高分五号卫星大气参数探测综述
Mission overview of the GF-5 satellite for atmospheric parameter monitoring
- 2021年25卷第9期 页码:1917-1931
纸质出版日期: 2021-09-07
DOI: 10.11834/jrs.20210582
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-09-07 ,
扫 描 看 全 文
陈良富,尚华哲,范萌,陶金花,胡斯勒图,张莹,王红梅,程良晓,张欣欣,伟乐斯,李明阳,邹铭敏,刘冬冬.2021.高分五号卫星大气参数探测综述.遥感学报,25(9): 1917-1931
Chen L F,Shang H Z,Fan M,Tao J H,Husi L T,Zhang Y,Wang H M,Cheng L X,Zhang X X,Wei L S,Li M Y, Zou M M and Liu D D. 2021. Mission overview of the GF-5 satellite for atmospheric parameter monitoring. National Remote Sensing Bulletin, 25(9):1917-1931
高分五号卫星搭载了大气痕量气体差分吸收光谱仪、主要温室气体探测仪、大气多角度偏振探测仪、大气环境红外甚高分辨率探测仪、可见短波红外高光谱相机和全谱段光谱成像仪共6台载荷,对全球环境监测及中国大气气溶胶、臭氧、二氧化硫、二氧化氮、二氧化碳、甲烷和云等多个环境与气象综合监测方面有着重要的意义。为了更好的了解高分五号卫星任务的大气监测内容,本文对高分五号卫星其中的4个大气探测载荷特征和数据处理算法进展进行了总结,涉及各个载荷参数信息、算法介绍和产品初步结果等相关内容。高分五号卫星是中国专门用于大气环境监测任务的遥感卫星,随着后续卫星的发射升空,将对中国乃至全球大气环境监测提供强有力的数据支撑。
China High-resolution Earth Observation System (CHEOS) was first proposed in 2006. The main goal of CHEOS is building a new Earth observation system with high spatial
temporal
and spectral resolution
achieving all-weather
all-day
and global coverage observation capability
thereby providing operational applications for satisfying the requirements of national economic and social development. As the first satellite mission in China specifically for air quality monitoring
GF-5 satellite was launched on May 9
2018. GF-5 is configured with six payloads
including a VIS and SWIR (shortwave infrared) hyperspectral camera
spectral imager
greenhouse gas detector
atmospheric environment infrared detector at very high spectral resolution
differential absorption spectrometer for atmospheric trace gas
and a multiangle polarization detector.
The Directional Polarimetric Camera (DPC) is the first Chinese multiangle polarized earth observation satellite sensor. DPC aims to obtain multiangle polarization radiation data of the Earth’s atmosphere
which can provide information on the temporal and spatial distribution of global aerosols and clouds to satisfy the requirements of global climate change research
atmospheric environment monitoring
and high-accuracy atmospheric correction of remote sensing data. The Environmental trace gas Monitoring Instrument (EMI) payload onboard GF-5 is the first Chinese satellite-borne spectrometer with the aim to measure atmospheric pollutants from space. The Chinese EMI instrument is expected to contribute to the understanding of global air quality and atmospheric chemistry
similar to predecessor European and American satellite missions
e.g.
the Ozone Monitoring Instrument (OMI) and TROPOspheric monitoring instrument (TROPOMI). Several trace gases (e.g.
NO
2
O
3
SO
2
BrO
and HCHO) and aerosol can be measured by EMI. The greenhouse Gas Monitoring Instrument (GMI) is a short-wavelength infrared (SWIR) hyperspectral-resolution spectrometer onboard the Chinese satellite GF-5 that uses a Spatial Heterodyne Spectroscopy (SHS) interferometer to acquire interferograms. The GMI was designed to measure and study the source and sink processes of carbon dioxide and methane in the troposphere
where the greenhouse effect occurs. AIUS is the first occultation spectrometer developed in China; it aims to detect the trace gases over the Antarctic. AIUS operates in a solar synchronous orbit
with a nominal height of 705 km. The instrument is a Fourier transform infrared spectrometer
and its main objective is to measure O
3
and other species in the stratosphere and upper troposphere to study the ozone temporal variations over the Antarctic.
遥感高分五号DPC(Directional Polarization Camera)EMI(Environment Monitoring Instrument)GMI(Greenhouse-gases Monitoring Instrument)AIUS(Atmospheric Infrared Ultraspectral Senor)
remote sensingGF-5DPC (Directional Polarization Camera)EMI (Environment Monitoring Instrument)GMI (Greenhouse-gases Monitoring Instrument)AIUS (Atmospheric Infrared Ultraspectral Senor)
Acarreta J R, De Haan J F and Stammes P. 2004. Cloud pressure retrieval using the O2-O2 absorption band at 477 nm. Journal of Geophysical Research: Atmospheres, 109(D5): D05204 [DOI: 10.1029/2003jd003915http://dx.doi.org/10.1029/2003jd003915]
Alexandrov M D, Cairns B, Emde C, Ackerman A S and van Diedenhoven B. 2012. Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter. Remote Sensing of Environment, 125: 92-111 [DOI: 10.1016/j.rse.2012.07.012http://dx.doi.org/10.1016/j.rse.2012.07.012]
Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V and Goede A P H. 1999. SCIAMACHY: mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2): 125-150 [DOI: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2]
Bréon F M and Bouffiés S. 1996. Land surface pressure estimate from measurements in the oxygen a absorption band. Journal of Applied Meteorology and Climatology, 35(1): 69-77 [DOI: 10.1175/1520-0450(1996)035<0069:lspefm>2.0.co;2http://dx.doi.org/10.1175/1520-0450(1996)035<0069:lspefm>2.0.co;2]
Bréon F M and Colzy S. 1999. Cloud detection from the spaceborne polder instrument and validation against surface synoptic observations. Journal of Applied Meteorology and Climatology, 38(6): 777-785 [DOI: 10.1175/1520-0450(1999)038<0777:CDFTSP>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1999)038<0777:CDFTSP>2.0.CO;2]
Bréon F M and Goloub P. 1998. Cloud droplet effective radius from spaceborne polarization measurements. Geophysical Research Letters, 25(11): 1879-1882 [DOI: 10.1029/98gl01221http://dx.doi.org/10.1029/98gl01221]
Bril А, Maksyutov S, Belikov D, Oshchepkov S, Yoshida Y, Deutscher N M, Griffith D, Hase F, Kivi R, Morino I, Notholt J, Pollard D F, Sussmann R, Velazco V A and Warneke T. 2017. EOF-based regression algorithm for the fast retrieval of atmospheric CO2 total column amount from the GOSAT observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 189: 258-266 [DOI: 10.1016/j.jqsrt.2016.12.005http://dx.doi.org/10.1016/j.jqsrt.2016.12.005]
Buchwitz M, Reuter M, Schneising O, Boesch H, Guerlet S, Dils B, Aben I, Armante R, Bergamaschi P, Blumenstock T, Bovensmann H, Brunner D, Buchmann B, Burrows J P, Butz A, Chédin A, Chevallier F, Crevoisier C D, Deutscher N M, Frankenberg C, Hase F, Hasekamp O P, Heymann J, Kaminski T, Laeng A, Lichtenberg G, De Mazière M, Noël S, Notholt J, Orphal J, Popp C, Parker R, Scholze M, Sussmann R, Stiller G P, Warneke T, Zehner C, Bril A, Crisp D, Griffith D W T, Kuze A, O'Dell C, Oshchepkov S, Sherlock V, Suto H, Wennberg P, Wunch D, Yokota T and Yoshida Y. 2015. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sensing of Environment, 162: 344-362 [DOI: 10.1016/j.rse.2013.04.024http://dx.doi.org/10.1016/j.rse.2013.04.024]
Buriez J C, Parol F, Cornet C and Doutriaux-Boucher M. 2005. An improved derivation of the top-of-atmosphere albedo from POLDER/ADEOS-2: narrowband albedos. Journal of Geophysical Research: Atmospheres, 110(D5): D05202 [DOI: 10.1029/2004jd005243http://dx.doi.org/10.1029/2004jd005243]
Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, DeBeek R, Hoogen R, Bramstedt K, Eichmann K U, Eisinger M and Perner D. 1999. The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2): 151-175 [DOI: 10.1175/1520-0469(1999)056<0151:Tgomeg>2.0.Co;2http://dx.doi.org/10.1175/1520-0469(1999)056<0151:Tgomeg>2.0.Co;2]
Cheng L X, Tao J H, Valks P, Yu C, Liu S, Wang Y P, Xiong X Z, Wang Z F and Chen L F. 2019. NO2 retrieval from the environmental trace gases monitoring instrument (EMI): preliminary results and intercomparison with OMI and TROPOMI. Remote Sensing, 11(24): 3017 [DOI: 10.3390/rs11243017http://dx.doi.org/10.3390/rs11243017]
Chepfer H, Brogniez G, Goloub P, Bréon F M and Flamant P H. 1999. Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1. Journal of Quantitative Spectroscopy and Radiative Transfer, 63(2/6): 521-543 [DOI: 10.1016/s0022-4073(99)00036-9http://dx.doi.org/10.1016/s0022-4073(99)00036-9]
Deschamps, P Y, Breon F M, Leroy M, Podaire A, Bricaud A, Buriez J C and Seze G. 1994. The POLDER mission: instrument characteristics and scientific objectives. IEEE Transactions on Geoscience and Remote Sensing, 32(3): 598-615 [DOI: 10.1109/36.297978http://dx.doi.org/10.1109/36.297978]
Fougnie B, Bracco G, Lafrance B, Ruffel C, Hagolle O and Tinel C. 2007. PARASOL in-flight calibration and performance. Applied Optics, 46(22): 5435-5451 [DOI: 10.1364/ao.46.005435http://dx.doi.org/10.1364/ao.46.005435]
Fougnie B, Marbach T, Lacan A, Lang R, Schlüssel P, Poli G, Munro R and Couto A B. 2018. The multi-viewing multi-channel multi-polarisation imager–overview of the 3MI polarimetric mission for aerosol and cloud characterization. Journal of Quantitative Spectroscopy and Radiative Transfer, 219: 23-32 [DOI: 10.1016/j.jqsrt.2018.07.008http://dx.doi.org/10.1016/j.jqsrt.2018.07.008]
Goloub P, Herman M, Chepfer H, Riedi J, Brogniez G, Couvert P and Séze G. 2000. Cloud thermodynamical phase classification from the POLDER spaceborne instrument. Journal of Geophysical Research: Atmospheres, 105(D11): 14747-14759 [DOI: 10.1029/1999jd901183http://dx.doi.org/10.1029/1999jd901183]
Levelt P F, van den Oord G H J, Dobber M R, Malkki A, Visser H, de Vries J, Stammes P, Lundell J O V and Saari H. 2006. The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1093-1101 [DOI: 10.1109/tgrs.2006.872333http://dx.doi.org/10.1109/tgrs.2006.872333]
Li X Y, Xu J, Cheng T H, Shi H L, Zhang X Y, Ge S L, Wang H M, Zhu S Y, Miao J and Luo Q. 2019. Monitoring trace gases over the Antarctic using atmospheric infrared ultraspectral sounder onboard gaofen-5: algorithm description and first retrieval results of O3, H2O, and HCl. Remote Sensing, 11(17): 1991 [DOI: 10.3390/rs11171991http://dx.doi.org/10.3390/rs11171991]
Li Z Q, Hou W Z, Hong J, Zheng F X, Luo D G, Wang J, Gu X F and Qiao Y L. 2018. Directional Polarimetric Camera (DPC): monitoring aerosol spectral optical properties over land from satellite observation. Journal of Quantitative Spectroscopy and Radiative Transfer, 218: 21-37 [DOI: 10.1016/j.jqsrt.2018.07.003http://dx.doi.org/10.1016/j.jqsrt.2018.07.003]
Luo H Y, Li S, Shi H L, Xiong W and Hong J. 2016. Optical design of imaging system based on spatial heterodyne spectrometer. Infrared and Laser Engineering, 45(8): 0818005
罗海燕, 李双, 施海亮, 熊伟和洪津. 2016. 空间外差光谱仪成像光学系统设计. 红外与激光工程, 45(8): 0818005 [DOI: 10.3788/irla201645.0818005http://dx.doi.org/10.3788/irla201645.0818005]
Luo Y J, Zhao Y S, Hu X L and Wu T X. 2006. Polarization and sun glitter’s peeling-off of multi-angle remote sensing. Optical Technique, 32(2): 205-208
罗杨洁, 赵云升, 胡新礼, 吴太夏. 2006. 偏振与多角度遥感中的太阳耀光剥离. 光学技术, 32(2): 205-208 [DOI: 10.3321/j.issn:1002-1582.2006.02.033http://dx.doi.org/10.3321/j.issn:1002-1582.2006.02.033]
Marbach T, Phillips P, Lacan A and Schlüssel P. 2013. The Multi-Viewing, -Channel, -Polarisation Imager (3MI) of the EUMETSAT Polar System-Second Generation (EPS-SG) dedicated to aerosol characterisation//Proceedings of SPIE, Sensors, Systems, and Next-Generation Satellites XVII. Dresden, Germany: SPIE: 88890I [DOI: 10.1117/12.2028221http://dx.doi.org/10.1117/12.2028221]
Merlin G, Riedi J, Labonnote L C, Cornet C, Davis A B, Dubuisson P, Desmons M, Ferlay N and Parol F. 2016. Cloud information content analysis of multi-angular measurements in the oxygen A-band: application to 3MI and MSPI. Atmospheric Measurement Techniques, 9(10): 4977-4995 [DOI: 10.5194/amt-9-4977-2016http://dx.doi.org/10.5194/amt-9-4977-2016]
Mishchenko M I, Cairns B, Kopp G, Schueler C F, Fafaul B A, Hansen J E, Hooker R J, Itchkawich T, Maring H B and Travis L D. 2007. Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission. Bulletin of the American Meteorological Society, 88(5): 677-692 [DOI: 10.1175/BAMS-88-5-677http://dx.doi.org/10.1175/BAMS-88-5-677]
Munro R, Lang R, Klaes D, Poli G, Retscher C, Lindstrot R, Huckle R, Lacan A, Grzegorski M, Holdak A, Kokhanovsky A, Livschitz J and Eisinger M. 2016. The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview. Atmospheric Measurement Techniques, 9(3): 1279-1301 [DOI: 10.5194/amt-9-1279-2016http://dx.doi.org/10.5194/amt-9-1279-2016]
Peralta R J, Nardell C, Cairns B, Russell E E, Travis L D, Mishchenko M I, Fafaul B A and Hooker R J. 2007. Aerosol polarimetry sensor for the Glory Mission//Proceedings of SPIE, MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition. Wuhan, China: SPIE: 67865L [DOI: 10.1117/12.783307http://dx.doi.org/10.1117/12.783307]
Ran Y H and Li X. 2019. TanSat: a new star in global carbon monitoring from China. Science Bulletin, 64(5): 284-285 [DOI: 10.1016/j.scib.2019.01.019http://dx.doi.org/10.1016/j.scib.2019.01.019]
Reuter M, Bovensmann H, Buchwitz M, Burrows J P, Connor B J, Deutscher N M, Griffith D W T, Heymann J, Keppel-Aleks G, Messerschmidt J, Notholt J, Petri C, Robinson J, Schneising O, Sherlock V, Velazco V, Warneke T, Wennberg P O and Wunch D. 2011. Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: validation with FTS measurements and comparison with model results. Journal of Geophysical Research: Atmospheres, 116(D4): D04301 [DOI: 10.1029/2010jd015047http://dx.doi.org/10.1029/2010jd015047]
Riedi J, Doutriaux-Boucher M, Goloub P and Couvert P. 2000. Global distribution of cloud top phase from POLDER/ADEOS I. Geophysical Research Letters, 27(12): 1707-1710 [DOI: 10.1029/1999gl010921http://dx.doi.org/10.1029/1999gl010921]
Shang H Z, Chen L F, Bréon F M, Letu H, Li S S, Wang Z M and Su L. 2015. Impact of cloud horizontal inhomogeneity and directional sampling on the retrieval of cloud droplet size by the POLDER instrument. Atmospheric Measurement Techniques, 8(11): 4931-4945 [DOI: 10.5194/amt-8-4931-2015http://dx.doi.org/10.5194/amt-8-4931-2015]
Shang H Z, Letu H, Bréon F M, Riedi J, Ma R, Wang Z M, Nakajima T Y, Wang Z T and Chen L F. 2019. An improved algorithm of cloud droplet size distribution from POLDER polarized measurements. Remote Sensing of Environment, 228: 61-74 [DOI: 10.1016/j.rse.2019.04.013http://dx.doi.org/10.1016/j.rse.2019.04.013]
Shang H Z, Letu H, Chen L F, Riedi J, Ma R, Wei L S, Labonnote L C, Hioki S, Liu C, Wang Z T and Wang J J. 2020. Cloud thermodynamic phase detection using a directional polarimetric camera (DPC). Journal of Quantitative Spectroscopy and Radiative Transfer, 253: 107179 [DOI: 10.1016/j.jqsrt.2020.107179http://dx.doi.org/10.1016/j.jqsrt.2020.107179]
Sun Y Z, Jiang G W, Li Y D, Yang Y, Dai H S, He J, Ye Q H, Cao Q, Dong C Z, Zhao S H and Wang W H. 2018. GF-5 satellite: overview and application prospects. Spacecraft Recovery and Remote Sensing, 39(3): 1-13
孙允珠, 蒋光伟, 李云端, 杨勇, 代海山, 何军, 叶擎昊, 曹琼, 董长哲, 赵少华, 王维和. 2018. “高分五号”卫星概况及应用前景展望. 航天返回与遥感, 39(3): 1-13 [DOI: 10.3969/j.issn.1009-8518.2018.03.001http://dx.doi.org/10.3969/j.issn.1009-8518.2018.03.001]
Veefkind J P, Aben I, McMullan K, Förster H, de Vries J, Otter G, Claas J, Eskes H J, de Haan J F, Kleipool Q, van Weele M, Hasekamp O, Hoogeveen R, Landgraf J, Snel R, Tol P, Ingmann P, Voors R, Kruizinga B, Vink R, Visser H and Levelt P F. 2012. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120: 70-83 [DOI: 10.1016/j.rse.2011.09.027http://dx.doi.org/10.1016/j.rse.2011.09.027]
Wang Y P. 2017. Research on Temperature/Pressure and Ozone Retrieval Algorithm Based on Atmospheric Infrared Ultraspectral Spectrometer. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences) (王雅鹏. 2017. 大气红外甚高分辨率掩星探测仪温压及臭氧廓线反演算法研究. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所))
Wang Z T, Chen L F, Li Q, Li S S, Jiang Z and Wang Z F. 2012. Retrieval of aerosol size distribution from multi-angle polarized measurements assisted by intensity measurements over East China. Remote Sensing of Environment, 124: 679-688 [DOI: 10.1016/j.rse.2012.06.021http://dx.doi.org/10.1016/j.rse.2012.06.021]
Wei L S, Shang H Z, Husi L T, Ma R, Hu D H, Chao K F, Si F Q, Shi J C and Chen L F. Research on cloud detection Algorithm based on GF-5/DPC data, Journal of Remote Sensing, 25(10): 2053-2066
伟乐斯, 尚华哲, 胡斯勒图, 马润, 胡大海, 朝克夫, 司福祺, 施建成, 陈良富. 2021. 基于GF-5/DPC数据的云检测方法研究. 遥感学报, 25(10): 2053-2066
Wu H, Wang X H, Ye H H, Jiang Y, Duan F H and Lv S. 2019. Retrieval algorithm of atmospheric CO2 for urban underlying surface in Beijing. Journal of Remote Sensing, 23(6): 1223-1231
吴浩, 王先华, 叶函函, 蒋芸, 段锋华, 吕松. 2019. 北京城市下垫面大气CO2反演算法. 遥感学报, 23(6): 1223-1231 [DOI: 10.11834/jrs.20198107http://dx.doi.org/10.11834/jrs.20198107]
Wu S C, Ma J J, Zhang Q Y, Yu H X and An Y. 2019. Research on haze and fog distinguishing algorithm based on particle polarization characteristics. Journal of Atmospheric and Environmental Optics, 14(3): 221-227
吴时超, 麻金继, 章群英, 余海啸, 安源. 2019. 基于粒子偏振特性的雾霾区分算法研究. 大气与环境光学学报, 14(3): 221-227 [DOI: 10.3969/j.issn.1673-6141.2019.03.007http://dx.doi.org/10.3969/j.issn.1673-6141.2019.03.007]
Xie Y S, Li Z Q, Hou W Z, Zhang Y, Jia L L, Li L, Li K T and Xu H. 2019. Retrieval of fine-mode aerosol optical depth based on remote sensing measurements of directional polarimetric camera onboard GF-5 satellite. Aerospace Shanghai, 36(S2): 219-226
谢一凇, 李正强, 侯伟真, 张洋, 伽丽丽, 李莉, 李凯涛, 许华. 2019. 高分五号卫星多角度偏振成像仪细粒子气溶胶光学厚度遥感反演. 上海航天, 36(S2): 219-226 [DOI: 10.19328/j.cnki.1006-1630.2019.S.033http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.S.033]
Xiong W. 2019. Greenhouse gases monitoring instrument(GMI) on GF-5 satellite (invited). Infrared and Laser Engineering, 48(3): 0303002
熊伟. 2019. “高分五号”卫星大气主要温室气体监测仪(特邀). 红外与激光工程, 48(3): 0303002 [DOI: 10.3788/irla201948.0303002http://dx.doi.org/10.3788/irla201948.0303002]
Zhang C X, Liu C, Wang Y, Si F Q, Zhou H J, Zhao M J, Su W J, Zhang W Q, Chan K L, Liu X, Xie P H, Liu J G and Wagner T. 2018. Preflight evaluation of the performance of the Chinese environmental trace gas monitoring instrument (EMI) by spectral analyses of nitrogen dioxide. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3323-3332 [DOI: 10.1109/tgrs.2018.2798038http://dx.doi.org/10.1109/tgrs.2018.2798038]
Zhang C M, Liu D D, Rong P and Li Y F. 2017. Selection of Greenhouse gases Monitoring Instrument channels for CO2 in near infrared band. Optik, 144: 597-602 [DOI: 10.1016/j.ijleo.2017.07.023http://dx.doi.org/10.1016/j.ijleo.2017.07.023]
Zhao M J, Si F Q, Jiang Y, Zhou H J, Wang S M and Liu W Q. 2013. In-lab calibration of space-borne differential optical absorption spectrometer. Optics and Precision Engineering, 21(3): 567-574
赵敏杰, 司福祺, 江宇, 周海金, 汪世美, 刘文清. 2013. 星载大气痕量气体差分吸收光谱仪的实验室定标. 光学 精密工程, 21(3): 567-574 [DOI: 10.3788/OPE.20132103.0567http://dx.doi.org/10.3788/OPE.20132103.0567]
Zhao M J, Si F Q, Zhou H J, Wang S M, Jiang Y and Liu W Q. 2018. Preflight calibration of the Chinese environmental trace gases monitoring instrument (EMI). Atmospheric Measurement Techniques, 11(9): 5403-5419 [DOI: 10.5194/amt-11-5403-2018http://dx.doi.org/10.5194/amt-11-5403-2018]
Zheng F X, Hou W Z and Li Z Q. 2019. Optimal estimation retrieval for directional polarimetric camera onboard Chinese Gaofen-5 satellite: an analysis on multi-angle dependence and a posteriori error. Acta Physica Sinica, 68(4): 040701
郑逢勋, 侯伟真, 李正强. 2019. 高分五号卫星多角度偏振相机最优化估计反演: 角度依赖与后验误差分析. 物理学报, 68(4): 040701 [DOI: 10.7498/aps.68.20181682http://dx.doi.org/10.7498/aps.68.20181682]
Zou M M, Chen L F, Tao J H, Su L, Fan M, Zhang Y and Han D. 2014. Accuracy analysis of PPDF-based method to parameterize aerosol scattering effect. Science China Earth Sciences, 57(8): 1807-1815 [DOI: 10.1007/s11430-013-4782-3http://dx.doi.org/10.1007/s11430-013-4782-3]
相关作者
相关机构