, 21(9): 1112-1115
徐建峰, 李荣胜, 周静, 刘大禾. 2001. 用布里渊散射测量水的体粘滞系数. 光学学报, 21(9): 1112-1115 [DOI: 10.3321/j.issn:0253-2239.2001.09.020http://dx.doi.org/10.3321/j.issn:0253-2239.2001.09.020]
Xu J F, Ren X B, Gong W P, Dai R and Liu D H. 2003. Measurement of the bulk viscosity of liquid by Brillouin scattering. Applied Optics, 42(33): 6704-6709 [DOI: 10.1364/ao.42.006704http://dx.doi.org/10.1364/ao.42.006704]
Xue J S, Graber H C, Lund B and Romeiser R. 2013. Amplitudes estimation of large internal solitary waves in the mid-atlantic bight using synthetic aperture radar and marine X-band radar images. IEEE Transactions on Geoscience and Remote Sensing, 51(6): 3250-3258 [DOI: 10.1109/TGRS.2012.2221467http://dx.doi.org/10.1109/TGRS.2012.2221467]
Yan J X, Gong S S and Liu Z S. 2001. Environmental Detection Lidar. Beijing: Science Press
阎吉祥, 龚顺生, 刘智深. 2001. 环境监测激光雷达. 北京: 科学出版社
Yang P, Hong G, Kattawar G W, Minnis P and Hu Y X. 2008. Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II - Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Transactions on Geoscience and Remote Sensing, 46(7): 1948-1957 [DOI: 10.1109/TGRS.2008.916472http://dx.doi.org/10.1109/TGRS.2008.916472]
Yang P, Wei H L, Kattawar G W, Hu Y X, Winker D M, Hostetler C A and Baum B A. 2003. Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase. Applied Optics, 42(21): 4389-4395 [DOI: 10.1364/AO.42.004389http://dx.doi.org/10.1364/AO.42.004389]
Yang Q and He M X. 2012. Effects of wind-generated bubbles on ocean reflectance. Periodical of Ocean University of China, 42(1/2): 153-156
杨倩, 贺明霞. 2012. 风生海中气泡对海洋光学反射比的影响. 中国海洋大学学报, 42(1/2): 153-156 [DOI: 10.3969/j.issn.1672-5174.2012.01.025http://dx.doi.org/10.3969/j.issn.1672-5174.2012.01.025]
You Y, Tonizzo A, Gilerson A A, Cummings M E, Brady P, Sullivan J M, Twardowski M S, Dierssen H M, Ahmed S A and Kattawar G W. 2011. Measurements and simulations of polarization states of underwater light in clear oceanic waters. Applied Optics, 50(24): 4873-4893 [DOI: 10.1364/AO.50.004873http://dx.doi.org/10.1364/AO.50.004873]
You Y, Zhai P W, Kattawar G W and Yang P. 2009. Polarized radiance fields under a dynamic ocean surface: a three-dimensional radiative transfer solution. Applied Optics, 48(16): 3019-3029 [DOI: 10.1364/AO.48.003019http://dx.doi.org/10.1364/AO.48.003019]
Yu A W, Krainak M A, Harding D J, Abshire J B, Sun X, Cavanaugh J and Valett S. 2010a. Efficient swath mapping laser altimetry demonstration instrument incubator program[EB/OL]. [2020-10-26].https://core.ac.uk/reader/10553755https://core.ac.uk/reader/10553755
Yu A W, Krainak M A, Harding D J, Abshire J B, Sun X L, Cavanaugh J, Valett S and Ramos-Izquierdo L. 2012. Multi-beam laser altimeter system simulator for the lidar surface topography (LIST) Mission//Lasers and Electro-Optics (CLEO): Applications and Technology. San Jose, California United States: OSA [DOI: 10.1364/cleo_at.2012.atu2g.6http://dx.doi.org/10.1364/cleo_at.2012.atu2g.6]
Yu A W, Stephen M A, Li S X, Shaw G B, Seas A, Dowdye E, Troupaki E, Liiva P, Poulios D and Mascetti K. 2010b. Space laser transmitter development for ICESat-2 mission//Proceedings Volume 7578, Solid State Lasers XIX: Technology and Devices. San Francisco, California, United States: SPIE [DOI: 10.1117/12.843342http://dx.doi.org/10.1117/12.843342]
Yu Y. 2015. Research on High-Accuracy Remote Sensing of Ocean Temperature and Salinity based on Brillouin Lidar. Wuhan: Huazhong University of Science and Technology
余寅. 2015. 基于布里渊激光雷达的高精度海洋温盐遥感研究. 武汉: 华中科技大学
Yu Y, Ma Y, Li H, Huang J, Fang Y, Liang K and Zhou B. 2014. Simulation of simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin lidar. Laser Physics Letters, 11(3): 036001 [DOI: 10.1088/1612-2011/11/3/036001http://dx.doi.org/10.1088/1612-2011/11/3/036001]
Yuan C, Gong P and Bai Y Q. 2020. Performance assessment of ICESat-2 laser altimeter data for water-level measurement over lakes and reservoirs in China. Remote Sensing, 12(5): 770 [DOI: 10.3390/rs12050770http://dx.doi.org/10.3390/rs12050770]
Yuan D P, Xu J, Liu Z, Hao S G, Shi J L, Luo N N, Li S J, Liu J, Wan S P and He X D. 2018. High resolution stimulated Brillouin scattering lidar using Galilean focusing system for detecting submerged objects. Optics Communications, 427: 27-32 [DOI: 10.1016/j.optcom.2018.06.025http://dx.doi.org/10.1016/j.optcom.2018.06.025]
Yuan J R, Wang Z J, Dong C Z, Liu J Q and Shi X Y. 2019. Satellite system guarantee technology for high detection accuracy and stability of space-borne Lidar. Aerospace Shanghai, 36(3): 28-34
袁金如, 汪自军, 董长哲, 刘继桥, 石新宇. 2019. 星载激光雷达高精高稳探测卫星系统保证技术. 上海航天, 36(3): 28-34 [DOI: 10.19328/j.cnki.1006-1630.2019.03.004http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.03.004]
Zaneveld J R V. 1989. An asymptotic closure theory for irradiance in the sea and its inversion to obtain the inherent optical properties. Limnology and Oceanography, 34(8): 1442-1452 [DOI: 10.4319/lo.1989.34.8.1442http://dx.doi.org/10.4319/lo.1989.34.8.1442]
Zaneveld J R V. 1994. Optical closure: from theory to measurement//Ocean Optics. Oxford Monographs on Geology and Geophysics. Oxford: Oxford University Press: 59-72
Zaneveld J R V. 1995. A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties. Journal of Geophysical Research, 100(C7): 13135-13142 [DOI: 10.1029/95JC00453http://dx.doi.org/10.1029/95JC00453]
Zhai G J, Wang K P and Liu Y H. 2014. Technology of airborne laser bathymetry. Hydrographic Surveying and Charting, 34(2): 72-75
翟国君, 王克平, 刘玉红. 2014. 机载激光测深技术. 海洋测绘, 34(2): 72-75 [DOI: 10.3969/j.issn.1671-3044.2014.02.021http://dx.doi.org/10.3969/j.issn.1671-3044.2014.02.021]
Zhai P W, Kattawar G W and Yang P. 2008a. Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method. Applied Optics, 47(8): 1037-1047 [DOI: 10.1364/ao.47.001037http://dx.doi.org/10.1364/ao.47.001037]
Zhai P W, Kattawar G W and Yang P. 2008b. Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator-Monte Carlo method. Applied Optics, 47(8): 1063-1071 [DOI: 10.1364/AO.47.001063http://dx.doi.org/10.1364/AO.47.001063]
Zhai X C, Marksteiner U, Weiler F, Lemmerz C, Lux O, Witschas B and Reitebuch O. 2020. Rayleigh wind retrieval for the ALADIN airborne demonstrator of the Aeolus mission using simulated response calibration. Atmospheric Measurement Techniques, 13(2): 445-465 [DOI: 10.5194/amt-13-445-2020http://dx.doi.org/10.5194/amt-13-445-2020]
Zhai X C, Wu S H, Liu B Y and Song X Q. 2018. Shipborne wind measurement and motion-induced error correction by coherent Doppler lidar over yellow sea in 2014. EPJ Web of Conferences, 176: 06014 [DOI: 10.1051/epjconf/201817606014http://dx.doi.org/10.1051/epjconf/201817606014]
Zhang H W. 2019. Overall Scheme Design and Key Technology of Laser Doppler Current Meter. Qingdao: Ocean University of China
张洪玮. 2019. 激光多普勒海流计总体方案设计及关键技术实现. 青岛: 中国海洋大学
Zhang J L, Huang X S, Chen W Z and Liu Z S. 1981. Marine RAMAN Lidar hardware and software system. Marine Science, (6): 13-15
张锦龙, 黄晓圣, 陈文忠, 刘智深. 1981. 海洋激光RAMAN雷达硬、软件系统. 海洋科学, (6): 13-15
Zhang L, Zhang D, Yang Z, Shi J W, Liu D H, Gong W P and Fry E S. 2011. Experimental investigation on line width compression of stimulated Brillouin scattering in water. Applied Physics Letters, 98(22): 221106 [DOI: 10.1063/1.3595338http://dx.doi.org/10.1063/1.3595338]
Zhang L J. 2019. Retrieval Study on Sea Surface Salinity for Microwave Imager Combined Active/Passive. Beijing: University of Chinese Academy of Sciences
张兰杰. 2019. 基于星载主被动微波盐度计的海面盐度反演方法研究. 北京: 中国科学院大学
Zhang Q J and Zhao L B. 2018. Overview of China marine satellite development. Satellite Application, (5): 28-31
张庆君, 赵良波. 2018. 中国海洋卫星发展综述. 卫星应用, (5): 28-31
Zhang X D, Lewis M and Johnson B. 1998. Influence of bubbles on scattering of light in the ocean. Applied Optics, 37(27): 6525-6536 [DOI: 10.1364/ao.37.006525http://dx.doi.org/10.1364/ao.37.006525]
Zhang X D, Lewis M, Lee M, Johnson B and Korotaev G. 2002. The volume scattering function of natural bubble populations. Limnology and Oceanography, 47(5): 1273-1282 [DOI: 10.4319/lo.2002.47.5.1273http://dx.doi.org/10.4319/lo.2002.47.5.1273]
Zhao Y T and Wu D. 2020. Application of CALIOP and CPR data in detecting sea fog. Periodical of Ocean University of China, 50(10): 125-133
赵耀天, 吴东. 2020. CALIOP、CPR数据在探测海雾中的应用. 中国海洋大学学报, 50(10): 125-133 [DOI: 10.16441/j.cnki.hdxb.20180299http://dx.doi.org/10.16441/j.cnki.hdxb.20180299]
Zhou T H. 2012. Research progress of underwater optical communication//The 10th National Optoelectronic Technology Academic Exchange Conference. Beijing: Chinese Society of Astronautics: 233
周田华. 2012. 水下光通信研究进展//第十届全国光电技术学术交流会. 北京: 中国宇航学会: 233
Zhou T H, Chen W B, He Y and Zhu X L. 2010. Beam spatial distribution of upward laser through sea-air interface. Chinese Journal of Lasers, 37(8): 1978-1982
周田华, 陈卫标, 贺岩, 朱小磊. 2010. 通过海气界面的上行激光光场分布. 中国激光, 37(8): 1978-1982 [DOI: 10.3788/CJL20103708.1978http://dx.doi.org/10.3788/CJL20103708.1978]
Zhou Y D, Chen W B, Cui X Y, Malinka A, Liu Q, Han B, Wang X J, Zhuo W Q, Che H C, Song Q J, Zhu X L and Liu D. 2019. Validation of the analytical model of oceanic lidar returns: comparisons with Monte Carlo simulations and experimental results. Remote Sensing, 11(16): 1870 [DOI: 10.3390/rs11161870http://dx.doi.org/10.3390/rs11161870]
Zhou Y D, Liu D, Xu P T, Liu C, Bai J, Yang L M, Cheng Z T, Tang P J, Zhang Y P and Su L. 2017. Retrieving the seawater volume scattering function at the 180° scattering angle with a high-spectral-resolution lidar. Optics Express, 25(10): 11813-11826 [DOI: 10.1364/oe.25.011813http://dx.doi.org/10.1364/oe.25.011813]
Zhou Y D, Liu D, Xu P T, Mao Z H, Chen P, Liu Z P, Liu Q, Tang P J, Zhang Y P, Wang X J, Ren J W and Jin S W. 2019. Detecting atmospheric-water optical property profiles with a polarized lidar. Journal of Remote Sensing, 23(1): 108-115
周雨迪, 刘东, 徐沛拓, 毛志华, 陈鹏, 刘志鹏, 刘群, 唐培钧, 张与鹏, 王雪霁, 任佳炜, 金时伟. 2019. 偏振激光雷达探测大气—水体光学参数廓线. 遥感学报, 23(1): 108-115 [DOI: 10.11834/jrs.20197535http://dx.doi.org/10.11834/jrs.20197535]
相关作者
相关机构