面向地球固体潮广域观测的空间技术发展综合分析
Comprehensive analysis of wide-area observation development for solid earth tides by space technology
- 2023年27卷第10期 页码:2395-2405
纸质出版日期: 2023-10-07
DOI: 10.11834/jrs.20210553
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-10-07 ,
扫 描 看 全 文
吴凯,纪策,骆磊,王心源.2023.面向地球固体潮广域观测的空间技术发展综合分析.遥感学报,27(10): 2395-2405
Wu K,Ji C,Luo L and Wang X Y. 2023. Comprehensive analysis of wide-area observation development for solid earth tides by space technology. National Remote Sensing Bulletin, 27(10):2395-2405
地球固体潮的观测和研究一直是地球科学研究的重点内容。地面台站分布稀疏且不均匀,且不同台站的观测结果受局地环境影响,难以实现大尺度时间一致空间连续的固体潮观测,固体潮广域观测需要依赖空间技术的发展。本文通过理论模型模拟得到了固体潮全球尺度下的时空分布特征,并从这些特征出发讨论了与固体潮观测相匹配的空间技术,主要包括重力卫星数据解算时变地球重力场能力以及InSAR技术的广域地面点位移监测能力。然后就InSAR技术在时间基线和测绘带宽度上的需求,对低轨、倾斜同步卫星轨道、月基3种对地观测平台进行模拟,定性和定量地对比分析了各平台的优势与不足。结果表明,新一代重力卫星组网和新的遥感对地观测概念平台均具备固体潮广域观测潜力,其中月基InSAR可以发展成为最理想手段,各类空间技术的发展可以为月基平台失相干时段提供一定补充,实现优势互补。
The observation and research for solid earth tides (SETs)
which have always been the focus of earth science
can provide an important basis for understanding the structure of the earth’s interior. However
unavoidable limitations exist when observations are operated to capture the global-scale SET information only with ground instruments. At present
the distribution of ground stations is sparse and uneven. Moreover
the observations of different stations are affected by the local environment. Thus
achieving large-scale
time-consistent
and space-continuous SET observation is difficult. SET observation must rely on the development of space technology. In this study
the temporal and spatial distribution characteristics of the SET are obtained using the theoretical model. This model considers the earth’s ellipticity
rotation
inelasticity of the mantle
nonhydrostatic equilibrium
and lateral inhomogeneity. Combined with the lunar ephemeris
the space–time coordinate system and the influence factors
such as precession
polar shift
nutation
and lunar libration
are considered. After the optimization of the model accuracy and efficiency
the theoretical model of the millimeter accuracy is obtained. Based on these characteristics
the macroscopic observation potential of space technology is discussed. It mainly includes the wide-area displacement monitoring ability by combining InSAR technology and ranging technologies
such as GNSS
VLBI
and SLR. The time-varying gravity acquisition ability solved from the gravity satellite data is also included. According to the requirements of InSAR technology on time baseline and swath width
three kinds of platforms
namely
low Earth orbit satellite
inclined geosynchronous satellite
and moon-based platform
are simulated. The advantages and disadvantages of various platforms are also analyzed. Results showed that the network of new gravity satellites and the new conceptual platform of remote sensing have the macro-observation potential for SETs. Compared with inclined geosynchronous satellite orbit
the moon-based platform can easily design the SAR system. The moon-based SAR has long service life and small orbit error. Given the change in declination
the moon-based platform can realize global continuous angle observation. It can also extract high-precision horizontal displacement from the deformation in line of sight. The multiangle observation area of the inclined geosynchronous satellite orbit is only one-third of that of the moon-based platform. Moreover
the land area corresponding to the ascending and descending nodes for inclined geosynchronous satellites has an inherent blind area. As the main force source of SETs
the moon can be used to separate the coupled solar and lunar tides. Given the observation effect and platform characteristics
the moon-based platform can become the best platform for earth tide observation if a series of key problems related to lunar landing
such as energy supply
temperature control
data transmission
material transportation
and dust environment
are solved. Given the cooperation of multiple platforms
the macro-observation of the earth tide in most areas can be realized with a temporal resolution lower than 1 day. Moreover
space technology development can supplement the spatial decorrelation period of the moon-based platform and realize complementary advantages.
地球固体潮空间技术轨道星历广域观测地球科学
solid earth tidesspace technologyorbit ephemeriswide-area observationearth science
Bruno D and Hobbs S E. 2010. Radar imaging from geosynchronous orbit: temporal decorrelation aspects. IEEE Transactions on Geoscience and Remote Sensing, 48(7): 2924-2929 [DOI: 10.1109/TGRS.2010.2042062http://dx.doi.org/10.1109/TGRS.2010.2042062]
Bruno D, Hobbs S E and Ottavianelli G. 2006. Geosynchronous synthetic aperture radar: concept design, properties and possible applications. Acta Astronautica, 59(1/5): 149-156 [DOI: 10.1016/j.actaastro.2006.02.005http://dx.doi.org/10.1016/j.actaastro.2006.02.005]
Chen X D. 2003. Preprocessing and Analytical Results of the Tidal Gravity Observations Recorded with a Superconducting Gravimeter at Jiufeng Station, Wuhan. Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences
陈晓东. 2003. 武汉九峰台超导重力仪固体潮观测资料的预处理和分析结果. 武汉: 中国科学院测量与地球物理研究所
Curlander J and McDonough R. 1991. Synthetic Aperture Radar: Systems and Signal Processing. New York: Wiley
Dehant V, Defraigne P and Wahr J M. 1999. Tides for a convective Earth. Journal of Geophysical Research: Solid Earth, 104(B1): 1035-1058 [DOI: 10.1029/1998JB900051http://dx.doi.org/10.1029/1998JB900051]
Fang J. 1984. The Solid Earth’s Tides. Beijing: Science Press
方俊. 1984. 固体潮. 北京: 科学出版社
Fornaro G, Franceschetti G, Lombardini F, Mori A and Calamia M. 2010. Potentials and limitations of Moon-Borne SAR imaging. IEEE Transactions on Geoscience and Remote Sensing, 48(7): 3009-3019 [DOI: 10.1109/TGRS.2010.2041463http://dx.doi.org/10.1109/TGRS.2010.2041463]
Goodkind J M. 1999. The superconducting gravimeter. Review of Scientific Instruments, 70(11): 4131-4152 [DOI: 10.1063/1.1150092http://dx.doi.org/10.1063/1.1150092]
Guo H D, Ding Y X, Liu G, Zhang D W, Fu W X and Zhang L. 2014. Conceptual study of lunar-based SAR for global change monitoring. Science China Earth Sciences, 57(8): 1771-1779 [DOI: 10.1007/s11430-013-4714-2http://dx.doi.org/10.1007/s11430-013-4714-2]
Hsu H T, Chen Z B and Yang H B. 1982. The effect of oceanic tides on the gravity tidal observations. ACTA Geophysica sinica. 25(2): 120-129
许厚泽, 陈振邦, 杨怀冰. 1982. 海洋潮汐对重力潮汐观测的影响. 地球物理学报, 25(2): 120-129
Li D W, Jiang L M, Jiang H J, Dong J L and Wang H S. 2019. InSAR phase simulation of solid earth tide and its influence on surface deformation monitoring at wide-area scale. Chinese Journal of Geophysics, 62(12): 4527-4539
李德伟, 江利明, 蒋厚军, 董景龙, 汪汉胜. 2019. 固体潮位移InSAR相位模拟及对广域地表形变监测的影响初探. 地球物理学报, 62(12): 4527-4539
Li D W, Jiang L M, Jiang H J, Dong J L and Wang H S. 2020. System parameters analysis of the Moon-based SAR Earth observation. Systems Engineering and Electronics, 42(4): 792-798
李德伟, 江利明, 蒋厚军, 董景龙, 汪汉胜. 2020. 月基SAR对地观测系统参数分析. 系统工程与电子技术, 42(4): 792-798 [DOI: 10.3969/j.issn.1001-506X.2020.04.08http://dx.doi.org/10.3969/j.issn.1001-506X.2020.04.08]
Li G Y, Zhang R, Liu G X, Yu B, Zhang B, Dai K R, Bao J W and Wei B W. 2018. Land subsidence detection and analysis over Beijing-Tianjin-Hebei area based on Sentinel-1A TS-DInSAR. Journal of Remote Sensing, 22(4): 633-646
李广宇, 张瑞, 刘国祥, 于冰, 张波, 戴可人, 包佳文, 韦博文. 2018. Sentinel-1A TS-DInSAR京津冀地区沉降监测与分析. 遥感学报, 22(4): 633-646 [DOI: 10.11834/jrs.20187196http://dx.doi.org/10.11834/jrs.20187196]
Li J G, Zhang H W, Wang Y J, Xiao F and Ji L D. 2012. The Adjustment of the Earth Tide in Gravimetry Caculation. Beijing Surveying and Mapping, 5:1-5
李建国, 张宏伟, 王应建, 肖凡, 纪立东. 2012. 重力计算中的潮汐改正分析. 北京测绘, 5:1-5
Long A C, Cappellari J O, and Velez C E. 1989. Goddard Trajectory Determination System
Madsen S N, Edelstein W, DiDomenico L D and LaBrecque J. 2001. A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture//Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium. Sydney: IEEE: 447-449 [DOI: 10.1109/IGARSS.2001.976185http://dx.doi.org/10.1109/IGARSS.2001.976185]
Mitrovica J X, Davis J L, Mathews P M and Shapiro I I. 1994. Determination of tidal h Love number parameters in the diurnal band using an extensive VLBI data set. Geophysical Research Letters, 21(8): 705-708 [DOI: 10.1029/94GL00630http://dx.doi.org/10.1029/94GL00630]
Montenbruck O and Gill E. 2002. Satellite Orbits: Models, Methods and Applications. Berlin, Heidelberg: Springer
Ning J S and Wang Z T. 2013. Progress and present status of research on earth’s gravitational field. Journal of Geomatics, 38(1):1-7
宁津生, 王正涛. 2013. 地球重力场研究现状与进展. 测绘地理信息, 38(1):1-7
Peng B B, Wu B and Xu H Z. 2000. Determination of displacement Love numbers from SLR data. Acta Geodaetica et Cartographica Sinica, 29(2): 305-309
彭碧波, 吴斌, 许厚泽. 2000. 应用人卫激光测距技术测定潮汐形变勒夫数. 测绘学报, 29(2): 305-309 [DOI: 10.3321/j.issn:1001-1595.2000.04.005http://dx.doi.org/10.3321/j.issn:1001-1595.2000.04.005]
Penna N T, King M A and Stewart M P. 2007. GPS height time series: short-period origins of spurious long-period signals. Journal of Geophysical Research: Solid Earth, 112(B2): B02402 [DOI: 10.1029/2005JB004047http://dx.doi.org/10.1029/2005JB004047]
Qiao S B, Sun F P, Zhu X H, Li J and Cong M R. 2004. Applications of GPS/VLBI/SLR/InSAR combination to geodynamics. Journal of Geodesy and Geodynamics, 24(3): 92-97
乔书波, 孙付平, 朱新慧, 李健, 丛明日. 2004. GPS/VLBI/SLR/InSAR组合在地球动力学研究中的应用. 大地测量与地球动力学, 24(3): 92-97 [DOI: 10.3969/j.issn.1671-5942.2004.03.019http://dx.doi.org/10.3969/j.issn.1671-5942.2004.03.019]
Ren Y Z, Guo H D, Liu G and Ye H L. 2017. Simulation study of geometric characteristics and coverage for Moon-Based earth observation in the Electro-Optical region. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6): 2431-2440 [DOI: 10.1109/JSTARS.2017.2711061http://dx.doi.org/10.1109/JSTARS.2017.2711061]
Shen Y Z. 2017. Algorithm characteristics of dynamic approach-based satellite gravimetry and its improvement proposals. Acta Geodaetica et Cartographica Sinica, 46(10): 1308-1315
沈云中. 2017. 动力学法的卫星重力反演算法特点与改进设想. 测绘学报, 46(10): 1308-1315 [DOI: 10.11947/j.AGCS.2017.20170380http://dx.doi.org/10.11947/j.AGCS.2017.20170380]
Sui Y, Guo H D, Liu G and Ren Y Z. 2019. Analysis of Long-Term Moon-Based observation characteristics for arctic and Antarctic. Remote Sensing, 11(23): 2805 [DOI: 10.3390/rs11232805http://dx.doi.org/10.3390/rs11232805]
Wang C Q. 2015. Time-Variable Gravity Field Determination from GRACE Mission and Some Related Issues. Beijing: Chinese Academy of Sciences
王长青. 2015. Grace时变重力场反演与相关问题研究. 北京: 中国科学院大学
Wang T and Liao M S. 2018. Coseismic displacement derived from Sentinel-1 data: latest techniques and case studies. Journal of Remote Sensing, 22(S1): 120-127
王腾, 廖明生. 2018. Sentinel-1卫星数据提取同震形变场: 最新技术及震例. 遥感学报, 22(S1): 120-127 [DOI: 10.11834/jrs.20187480http://dx.doi.org/10.11834/jrs.20187480]
Watson C, Tregoning P and Coleman R. 2006. Impact of solid Earth tide models on GPS coordinate and tropospheric time series. Geophysical Research Letters, 33(8): L08306 [DOI: 10.1029/2005GL025538http://dx.doi.org/10.1029/2005GL025538]
Wu K, Ji C, Luo L and Wang X Y. 2020. Simulation study of Moon-Based InSAR observation for solid earth tides. Remote Sensing, 12(1): 123 [DOI: 10.3390/rs12010123http://dx.doi.org/10.3390/rs12010123]
Wu T T, Zheng W, Yin W J, Zhang H W, Zhang G Q and Zhang W S. 2020. Review of earth’s gravity field model and application from satellite. Science Technology and Engineering, 20(25): 10117-10132
吴庭涛, 郑伟, 尹文杰, 张捍卫, 张刚强, 张文松. 2020. 地球卫星重力场模型及其应用研究进展. 科学技术与工程, 20(25): 10117-10132 [DOI: 10.3969/j.issn.1671-1815.2020.25.001http://dx.doi.org/10.3969/j.issn.1671-1815.2020.25.001]
Xu H, Li J X and Hu M C. 2007. Research on beam widening of spaceborne SAR. Journal of Electronics & Information Technology, 29(3): 540-543
徐慧, 李建新, 胡明春. 2007. 星载SAR波束展宽研究. 电子与信息学报, 29(3): 540-543 [DOI: 10.3724/SP.J.1146.2005.00985http://dx.doi.org/10.3724/SP.J.1146.2005.00985]
Xu H Z. 2010. Solid Earth Tides. Wuhan: Hubei Science and Technology Press
许厚泽. 2010. 固体地球潮汐. 武汉: 湖北科学技术出版社
Xu H Z and Zhang C J. 1997. Development of the studies on geodetic gravity and Earth Tides in China. Acta Geophysics Sinica, 40(S1): 192-205
许厚泽, 张赤军. 1997. 我国大地重力学和固体潮研究进展. 地球物理学报, 40(S1): 192-205
Yao X, Deng J H, Liu X H, Zhou Z K, Yao J M, Dai F C, Ren K Y and Li L J. 2020. Primary recognition of active landslides and development rule analysis for Pan Three-River-Parallel territory of Tibet Plateau. Advanced Engineering Sciences, 52(5): 16-37
姚鑫, 邓建辉, 刘星洪, 周振凯, 姚佳明, 戴福初, 任开瑀, 李凌婧. 2020. 青藏高原泛三江并流区活动性滑坡InSAR初步识别与发育规律分析. 工程科学与技术, 52(5): 16-37 [DOI: 10.15961/j.jsuese.202000529http://dx.doi.org/10.15961/j.jsuese.202000529]
Ye H L, Guo H D, Liu G and Ren Y Z. 2018. Observation duration analysis for Earth surface features from a Moon-based platform. Advances in Space Research, 62(2): 274-287 [DOI: 10.1016/j.asr.2018.04.029http://dx.doi.org/10.1016/j.asr.2018.04.029]
Zhang Y B and Zhang Y S. 2001. Calculation of subsatellite track of remote sensing satellite in nearly round orbit. Journal of Institute of Surveying and Mapping, 18(4): 257-259
张云彬, 张永生. 2001. 近圆轨道遥感卫星星下点轨迹的计算. 测绘学院学报, 18(4): 257-259 [DOI: 10.3969/j.issn.1673-6338.2001.04.007http://dx.doi.org/10.3969/j.issn.1673-6338.2001.04.007]
Zheng W, Hsu H T, Zhong M, Liu C S and Yuan M J. 2013. Precise and rapid recovery of the Earth’s gravitational field by the next-generation four-satellite cartwheel formation system. Chinese Journal of Geophysics, 56(9): 2928-2935
郑伟, 许厚泽, 钟敏, 刘成恕, 员美娟. 2013. 基于下一代四星转轮式编队系统精确和快速反演FSCF地球重力场. 地球物理学报, 56(9): 2928-2935 [DOI: 10.6038/cjg20130907http://dx.doi.org/10.6038/cjg20130907]
Zhou J C, Xu J Q and Sun H P. 2009. Accurate correction models for tidal gravity in Chinese continent. Chinese Journal of Geophysics, 52(6): 1474-1482
周江存, 徐建桥, 孙和平. 2009. 中国大陆精密重力潮汐改正模型. 地球物理学报, 52(6): 1474-1482 [DOI: 10.3969/j.issn.0001-5733.2009.06.008http://dx.doi.org/10.3969/j.issn.0001-5733.2009.06.008]
Zhu G B, Chang X T, Zou B and Cao H D. 2019. Simulation analysis of GRACE-type gravity satellite formation. Journal of Tongji University (Natural Science), 47(3): 421-427
朱广彬, 常晓涛, 邹斌, 曹华东. 2019. 重力卫星串联编队仿真分析. 同济大学学报(自然科学版), 47(3): 421-427 [DOI: 10.11908/j.issn.0253-374x.2019.03.017http://dx.doi.org/10.11908/j.issn.0253-374x.2019.03.017]
Zou B. 2017. Configuration Design and Simulation Analysis of the GRACE-Type Gravity Satellite Formation. Qingdao: Shandong University of Science and Technology (邹斌. 2017. 重力卫星串联编队构型设计分析研究. 青岛: 山东科技大学)
相关文章
相关作者
相关机构