遥感在森林精准培育中的应用现状与展望
The status and prospects of remote sensing applications in precision silviculture
- 2021年25卷第1期 页码:423-438
纸质出版日期: 2021-01-07
DOI: 10.11834/jrs.20210506
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-01-07 ,
扫 描 看 全 文
周凯,曹林.2021.遥感在森林精准培育中的应用现状与展望.遥感学报,25(1): 423-438
Zhou K and Cao L. 2021. The status and prospects of remote sensing applications in precision silviculture. National Remote Sensing Bulletin, 25(1):423-438
随着社会经济快速发展及人口增长,中国木材供需矛盾突出,对外依存度高。面对有限的土地资源,迫切需要更为高效、高质量地培育森林资源,在定向培育和集约经营等的各个环节实现培育技术精准化。现代遥感技术所构建的多平台、多角度、多模式立体观测体系及定量分析方法是森林精准培育的关键技术。以遥感技术为核心所构建的从土壤类型分析、土地适应性评价、生态环境模拟到林木育种、灌溉施肥、林木长势监测、病虫害防治等一体化、精准化的森林精准培育新体系,将全面支撑现代林业的整体提质增效和森林质量精准提升。本文首先介绍了RGB相机、多光谱、高光谱、激光雷达、热红外和荧光传感器在森林精准培育中应用现状,并对其应用特点及测量指标进行了综合比较;然后,重点介绍了遥感在林木良种选育、营养胁迫监测诊断及水肥精准喷灌以及森林病虫害防治与健康评估这3个森林精准培育重要方向上的应用,并分析了各应用方向的共性需求;最后,从3个方面,即多源遥感信息融合,人工智能、物联网及3S技术集成,以及遥感数据与生理生态模型和辐射传输模型等的集成应用,分析了未来遥感技术在森林精准培育中的发展趋势及应用前景。
With the rapid development of the society and economy as well as the growth of population
the contradiction between our country's timber supply and demand is still prominent
and its dependence on foreign countries is high. Faced with limited land resources
there is an urgent need to cultivate forest resources more efficiently and with high quality
and to apply precision silviculture technologies in various links such as directive breeding and intensive management. The multi-platform
multi-angle
multi-mode three-dimensional observation system and quantitative analysis method constructed by modern remote sensing technology are the key technologies for precision silviculture. The integrated and accurate new precision silviculture system
built with remote sensing technology as the core
from soil type analysis
land adaptability evaluation
ecological environment simulation to tree breeding
irrigation and fertilization
forest growth monitoring
pest control
etc.
will fully support the overall quality and efficiency improvement of modern forestry as well as the precise improvement of forest quality. This review article first introduces the application status of RGB cameras
multispectral
hyperspectral
LiDAR
thermal infrared and fluorescence sensors in precision silviculture
and makes a comprehensive comparison of their application characteristics and measurement indicators; then
focuses on the use of remote sensing in the three key application directions i.e.
high-quality species selection
monitoring and diagnosis of nutrient stress
accurate water and fertilizer sprinkler irrigation
as well as the analysis of the common needs of each application direction; finally
from three aspects
i.e.
multi-source remote sensing information fusion
artificial intelligence
Internet of Things and 3S technology integration
and the integrated application of remote sensing data with physiological and ecological models and radiation transmission models
the development trend and application prospects of future remote sensing technology in precision silviculture are analyzed.
森林精准培育遥感表型森林培育林木遗传育种森林健康
precision silvicultureremote sensingphenotypingforest geneticstree breedingforest health
Almeida C T D, Galvão L S , Ometto J P H B., Jacon A D, de Souza Pereira F R, Sato L Y, Lopes A P, de Alencastro Graça P M L, de Jesus Silva C V and Ferreira-Ferreira J. 2019. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote sensing of environment, 232: 111323 [DOI: 10.1016/j.rse.2019.111323http://dx.doi.org/10.1016/j.rse.2019.111323]
Berni J, Zarco-Tejada P J, Suarez L, Fereres E. 2009. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geo. Remote Sensing, 47(3): 722-738 [DOI: 10.1109/TGRS.2008.2010457http://dx.doi.org/10.1109/TGRS.2008.2010457]
Bian L M and Zhang H C. 2020. Application of phenotyping techniques in forest tree breeding and precision forestry. Scientia Silvae Sinicae, 56(6): 113-126
边黎明, 张慧春. 2020. 表型技术在林木育种和精确林业上的应用. 林业科学, 56(6): 113-126 [DOI: 10.11707/j.1001-7488.20200612http://dx.doi.org/10.11707/j.1001-7488.20200612]
Blanco V, Blaya Ros P J, Castillo C, Soto F, Torres R and Domingo R. 2020. Potential of UAS-Based Remote Sensing for Estimating Tree Water Status and Yield in Sweet Cherry Trees. Remote Sensing, 12(15): 2359 [DOI: 10.3390/rs12152359http://dx.doi.org/10.3390/rs12152359]
Brestic M and Zivcak M. 2013. PSII Fluorescence Techniques for Measurement of Drought and High Temperature Stress Signal in Crop Plants: Protocols and Applications. Molecular Stress Physiology of Plants. Heidelberg: Springer Dordrecht: 87-131 [DOI: 10.1007/978-81-322-0807-5http://dx.doi.org/10.1007/978-81-322-0807-5]
Buddenbaum H, Rock G, Hill J and Werner W. 2015. Measuring Stress Reactions of Beech Seedlings with PRI, Fluorescence, Temperatures and Emissivity from VNIR and Thermal Field Imaging Spectroscopy. European Journal of Remote Sensing, 48: 263-282 [DOI: 10.5721/EuJRS20154815http://dx.doi.org/10.5721/EuJRS20154815]
Buddenbaum H, Stern O, Stellmes M, Stoffels J, Pueschel P, Hill J and Werner W. 2012. Field imaging spectroscopy of beech seedlings under dryness stress. Remote Sensing, 4(12): 3721-3740 [DOI: 10.3390/rs4123721http://dx.doi.org/10.3390/rs4123721]
Cao C X, Xu M, He Q S and Zhang Y. 2009. The trend of applying multi-source remote sensing data into forest health studies. The Journal of Remote Sensing, 13(s1): 401-407
曹春香, 徐敏, 何祺胜, 张颢. 2009. 多源遥感数据应用于森林健康研究的趋势. 遥感学报, 13(s1): 401-407 [DOI:10.11834/jrs.20090056http://dx.doi.org/10.11834/jrs.20090056]
Cao L, Shen G H, Dai J S and Xu J X. 2013. Status and prospects of the LiDAR-based forest biomass estimation. Journal of Nanjing Forestry University (Natural Sciences Edition), 37(3): 163-169. (曹林, 佘光辉, 代劲松,徐建新 (2013). 激光雷达技术估测森林生物量的研究现状及展望. 南京林业大学学报(自然科学版), 37: 163-169)
Cao L P. 2015. The research progresson machine recognition of plant diseases and insect pests. Chinese Agricultural Science Bulletin, 31(20): 244-249
曹乐平. 2015. 基于机器视觉的植物病虫害实时识别方法. 中国农学通报, 31(20): 244-249
Cao Q, Miao Y X, Wang H Y, Huang S Y, Cheng S S, Khosla R and Jiang R F. 2013. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Research, 154: 133-144 [DOI: 10.1016/j.fcr.2013.08.005http://dx.doi.org/10.1016/j.fcr.2013.08.005]
Cardona A and Tomancak P. 2012. Current challenges in open-source bioimage informatics. Nature Methods, 9(7): 661-665 [DOI: 10.1038/nmeth.2082http://dx.doi.org/10.1038/nmeth.2082]
Chen F, Su S C, Zhang B and Wang W H. 2014. A preliminaery study on nitrogen status diagnosis using digital image processing of hybrid hazel. Journal of Northwest Forestry University, 30(5): 111-114
陈凤, 苏淑钗, 张兵, 王文浩, 林竹. 2014. 数码图像技术在杂交榛氮素营养诊断中的初步研究. 西北林学院学报, 30(5): 111-114 [DOI: 10.3969/j.issn.1001-7461.2014.05.20http://dx.doi.org/10.3969/j.issn.1001-7461.2014.05.20]
Chéné Y, Rousseau D, Lucidarme P, Bertheloot J, Caffier V, Morel P, Belin É and Chapeau-Blondeau F O. 2012. On the use of depth camera for 3D phenotyping of entire plants. Computers & Electronics in Agriculture, 82: 122-127 [DOI: 10.1016/j.compag.2011.12.007http://dx.doi.org/10.1016/j.compag.2011.12.007]
Cheng L Z, Zhu X C, Gao L L, Wang L and Zhao G X. 2016. Hyperspectral estimation of phosphorus content for apple leaves based on the random forest model. Journal of Fruit Science, 33(10): 1219-1229
程立真, 朱西存, 高璐璐, 王凌, 赵庚星. 2016. 基于随机森林模型的苹果叶片磷素含量高光谱估测. 果树学报, 33(10): 1219-1229 [DOI:10.13925/j.cnki.gsxb.20150439http://dx.doi.org/10.13925/j.cnki.gsxb.20150439]
Cheng T, Riaño D, Koltunov A, Whiting M L, Ustin S L and Rodriguez J. 2013. Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator (MASTER) data. Remote sensing of environment, 132: 1-12 [DOI: 10.1016/j.rse.2012.12.024http://dx.doi.org/10.1016/j.rse.2012.12.024]
Cheng T, Riaño D and Ustin S L. 2014a. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote sensing of environment, 143: 39-53 [DOI: 10.1016/j.rse.2013.11.018http://dx.doi.org/10.1016/j.rse.2013.11.018]
Cheng T, Rivard B, Sánchez-Azofeifa A G, Féret J B, Jacquemoud S and Ustin S L. 2014b. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 87: 28-38 [DOI: 10.1016/j.isprsjprs.2013.10.009http://dx.doi.org/10.1016/j.isprsjprs.2013.10.009]
Cheng T, Rivard B, Sánchez-Azofeifa G, Feng J and Calvo-Polanco M. 2010. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 114(4): 899-910 [DOI: 10.1016/j.rse.2009.12.005http://dx.doi.org/10.1016/j.rse.2009.12.005]
Cheng T, Rivard B and Sanchez-Azofeifa A. 2011. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sensing of Environment, 115: 659-670 [DOI:10.1016/j.rse.2010.11.001http://dx.doi.org/10.1016/j.rse.2010.11.001]
Choi S T, Park D S, Kang S M and Park S J. 2011. Use of a chlorophyll meter to diagnose nitrogen status of ‘Fuyu’persimmon leaves. HortScience, 46(5): 821-824 [DOI: 10.21273/HORTSCI.46.5.821http://dx.doi.org/10.21273/HORTSCI.46.5.821]
Cohen Y, Alchanatis V, Prigojin A, Levi A, Soroker V and Cohen Y. 2012. Use of aerial thermal imaging to estimate water status of palm trees. Precision Agriculture, 13(1): 123-140 [DOI: 10.1007/s11119-011-9232-7http://dx.doi.org/10.1007/s11119-011-9232-7]
Croft H, Chen J, Zhang Y and Simic A. 2013. Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data. Remote Sensing of Environment, 133: 128-140 [DOI: 10.1016/j.rse.2013.02.006http://dx.doi.org/10.1016/j.rse.2013.02.006]
Dawson T P, Curran P J and Plummer S E. 1998. LIBERTY-Modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sensing of Environment, 65(1): 50-60 [DOI: 10.1016/S0034-4257(98)00007-8http://dx.doi.org/10.1016/S0034-4257(98)00007-8]
Di Nisio A, Adamo F, Acciani G and Attivissimo F. 2020. Fast detection of olive trees affected by xylella fastidiosa from UAVs using multispectral imaging. Sensors, 20(17): 4915 [DOI: 10.3390/s20174915http://dx.doi.org/10.3390/s20174915]
Dube T and Mutanga O. 2015. Investigating the robustness of the new Landsat-8 operational land imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 12-32 [DOI: 10.1016/j.isprsjprs.2015.06.002http://dx.doi.org/10.1016/j.isprsjprs.2015.06.002]
Dungey H S, Dash J P, Pont D, Clinton P W, Watt M S and Telfer E J. 2018. Phenotyping whole forests will help to track genetic performance. Trends in Plant Science, 23(10): 854-864 [DOI: 10.1016/j.tplants.2018.08.005http://dx.doi.org/10.1016/j.tplants.2018.08.005]
Eitel J U, Gessler P E, Smith A M and Robberecht R. 2006. Suitability of existing and novel spectral indices to remotely detect water stress in Populus spp. Forest Ecology and Management, 229(1-3): 170-182 [DOI: 10.1016/j.foreco.2006.03.027http://dx.doi.org/10.1016/j.foreco.2006.03.027]
Féret J B, Francois C, Asner G, Gitelson A, Martin R, Bidel L, Ustin S L, le Maire G and Jacquemoud S. 2008. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 112(6): 3030-3043 [DOI: 10.1016/j.rse.2008.02.012http://dx.doi.org/10.1016/j.rse.2008.02.012]
Féret J B, le Maire G, Jay S, Berveiller D, Bendoula R, Hmimina G, Cheraiet A, Oliveira J, Ponzoni F, Solanki T, De Boissieu F, Chave J, Nouvellon Y, Porcar-Castell A, Proisy C, Soudani K, Gastellu-Etchegorry J P and Lefèvre-Fonollosa M. 2018. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning. Remote Sensing of Environment, 231: 110959 [DOI: 10.1016/j.rse.2018.11.002http://dx.doi.org/10.1016/j.rse.2018.11.002]
Gamon J, Penuelas J and Field C. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1): 35-44 [DOI: 10.1016/0034-4257(92)90059-Shttp://dx.doi.org/10.1016/0034-4257(92)90059-S]
Gao B C. 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3): 257-266 [DOI: 10.1016/S0034-4257(96)00067-3http://dx.doi.org/10.1016/S0034-4257(96)00067-3]
Gara T, Darvishzadeh R, Skidmore A and Heurich M. 2019. Evaluating the performance of PROSPECT in the retrieval of leaf traits across canopy throughout the growing season. International Journal of Applied Earth Observation and Geoinformation, 83: 101919 [DOI: 10.1016/j.jag.2019.101919http://dx.doi.org/10.1016/j.jag.2019.101919]
Gastellu-Etchegorry J P, Martin E and Gascon F. 2004. DART: a 3D model for simulating satellite images and studying surface radiation budget. International Journal of Remote Sensing, 25(1): 73-96 [DOI: 10.1080/0143116031000115166http://dx.doi.org/10.1080/0143116031000115166]
Goodbody T R H, Coops N C, Tompalski P, Crawford P and Day K J K. 2017. Updating residual stem volume estimates using ALS- and UAV-acquired stereo-photogrammetric point clouds. International Journal of Remote Sensing, 38: 2938-2953 [DOI: 10.1080/01431161.2016.1219425http://dx.doi.org/10.1080/01431161.2016.1219425]
Guo X, Zhu X, Li C, Wei Y, Yu X, Zhao G and Sun H. 2017. Hyperspectral inversion of potassium content in apple leaves based on vegetation index. Agricultural Sciences, 08(08): 825-836 [DOI: 10.4236/as.2017.88061http://dx.doi.org/10.4236/as.2017.88061]
Guo Y, Li Z Y, Chen E X, Tian X and Ling F L. 2015. Estimating forest above-ground biomass in the upper reaches of heihe river basin using multi-spectral remote sensing. Scientia Silvae Sinicae, 51(1): 140-149
郭云, 李增元, 陈尔学, 田昕, 凌飞龙. 2015.甘肃黑河流域上游森林地上生物量的多光谱遥感估测. 林业科学, 51(1): 140-149 [DOI: 10.11707 /j.1001-7488.20150117http://dx.doi.org/10.11707/j.1001-7488.20150117]
Gutiérrez S, Wendel A and Underwood J. 2019. Ground based hyperspectral imaging for extensive mango yield estimation. Computers and Electronics in Agriculture, 157: 126-135 [DOI: 10.1016/j.compag.2018.12.041http://dx.doi.org/10.1016/j.compag.2018.12.041]
Hu G S, Yin C J, Wan M Z, Zhang Y and Fang Y. 2020. Recognition of diseased pinus trees in UAV images using deep learning and AdaBoost classifier. Biosystems Engineering, 194: 138-151 [DOI: 10.1016/j.biosystemseng.2020.03.021http://dx.doi.org/10.1016/j.biosystemseng.2020.03.021]
Huang H G. 2019. Progress and perspective of quantitative remote sensing of forestry. Journal of Beijing Forestry University, 41(12): 1-14
黄华国. 2019. 林业定量遥感研究进展和展望.北京林业大学学报, 41(12): 1-14 [DOI:10.12171/j.1000-1522.20190326http://dx.doi.org/10.12171/j.1000-1522.20190326]
Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P J, Asner G P, François C and Ustin S L. 2009. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment, 113: S56-S66 [DOI: 10.1016/j.rse.2008.01.026http://dx.doi.org/10.1016/j.rse.2008.01.026]
Jay S, Bendoula R, Hadoux X, Féret J B and Gorretta N. 2016. A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sensing of Environment, 177: 220-236 [DOI: 10.1016/j.rse.2016.02.029http://dx.doi.org/10.1016/j.rse.2016.02.029]
Kankare V, Liang X, Vastaranta M, Yu X, Holopainen M and Hyyppa J. 2015. Diameter distribution estimation with laser scanning based multisource single tree inventory. ISPRS Journal of Photogrammetry and Remote Sensing, 108: 161-171 [DOI: 10.1016/j.isprsjprs.2015.07.007http://dx.doi.org/10.1016/j.isprsjprs.2015.07.007]
Kimberley M, Moore J and Dungey H. 2015. Quantification of realised genetic gain in radiata pine and its incorporation into growth and yield modelling systems. Canadian Journal of Forest Research, 45(12): 1676-1687 [DOI: 10.1139/cjfr-2015-0191http://dx.doi.org/10.1139/cjfr-2015-0191]
Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers M I, Roth M G, Bi K, Teravest D and Weebadde P. 2016. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science, 3(10): 160592 [DOI: 10.1098/rsos.160592http://dx.doi.org/10.1098/rsos.160592]
Li B, Liu R Y, Liu S H, Liu Q, Liu F and Zhou G Q. 2012. Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system. Transactions of the Chinese Society of Agricultural Engineering, 28(13): 160-165
李冰, 刘镕源, 刘素红, 刘强, 刘峰, 周公器. 2012. 基于低空无人机遥感的冬小麦覆盖度变化监测. 农业工程学报, 28(13): 160-165 [DOI: 10.3969/j.issn.1002-6819.2012.13.026http://dx.doi.org/10.3969/j.issn.1002-6819.2012.13.026]
Li B Z, Li M X, Zhou X, Zhang L S and Zhang H Y. 2010. Hyperspectral estimation models for nitrogen contents of apple leaves. Journal of Remote Sensing, 14(4): 761-773
李丙智, 李敏夏, 周璇, 张林森, 张海燕. 2010. 苹果树叶片全氮含量高光谱估算模型研究. 遥感学报, 14(4): 761-773
Li M S, Tan Y, Pan J and Peng S K. 2006. Modeling forest aboveground biomass by combining the spectrum, textures with topographic features. Remote Sensing Information, 6: 6-9
李明诗, 谭莹, 潘洁, 彭世揆. 2006. 结合光谱、纹理及地形特征的森林生物量建模研究. 遥感信息, 6: 6-9
Li S, Ding X Z, Kuang Q L, Ata-Ul-Karim S T, Cheng T, Liu X J, Tian Y C, Zhu Y and Cao Q. 2018. Potential of UAV-based active sensing for monitoring rice leaf nitrogen status. Frontiers in Plant Science, 9: 1834 [DOI: 10.3389/fpls.2018.01834http://dx.doi.org/10.3389/fpls.2018.01834]
Li S D. 2016. Smart Forestry: New journey of Forestry in China. Information Construction, 8: 23-25
李世东. 2016. 智慧林业: 中国林业新征途. 信息化建设, 8: 23-25
Li W T, Yang J B, Zhang J, Wang K J, Deng L, Lv Q, He S L, Xie R J, Zheng Y Q and Ma Y Y. 2018. The evaluation of chlorophyll content detection in the leaves of newhall navel orange based on different sensors. Scientia Agricultural Sinica, 51(6): 1057-1066
李文涛, 杨江波, 张绩, 王克健, 邓烈, 吕强, 何绍兰, 谢让金, 郑永强, 马岩岩. 2018. 基于不同传感器的纽荷尔脐橙叶片叶绿素含量检测技术评价. 中国农业科学, 51(6): 1057-1066 [DOI: 10.3864/j.issn.0578-1752. 2018.06.005http://dx.doi.org/10.3864/j.issn.0578-1752.2018.06.005]
Li X F, Han T T, Dong Y, Wu M and Shen X. 2011. Relationships between Spectral Reflectance and Pigment or Nitrogen Concentrations in Leaves of Padus virginiana ‘Schubert’. Scientia silvae Sinicae, 47(8): 75-81
李雪飞, 韩甜甜, 董彦, 吴曼, 沈向. 2011. 紫叶稠李叶片色素及氮含量与其光谱反射特性的相关性. 林业科学, 47(8): 75-81
Li Z Y, Liu Q W, Pang Y. 2016. Review on forest parameters inversion using LiDAR. Journal of Remote Sensing, 20(5): 1138-1150
李增元, 刘清旺, 庞勇. 2016. 激光雷达森林参数反演研究进展. 遥感学报, 20(5): 1138-1150 [DOI:10.11834/jrs.20165130http://dx.doi.org/10.11834/jrs.20165130]
Liu C, Sun P S and Liu S R. 2016. A review of plant spectral reflectance response to water physiological changes. Chinese Journal of Plant Ecology, 40(1): 80-91
刘畅, 孙鹏森, 刘世荣. 2016. 植物反射光谱对水分生理变化响应的研究进展. 植物生态学报, 40(1): 80-91 [DOI: 10.17521/cjpe.2015.0267http://dx.doi.org/10.17521/cjpe.2015.0267]
Liu G H, Huang J Q, Pan C X, Wang Z J, Zheng B S and Jin S H. 2011. Analysis of the nitrogen levels in leaves of hickory seedling by reflectance spectra. Scientia Silvae Sinicae, 47(1): 165-171
刘根华, 黄坚钦, 潘春霞, 王正加, 郑炳松, 金松恒. 2011. 基于反射光谱的山核桃幼苗氮素营养状况分析. 林业科学, 47(1): 165-171
Liu J G, Zhao C J, Yang G J, Yu H Y, Zhao X Q, Xu B and Niu Q L. 2016. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform. Transactions of the Chinese Society of Agricultural Engineering, 32(24): 98-106
刘建刚, 赵春江, 杨贵军, 于海洋, 赵晓庆, 徐波, 牛庆林. 2016. 无人机遥感解析田间作物表型信息研究进展. 农业工程学报, 32(24): 98-106 [DOI: 10.11975/j.issn.1002-6819.2016.24.013http://dx.doi.org/10.11975/j.issn.1002-6819.2016.24.013]
Liu K, Shen X, Cao L, Wang G B and Cao F L. 2018. Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations. ISPRS Journal of Photogrammetry and Remote Sensing, 146: 465-482 [DOI: 10.1016/j.isprsjprs.2018.11.001http://dx.doi.org/10.1016/j.isprsjprs.2018.11.001]
Liu L Z, Li M J, Lin Y F, Zhang Z Z and Zhang M M. 2019. A preliminary study on nitrogen diagnosis of tea plant based on image processing. Journal of Beihua University (Natural Science), 20(1): 114-120
刘连忠, 李孟杰, 林源丰, 张正竹, 张嫚嫚. 2019. 基于图像处理的茶树含氮量诊断方法初步研究. 北华大学学报(自然科学版), 20(1): 114-120 [DOI: 10.11713/j.issn.1009-4822.2019.01.024http://dx.doi.org/10.11713/j.issn.1009-4822.2019.01.024]
Liu Q W, Li S M, Li Z Y, Fu L Y and Hu K L. 2017. Review on the applications of UAV-based lidar and photogrammetry in forestry. Scientia Silvae Sinicae, 53(7): 134-148
刘清旺, 李世明, 李增元, 符利勇, 胡凯龙. 2017. 无人机激光雷达与摄影测量林业应用研究进展. 林业科学, 53(7): 134-148 [DOI: 10.11707/j.1001-7488.20170714http://dx.doi.org/10.11707/j.1001-7488.20170714]
Liu X F, Lyu Q, He S L, Yi S L, Hu D Y, Wang Z T, Xie R J, Zheng Y Q and Deng L. 2016. Estimation of carbon and nitrogen contents in citrus canopy by low-altitude remote sensing, 9: 149-157 [DOI: 10.3965/j.ijabe.20160905.2246http://dx.doi.org/10.3965/j.ijabe.20160905.2246]
Malenovský Z, Homolová L, Zurita-Milla R, Lukeš P, Kaplan V, Hanuš J, Gastellu-Etchegorry J P and Schaepman M E. 2013. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sensing of Environment, 131: 85-102 [DOI: 10.1016/j.rse.2012.12.015http://dx.doi.org/10.1016/j.rse.2012.12.015]
Mei M Y and Lei Y D. 2019. Analysis on Development Trend of China’s Plantation in New Era. World Forestry Research, 32(3): 73-77
梅梦媛, 雷一东. 2019. 我国人工林新时代发展形势分析. 世界林业研究, 32(3): 73-77 [DOI: 10.13348/j.cnki. sjlyyj.2019.0006.yhttp://dx.doi.org/10.13348/j.cnki.sjlyyj.2019.0006.y]
Mishra A, Karimi D, Ehsani R and Albrigo L G. 2011. Evaluation of an active optical sensor for detection of Huanglongbing (HLB) disease. Biosystems Engineering, 110(3): 302-309 [DOI: 10.1016/j.biosystemseng.2011.09.003http://dx.doi.org/10.1016/j.biosystemseng.2011.09.003]
Montagnoli, A, Terzaghi, M, Fulgaro, N, Stoew, B, Wipenmyr, J, Ilver, D, Rusu, C, Scippa, G and Chiatante, D. 2016. Non-destructive phenotypic analysis of early stage tree seedling growth using an automated stereovision imaging method. Frontiers in Plant Science, 7(e0119): 1644 [DOI: 10.3389/fpls.2016.01644http://dx.doi.org/10.3389/fpls.2016.01644]
Mu Y, Fujii Y, Takata D, Zheng B, Noshita K, Honda K, Ninomiya S and Guo W. 2018. Characterization of peach tree crown by using high-resolution images from an unmanned aerial vehicle. Horticulture Research, 5: 74 [DOI: 10.1038/s41438-018-0097-zhttp://dx.doi.org/10.1038/s41438-018-0097-z]
Mutka, A M and Bart, R S. 2015. Image-based phenotyping of plant disease symptoms. Frontiers in Plant Science, 5: 734 [DOI: 10.3389/fpls.2014.00734http://dx.doi.org/10.3389/fpls.2014.00734]
Näsi R, Honkavaara E, Paivi L S, Blomqvist M, Litkey P, Hakala T, Viljanen N, Tuula K, Tanhuanpää T and Holopainen M. 2015. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sensing, 7(11): 15467-15493 [DOI: 10.3390/rs71115467http://dx.doi.org/10.3390/rs71115467]
North P R J. 1996. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 946-956 [DOI: 10.1109/36.508411http://dx.doi.org/10.1109/36.508411]
Pádua L, Marques P, Martins L, Sousa A, Peres E and Sousa J. 2020. Monitoring of chestnut trees using machine learning techniques applied to UAV-based multispectral data. Remote Sensing, 12(18): 3032 [DOI: 10.3390/rs12183032http://dx.doi.org/10.3390/rs12183032]
Pan B, Zhao G X, Zhu X C and Wang N N. 2012. Estimation of phosphorus content in apple tree canopy based on hyperspectrum. Infrared, 33(6): 27-31
潘蓓, 赵庚星, 朱西存,王娜娜. 2012. 基于高光谱的苹果树冠层磷素状况估测模型研究. 红外, 33(6): 27-31 [DOI: 10.3969/j.issn.1672-8785. 2012.06.006http://dx.doi.org/10.3969/j.issn.1672-8785.2012.06.006]
Penuelas J, Pinol J, Ogaya R and Filella I. 1997. Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing, 18(13): 2869-2875 [DOI: 10.1080/014311697217396http://dx.doi.org/10.1080/014311697217396]
Perry E, Goodwin I and Cornwall D. 2018. Remote sensing using canopy and leaf reflectance for estimating nitrogen status in red-blush pears. HortScience, 53(1): 78-83 [DOI: 10.21273/HORTSC I12391-17http://dx.doi.org/10.21273/HORTSCI12391-17]
Pont D, Dungey H, Watt M, Morgenroth J and Stovold T. 2016. The use of LiDAR for phenotyping. In Forest Genetics for Productivity Conference, Rotorua, New Zealand. [2016-03-01]https://www.researchgate.net/publication/304864832https://www.researchgate.net/publication/304864832
Quan X, He B, Yebra M, Yin C, Liao Z and Li X. 2017. Retrieval of forest fuel moisture content using a coupled radiative transfer model. Environmental Modelling and Software, 95: 290-302 [DOI: 10.1016/j.envsoft.2017.06.006http://dx.doi.org/10.1016/j.envsoft.2017.06.006]
Rollin E M and Milton E J. 1998. Processing of high spectral resolution reflectance data for the retrieval of canopy water content information. Remote Sensing of Environment, 65(1): 86-92 [DOI: 10.1016/S0034-4257(98)00013-3http://dx.doi.org/10.1016/S0034-4257(98)00013-3]
Salvatori E, Fusaro L and Manes F. 2016. Chlorophyll fluorescence for phenotyping drought-stressed trees in a mixed deciduous forest. Annali Di Botanica, 6: 39-49 [DOI: 10.4462/annbotrm-13263http://dx.doi.org/10.4462/annbotrm-13263]
Santos D A E, Daniela V S, Letícia D A, Cristina S A, Carla D N and Schramm M M. 2018. Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage. New Forests, 50: 377-388 [DOI: 10.1007/s11056-018-9662-4http://dx.doi.org/10.1007/s11056-018-9662-4]
Shen G F. 2001. Silviculture. Beijing: China Forestry Publishing: 94-97
沈国舫. 2001. 森林培育学. 北京:中国林业出版社:94-97
Shen X, Cao L, Coops N C, Fan H, Wu X Q, Liu H, Wang G B and Cao F L. 2020. Quantifying vertical profiles of biochemical traits for forest plantation species using advanced remote sensing approaches. Remote Sensing of Environment, 250: 112041 [DOI: 10.1016/j.rse.2020.112041http://dx.doi.org/10.1016/j.rse.2020.112041]
Shen X, Cao L, Dong C, Sun Y, Wang G and Ruan H H. 2018. Prediction of forest structural parameters using airborne full-waveform LiDAR and hyperspectral data in subtropical forests. Remote Sensing, 10(11): 1729 [DOI: 10.3390/rs10111729http://dx.doi.org/10.3390/rs10111729]
Sun G, Liu L Y, Zheng W G, Huang W J and Yin M. 2009. Development of a solar-induced chlorophyll fluorescence monitor based on fraunhofer line principle. Transactions of The Chinese Society of Agricultural Machinery, 40: 248-236
孙刚, 刘良云, 郑文刚, 黄文江, 尹鸣 (2009). 基于夫琅和费暗线原理的太阳诱导叶绿素荧光仪. 农业机械学报, 040, 248-236
Tester M and Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science, 327(5967): 818-822 [DOI: 10.1126/science.1183700http://dx.doi.org/10.1126/science.1183700]
Wang J, Yin H L, Wang X Y and Feng Z K. 2015. Remote sensing factor optimization for forest volume estimation based on ZY-3 images. Journal of Central South University of Forestry and Technology, 35(12): 29-33
王佳, 尹华丽, 王晓莹, 冯仲科. 2015. 基于资源三号影像的森林蓄积量估测遥感因子选择. 中南林业科技大学学报, 35(12): 29-33 [DOI:10.14067/j.cnki. 1673-923x.2015.12.005http://dx.doi.org/10.14067/j.cnki.1673-923x.2015.12.005]
Wang L, Zhao G X, Zhu X C, Wang R Y and Chang C Y. 2013. Satellite remote sensing retrieval of canopy nitrogen nutritional status of apple trees at blossom stage. Chinese Journal of Applied Ecology, 24: 2863-2870
王凌, 赵庚星, 朱西存, 王瑞燕, 常春艳. 2013. 花期苹果树冠氮素营养状况的卫星遥感反演. 应用生态学报, 24: 2863-2870 [DOI:10.13287/j.1001-9332. 2013.0462http://dx.doi.org/10.13287/j.1001-9332.2013.0462]
Wang Y and Yan Z Y. 2016. Detection system of chlorophyll content of cyclobalanopsis glauca using image processing technology. Journal of agricultural science and technology, 19(4): 59-64
王诣, 闫志勇. 2016. 基于图像处理的青冈栎叶绿素含量检测系统研究. 中国农业科技导报, 19(4): 59-64 [DOI: 10.13304/j.nykjdb.2016.424http://dx.doi.org/10.13304/j.nykjdb.2016.424]
Wang Z, Wang T, Darvishzadeh R, Skidmore A K, Jones S, Suarez L, Woodgate W, Heiden U, Heurich M and Hearne J. 2016. Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest. Remote Sensing, 8(6): 491 [DOI: 10.3390/rs806 0491http://dx.doi.org/10.3390/rs8060491]
Wang Z, Zhou L D, Li H, Jia J S. 2011. Predicting Nitrogen Concentrations in fresh peach leaf from hyper spectral remote sensing. Chinese Agricultural Science Bulletin, 27(04): 85-90
王植, 周连第, 李红, 贾劲松. 2011. 桃树叶片氮素含量的高光谱遥感监测. 中国农学通报, 27(04): 85-90
Wang J H, Zhao C J, Guo X W, Huang W J and Tian Q J. 2000. Study on the water content of wheat leaves by the remote sensing. Acta Agriculturae Boreali-Sinica, 15: 68-72
王纪华, 赵春江, 郭晓维, 黄文江, 田庆久. 2000. 利用遥感方法诊断小麦叶片含水量的研究. 华北农学报, 15, 68-72
Wang J X, Huang H G, Lin Q N, Wang B and Huang C. 2019. Shoot beetle damage to Pinus yunnanensis monitored by infrared thermal imaging at needle scale. Chinese Journal of Plant Ecology, 43(11): 959-968
王景旭, 黄华国, 林起楠, 王冰, 黄侃. 2019. 红外热成像监测云南松切梢小蠹虫害:针叶尺度观测. 植物生态学报, 43(11): 959-968 [DOI: 10.17521/cjpe.2019.0180http://dx.doi.org/10.17521/cjpe.2019.0180]
Wang M M, Lin J Y, Lin Y and Li Y. 2017. Subalpine coniferous forest crown information automatic extraction based on optical UAV remote sensing imagery. Forest Resources Management, 4: 82-88
王枚梅, 林家元, 林沂, 李翊. 2017. 基于无人机可见光影像的亚高山针叶林树冠参数信息自动提取. 林业资源管理, 4: 82-88 [DOI: 10.13466/j.cnki.lyzygl.2017. 04.013http://dx.doi.org/10.13466/j.cnki.lyzygl.2017.04.013]
Watt M, Buddenbaum H, Estarija H, Bown H, Gómez-Gallego M, Hartley R, Massam P, Wright L, Zarco-Tejada P and Leonardo E. 2020. Using hyperspectral plant traits linked to photosynthetic efficiency to assess N and P partition. ISPRS Journal of Photogrammetry and Remote Sensing, 169: 406-420 [DOI: 10.1016/j.isprsjprs.2020.09.006http://dx.doi.org/10.1016/j.isprsjprs.2020.09.006]
Wu H G and Shi J. 2004. Monitoring Technique of Pine Caterpillars with TM Image. Journal of Remote Sensing, 8(2): 172-177
武红敢, 石进. 2004. 松毛虫灾害的TM影像监测技术. 遥感学报, 8(2): 172-177
Wu W B, Zhang Z B, Zheng L J, Han C Y, Wang X M, Xu J and Wang X R. 2020. Research progress on the early monitoring of pine wilt disease using hyperspectral techniques. Sensors, 20(13): 3729 [DOI: 10.3390/s20133729http://dx.doi.org/10.3390/s20133729]
Xie Y, Zhang J, Chen X, Pang S, Zeng H and Shen Z. 2020. Accuracy assessment and error analysis for diameter at breast height measurement of trees obtained using a novel backpack LiDAR system. Forest Ecosystems, 7: 33 [DOI: 10.1186/s40663-020-00237-0http://dx.doi.org/10.1186/s40663-020-00237-0]
Yang X G, Yu Y, Huang H J and Fan W Y. 2012. Journal of Infrared Millimeter Waves, 31(6): 536-543
杨曦光, 于颖, 黄海军, 范文义. 2012. 森林冠层氮含量遥感估算. 红外与毫米波学报, 31(6): 536-543 [DOI: 10.3724 /SP.J.1010.2012.00536http://dx.doi.org/10.3724/SP.J.1010.2012.00536]
Yang Y Y, Ma L F, Shi Y Z, Ruan, J Y and Li X H. 2008. Evaluation of nitrogen status in tea plants by SPAD. 28(4): 301-308
杨亦扬, 马立锋, 石元值, 阮建云, 黎星辉. 2008. 叶绿素仪 (SPAD) 在茶树氮素营养诊断中的适用性研究. 茶叶科学, 28(4): 301-308
Ye X, Abe S and Zhang S. 2019. Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging. Precision Agriculture, 21: 198-225 [DOI: 10.1007/s11119-019-09661-xhttp://dx.doi.org/10.1007/s11119-019-09661-x]
Yi S L, Deng L, He S L, Zheng Y Q and Mao S S. 2010. Scientia Agricultura Sinica, 43(4): 780-786
易时来, 邓烈, 何绍兰, 郑永强, 毛莎莎. 2010. 锦橙叶片钾含量光谱监测模型研究. 中国农业科学, 43(4): 780-786 [DOI: 10.3864/j.issn.0578- 1752.2010.04.015http://dx.doi.org/10.3864/j.issn.0578-1752.2010.04.015]
Yi S L, Deng L, He S L, Zheng Y Q, Wang L, Zhao X Y and Niu TX.2011. Diagnosis model of Jincheng orange leaf chlorophyll content- based on digital image analysis technique. Journal of Agricultural Mechanization Research, 33: 110-115
易时来, 邓烈, 何绍兰, 郑永强, 王亮, 赵旭阳, 牛廷香. 2011. 锦橙叶片叶绿素含量诊断模型—基于数字图像分析技术. 农机化研究, 33: 110-115
Zarco-Tejada P J, Rueda C and Ustin S L. 2003. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment, 85(1): 109-124 [DOI: 10.1016/S0034-4257(02)00197-9http://dx.doi.org/10.1016/S0034-4257(02)00197-9]
Zarco-Tejada P J, Camino C, Beck P S A, Calderon R, Hornero A, Hernández-Clemente R, Kattenborn T, Montes-Borrego M, Susca L, Morelli M, Gonzalez-Dugo V, North P R J, Landa B B, Boscia D, Saponari M and Navas-Cortes J A. 2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4: 432-439 [DOI: 10.1038/s41477-018-0189-7http://dx.doi.org/10.1038/s41477-018-0189-7]
Zarco-Tejada, P J, Diaz-Varela, R, Angileri V and Loudjani P. 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55: 89-99 [DOI: 10.1016/j.eja.2014.01.004http://dx.doi.org/10.1016/j.eja.2014.01.004]
Zarco-Tejada, P J, Guilléncliment, M L, Hernándezclemente, R, Catalina A, González M R and Martín P. 2013. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agricultural and Forest Meteorology, 171-172: 281-294 [DOI: 10.1016/j.agrformet.2012.12.013http://dx.doi.org/10.1016/j.agrformet.2012.12.013]
Zeng B B, Zhang X L, Lu C K, Bi H M and Zhu F E. 2008. Current situation and prospects of the research on remote sensing in the monitor of forest pests. Forest Pest and Disease, 27(2): 24-29
曾兵兵, 张晓丽, 路常宽, 毕华明, 朱凤恩. 2008. 森林病虫害遥感监测研究的现状与展望. 中国森林病虫, 27(2): 24-29
Zhang F and Zhou G S. 2018. Research progress on monitoring vegetation water content by using hyperspectral remote sensing. Chinese Journal of Plant Ecology, 42: 517-525
张峰, 周广胜. 2018. 植被含水量高光谱遥感监测研究进展. 植物生态学报, 42: 517-525 [DOI: 10.17521/cjpe.2017.0313http://dx.doi.org/10.17521/cjpe.2017.0313]
Zhang H, Pan J, Ju Y W and Liao Z F. 2014. Early Detection of Pine Wilt Disease in Pinus massioniana with Hyperspectral Data. Journal of Northeast Forestry University, 42(11): 115-119
张衡, 潘洁, 巨云为, 廖振峰. 2014. 基于高光谱数据的马尾松松萎蔫病早期监测. 东北林业大学学报, 42(11): 115-119 [DOI:10.13759/j.cnki.dlxb.20141106.001http://dx.doi.org/10.13759/j.cnki.dlxb.20141106.001]
Zhang N, Zhang X, Guijun Y, Zhu C, Huo L and Feng H. 2018. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sensing of Environment, 217: 323-339 [DOI: 10.1016/j.rse.2018.08.024http://dx.doi.org/10.1016/j.rse.2018.08.024]
Zhang P, Yang L, Cong J and Shen H L. 2008. A disscusion on precision of silviculture technology. World Forestry Research, 21(1): 34-39
张鹏, 杨玲, 丛健, 沈海龙. 2008. 论森林培育技术的精准化. 世界林业研究, 21(1): 34-39
Zhao C J. 2019. Big data of plant phenomics and its research progress. Journal of Agricultural Big Data, 1(2): 5-14
赵春江 (2019). 植物表型组学大数据及其研究进展. 农业大数据学报, 1(2): 5-14 [DOI: 10.19788/j.issn.2096-6369.190201http://dx.doi.org/10.19788/j.issn.2096-6369.190201]
Zhao J, Han T T, Zhang X X, Li X and Shen X. 2011. Preliminary study of whangkeumbae leaf nutrients status diagnosis by using digital image processing technique. Chinese Agricultural Science Bulletin, 27(13): 272-276
赵静, 韩甜甜, 张鲜鲜, 李欣, 沈向. 2011. 应用数码图像技术对梨树叶片营养诊断的初探. 中国农学通报, 27(13): 272-276
Zhao T X, Guo B, An X M and Zhang W J. 2012. The study of stomatal conductance estimation of Populus deltoids Bartr.×Populus ussuriensis Kom. by infrared thermography. Chinese Agricultural Science Bulletin, 28(31): 65-70
赵田欣, 郭斌, 安新民,张文杰. 2012. 美洲黑杨与大青杨杂种叶片气孔导度的红外热像测量方法研究. 中国农学通报, 28(31): 65-70
Zhao X, Burks T F, Qin J W and Ritenour M A. 2009. Digital microscopic imaging for citrus peel disease classification using color texture features. Applied Engineering in Agriculture, 25(5): 769-776 [DOI: 10.13031/2013.28845http://dx.doi.org/10.13031/2013.28845]
Zhou J, Tardieu F, Pridmore T, Doonan J, Reynolds D, Hall N, Griffiths S, Cheng T, Zhu Y and Wang X E. 2018. Plant phenomics: history, present status and challenges. Journal of Nanjing Agricultural University, 41(4): 580-588 (周济, Tardieu, F., Pridmore, T., Doonan, J., Reynolds, D., Hall, N., Griffiths, S., 程涛, 朱艳, 王秀娥. 2018. 植物表型组学:发展、现状与挑战. 南京农业大学学报, 41(4): 580-588) [DOI: 10.7685/jnau.201805100http://dx.doi.org/10.7685/jnau.201805100]
Zhu C H, Qu S and Zhang X L. 2016. Dendrolimus tabulaeformis disaster monitoring and analysis of its influencing factors through remote sensing technology. Journal of Remote Sensing, 20(4): 653-664
朱程浩, 瞿帅, 张晓丽. 2016. 油松毛虫灾害遥感监测及其影响因子分析. 遥感学报, 20(4): 653-664 [DOI: 10.11834/jrs.20165299http://dx.doi.org/10.11834/jrs.20165299]
Zhu X C, Zhao G X, Dong F, Wang L, Lei T and Zhan B. 2009. Monitoring models for phosphorus content of apple flowers based on hyperspectrum. Chinese Journal of Applied Ecology, 20(10): 2424-2430
朱西存, 赵庚星, 董芳, 王凌, 雷彤, 战兵. 2009. 基于高光谱的苹果花磷素含量监测模型. 应用生态学报, 20(10): 2424-2430
Zhu X C, Zhao G X, Jiang Y M, Wang L, Chen H Y and Wang L. 2011. Estimation of SPAD value of apple leaf in different phenophase based on hyperspectral red edge parameters. Infrared, 32(12): 31-38
朱西存, 赵庚星, 姜远茂, 王凌, 陈红艳, 王利. 2011. 基于高光谱红边参数的不同物候期苹果叶片的SPAD值估测. 红外, 32(12): 31-38
Zhu X C, Zhao G X, Sui X Y, Lei T and Sun D G. 2010. Estimation of kalium content in apple flowers based on spectral analysis technique. Infrared, 31: 19-23
朱西存, 赵庚星, 隋学艳, 雷彤, 孙顶国. 2010. 基于光谱分析技术的苹果花钾素含量估测研究. 红外, 31: 19-23
Zhu X L and Liu D S. 2014. Accurate mapping of forest types using dense seasonal Landsat time-series. ISPRS Journal of Photogrammetry and Remote Sensing,96:1-11[10.1016/j.isprsjprs.2014.06.012]
相关作者
相关机构