潮汐和植被物候影响下的潮间带湿地遥感提取
Mapping the intertidal wetlands of Fujian Province based on tidal dynamics and vegetational phonology
- 2022年26卷第2期 页码:373-385
纸质出版日期: 2022-02-07
DOI: 10.11834/jrs.20210586
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-02-07 ,
扫 描 看 全 文
智超,吴文挺,苏华.2022.潮汐和植被物候影响下的潮间带湿地遥感提取.遥感学报,26(2): 373-385
Zhi C,Wu W T and Su H. 2022. Mapping the intertidal wetlands of Fujian Province based on tidal dynamics and vegetational phonology. National Remote Sensing Bulletin, 26(2):373-385
潮间带湿地具有重要的生态和经济价值,但受到全球变化影响,发生大面积退化甚至丧失。掌握潮间带湿地的时空分布特征,对海岸带资源的科学管理具有重要意义。由于受到多云多雨天气和潮汐动态淹没的影响,单时相遥感数据难以获取完整的潮间带湿地信息。因此,本研究开发了一种基于时序遥感指数的潮间带湿地分类算法,并以福建省亚热带海岸带为例,基于Google Earth Engine(GEE)云平台,利用2017年—2019年Landsat 8时序影像数据,提取潮间带光滩、高潮滩植被和低潮滩植被3种典型湿地类型,分类结果总体精度97.47%,Kappa系数0.96。该算法有效降低了亚热带海岸带地区多云多雨天气和潮汐动态过程对光学遥感技术应用的影响。结果显示福建省潮间带湿地主要分布在河口与海湾处,且自北向南呈下降趋势,高潮滩植被集中分布在南部泉州湾、九龙江口、漳江口,闽北分布较少。将本研究结果与国内外同类数据集进行比较,显示出一定的优势。该方法为大尺度潮间带湿地的高精度智能分类提供了可能,为海岸带资源的可持续管理利用及区域的高质量发展提供数据基础。
Intertidal wetlands are the transitional zone between terrestrial and marine ecosystems
and they are of ecological and economic importance. However
intertidal wetlands are severely damaged due to natural causes (e.g.
climate change and sea-level rise) and anthropogenic causes (e.g.
coastal reclamation and excessive tourism development). Therefore
tracking the spatiotemporal changes of intertidal wetlands is important for scientific management and high-quality development of coastal areas. Compared with traditional surveying methods
remote sensing has better capacity in monitoring intertidal wetlands dynamically on a large scale. Acquiring complete information of intertidal wetland from a single-phase remote sensing image is difficult owing to the influences of cloudy weather and tidal periodic submergence. The problem of extracting the information of the intertidal zone under the influences of dynamic tidal submerge should be solved for the application of remote sensing in coastal areas.
In this study
we proposed a combined method using the time-series remote sensing indices and the geographic characteristics in the subtropical intertidal wetland of Fujian Province
China on the basis of the GEE platform. Three main types of intertidal wetlands including high marsh
low marsh
and tidal flat were classified by the following steps. First
water and vegetation indices were utilized to extract water bodies and vegetation from every single image. Second
the water and vegetation frequencies derived from time-series images were used to distinguish the high marsh
low marsh
and tidal flat according to the tidal dynamics and vegetational phonology. Finally
the accuracy of the results was verified by the high-resolution image on Google Earth Pro and in situ data. The results were compared with similar datasets to assess the reliability and robustness of the proposed method.
The overall classification accuracy was 97.47%
and the Kappa coefficient was 0.96. The verifications showed misclassifications in the transitional area. The total area of intertidal wetlands in Fujian Province was 1061.3 km
2
and the areas of high marsh
low marsh
and tidal flat were 18.1
137.3
and 905.8 km
2
respectively. Intertidal wetlands were concentrated in estuaries and bays. The area of tidal flat decreased from north to south along the coast
but a converse trend of the area of high marsh was observed. The vegetation was mainly distributed in the southern Quanzhou Bay
Jiulongjiang Estuary
and Zhangjiang Estuary
and it was less in northern Fujian. Comparing the results of this study with similar datasets showed that our study improved classification accuracy in the Fujian Province. However
some objective factors such as mixed pixels and clouds could affect the accuracy of the classification.
This research developed a method based on the GEE platform and time-series remote sensing indices to classify intertidal wetlands for overcoming the dilemma faced by single-phase remote sensing images in the intertidal zone information extraction. The results showed certain superiority compared with similar datasets during the same period. The method reduced the impact of the year-round cloudy and rainy weather in the subtropical coastal zone and tidal dynamics effectively. The present datasets will provide important basic data and technical supports for the sustainable management and utilization of coastal resources of the region.
时序遥感数据潮间带湿地GEE福建省物候频率算法
time-series remote sensing dataintertidal wetlandsGEEFujian Provincephenologyfrequency-based adgorithm
Bosire J O, Dahdouh-Guebas F, Walton M, Crona B I, Lewis III R R, Field C, Kairo J G and Koedam N. 2008. Functionality of restored mangroves: a review. Aquatic Botany, 89(2): 251-259 [DOI: 10.1016/j.aquabot.2008.03.010http://dx.doi.org/10.1016/j.aquabot.2008.03.010]
Bué I, Catalão J and Semedo Á. 2020. Intertidal bathymetry extraction with multispectral images: a logistic regression approach. Remote Sensing, 12(8): 1311 [DOI: 10.3390/rs12081311http://dx.doi.org/10.3390/rs12081311]
Cao W T, Zhou Y Y, Li R and Li X C. 2020. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images. Remote Sensing of Environment, 239: 111665 [DOI: 10.1016/j.rse.2020.111665http://dx.doi.org/10.1016/j.rse.2020.111665]
Catalao J and Nico G. 2017. Multitemporal backscattering logistic analysis for intertidal bathymetry. IEEE Transactions on Geoscience and Remote Sensing, 55(2): 1066-1073 [DOI: 10.1109/TGRS.2016.2619067http://dx.doi.org/10.1109/TGRS.2016.2619067]
Chen B Q, Xiao X M, Li X P, Pan L H, Doughty R, Ma J, Dong J W, Qin Y W, Zhao B, Wu Z X, Sun R, Lan G Y, Xie G S, Clinton N and Giri C. 2017. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131: 104-120 [DOI: 10.1016/j.isprsjprs.2017.07.011http://dx.doi.org/10.1016/j.isprsjprs.2017.07.011]
Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill R V, Paruelo J, Raskin R G, Sutton P and Van Den Belt M. 1997. The value of the world’s ecosystem services and natural capital. Nature, 387(6630): 253-260 [DOI: 10.1038/387253a0http://dx.doi.org/10.1038/387253a0]
Elsey-Quirk T, Mariotti G, Valentine K, Raper K. 2019. Retreating marsh shoreline creates hotspots of high-marsh plant diversity. Scientific Reports, 9(1): 5795 [DOI: 10.1038/s41598-019-42119-8http://dx.doi.org/10.1038/s41598-019-42119-8]
Feyisa G L, Meilby H, Fensholt R and Proud S R. 2014. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140: 23-35 [DOI: 10.1016/j.rse.2013.08.029http://dx.doi.org/10.1016/j.rse.2013.08.029]
Fisher A, Flood N and Danaher T. 2016. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175: 167-182 [DOI: 10.1016/j.rse.2015.12.055http://dx.doi.org/10.1016/j.rse.2015.12.055]
Friedl M A, McIver D K, Hodges J C F, Zhang X Y, Muchoney D, Strahler A H, Woodcock C E, Gopal S, Schneider A, Cooper A, Baccini A, Gao F and Schaaf C. 2002. Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83(1/2): 287-302 [DOI: 10.1016/S0034-4257(02)00078-0http://dx.doi.org/10.1016/S0034-4257(02)00078-0]
Gong P, Liu H, Zhang M N, Li C C, Wang J, Huang H B, Clinton N, Ji L Y, Li W Y, Bai Y Q, Chen B, Xu B, Zhu Z L, Yuan C, Suen H P, Guo J, Xu N, Li W J, Zhao Y Y, Yang J, Yu C Q, Wang X, Fu H H, Yu L, Dronova I, Hui F M, Cheng X, Shi X L, Xiao F J, Liu Q F and Song L C. 2019. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6): 370-373 [DOI: 10.1016/j.scib.2019.03.002http://dx.doi.org/10.1016/j.scib.2019.03.002]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Huang Y Q, Li R G and Jiang J X. 2011. Biodiversity and distribution of mollusc around the Luoyangjiang River mangrove nature reserve. Marine Sciences, 35(10): 110-116
黄雅琴, 李荣冠, 江锦祥. 2011. 泉州湾洛阳江红树林自然保护区潮间带软体动物多样性及分布. 海洋科学, 35(10): 110-116
Huete A, Didan K, Miura T, Rodriguez E P, Gao X and Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1/2): 195-213 [DOI: 10.1016/S0034-4257(02)00096-2http://dx.doi.org/10.1016/S0034-4257(02)00096-2]
Huete A R, Liu H Q, Batchily K and Van Leeuwen W. 1997. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3): 440-451 [DOI: 10.1016/S0034-4257(96)00112-5http://dx.doi.org/10.1016/S0034-4257(96)00112-5]
Jiang G X. 1992. Tides and tidal currents in Fujian waters. Journal of Oceanography in Taiwan Strait, 11(2): 89-94
江甘兴. 1992. 福建海区的潮汐和潮流. 台湾海峡, 11(2): 89-94
Jones T G, Glass L, Gandhi S, Ravaoarinorotsihoarana L, Carro A, Benson L, Ratsimba H R, Giri C, Randriamanatena D and Cripps G. 2016. Madagascar’s mangroves: quantifying Nation-Wide and ecosystem specific dynamics, and detailed contemporary mapping of distinct ecosystems. Remote Sensing, 8(2): 106 [DOI: 10.3390/rs8020106http://dx.doi.org/10.3390/rs8020106]
Li J, Lei Y R, Cui L J, Pan X, Zhang X D, Zhang M Y and Li W. 2018. Current status and research progress of coastal tidal flat wetlands in China. Forest Resources Management, (2): 24-28, 137
李晶, 雷茵茹, 崔丽娟, 潘旭, 张骁栋, 张曼胤, 李伟. 2018. 我国滨海滩涂湿地现状及研究进展. 林业资源管理, (2): 24-28, 137 [DOI: 10.13466/j.cnki.lyzygl.2018.02.005http://dx.doi.org/10.13466/j.cnki.lyzygl.2018.02.005]
Li M M. 2017. Spatio-temporal change and driving force analysis of the coastal zone in waters between Xiamen and Kinmen basecd on RS and GIS. Xiamen: Xiamen University
李萌萌. 2017. 基于RS和GIS的厦金海域海岸带时空变迁及驱动力分析. 厦门: 厦门大学
Li N, Li L W, Zhang Y L and Wu M. 2020. Monitoring of the invasion of Spartina alterniflora from 1985 to 2015 in Zhejiang Province, China. BMC Ecology, 20(1): 7 [DOI: 10.1186/s12898-020-00277-8http://dx.doi.org/10.1186/s12898-020-00277-8]
Lin P, Qiu X Z, Wu Z Q, Zhao Z B, Zheng Q F, Huang Y R and Huang S Q. 1990. Vegetation of Fujian Province. Fuzhou: FuJian Science and Technology Publishing House
林鹏, 丘喜昭, 吴志强, 赵昭昞, 郑清芳, 黄友儒, 黄绳全. 1990. 福建植被. 福州: 福建科学技术出版社
Lu J J. 1996. Classification of coastal wetlands of China. Environment Herald, (1): 1-2
陆健健. 1996. 中国滨海湿地的分类. 环境导报, (1): 1-2
Luo Y M. 2016. Sustainability associated coastal eco-environmental problems and coastal science development in China. Bulletin of Chinese Academy of Sciences, 31(10): 1133-1142
骆永明. 2016. 中国海岸带可持续发展中的生态环境问题与海岸科学发展. 中国科学院院刊, 31(10): 1133-1142 [DOI: 10.16418/j.issn.1000-3045.2016.10.001http://dx.doi.org/10.16418/j.issn.1000-3045.2016.10.001]
Ma C L, Ai B, Zhao J, Xu X P and Huang W. 2019. Change detection of mangrove forests in coastal Guangdong during the past three decades based on remote sensing Data. Remote Sensing, 11(8): 921 [DOI: 10.3390/rs11080921http://dx.doi.org/10.3390/rs11080921]
McFeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425-1432 [DOI: 10.1080/01431169608948714http://dx.doi.org/10.1080/01431169608948714]
Mei A X, Peng W L, Qin Q M and Liu H P. 2001. An Introduction to Remote Sensing. Beijing: Higher Education Press
梅安新, 彭望琭, 秦其明, 刘慧平. 2001. 遥感导论. 北京: 高等教育出版社
Murray N J, Phinn S R, DeWitt M, Ferrari R, Johnston R, Lyons M B, Clinton N, Thau D and Fuller R A. 2019. The global distribution and trajectory of tidal flats. Nature, 565(7738): 222-225 [DOI: 10.1038/s41586-018-0805-8http://dx.doi.org/10.1038/s41586-018-0805-8]
Nepf H M. 2012. Hydrodynamics of vegetated channels. Journal of Hydraulic Research, 50(3): 262-279 [DOI: 10.1080/00221686.2012.696559http://dx.doi.org/10.1080/00221686.2012.696559]
Nicholls R J and Cazenave A. 2010. Sea-level rise and its impact on coastal zones. Science, 328(5985): 1517-1520 [DOI: 10.1126/science.1185782http://dx.doi.org/10.1126/science.1185782]
Pickens A H, Hansen M C, Hancher M, Stehman S V, Tyukavina A, Potapov P, Marroquin B and Sherani Z. 2020. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sensing of Environment, 243: 111792 [DOI: 10.1016/j.rse.2020.111792http://dx.doi.org/10.1016/j.rse.2020.111792]
Redfield A C. 1972. Development of a New England salt marsh. Ecological Monographs, 42(2): 201-237 [DOI: 10.2307/1942263http://dx.doi.org/10.2307/1942263]
Ren C Y, Wang Z M, Zhang Y Z, Zhang B, Chen L, Xi Y B, Xiao X M, Doughty R B, Liu M Y, Jia M M, Mao D and Song K S. 2019. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. International Journal of Applied Earth Observation and Geoinformation, 82: 101902 [DOI: 10.1016/j.jag.2019.101902http://dx.doi.org/10.1016/j.jag.2019.101902]
Song S, Wu Z F, Wang Y F, Cao Z, He Z Y and Su Y S. 2020. Mapping the rapid decline of the intertidal wetlands of china over the past half century based on remote sensing. Frontiers in Earth Science, 8: 16 [DOI: 10.3389/feart.2020.00016http://dx.doi.org/10.3389/feart.2020.00016]
Tong S S, Deroin J P and Pham T L. 2020. An optimal waterline approach for studying tidal flat morphological changes using remote sensing data: A case of the northern coast of Vietnam. Estuarine, Coastal and Shelf Science, 236: 106613 [DOI: 10.1016/j.ecss.2020.106613http://dx.doi.org/10.1016/j.ecss.2020.106613]
Tucker C J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2): 127-150
Wang L, Jia M M, Yin D M and Tian J Y. 2019. A review of remote sensing for mangrove forests: 1956—2018. Remote Sensing of Environment, 231: 111223 [DOI: 10.1016/j.rse.2019.111223http://dx.doi.org/10.1016/j.rse.2019.111223]
Wang X X, Xiao X M, Zou Z H, Hou L Y, Qin Y W, Dong J W, Doughty R B, Chen B Q, Zhang X, Chen Y, Ma J, Zhao B and Li B. 2020. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 163: 312-326 [DOI: 10.1016/j.isprsjprs.2020.03.014http://dx.doi.org/10.1016/j.isprsjprs.2020.03.014]
Wei L, Wang X Q and Chen Y Z. 2011. Change of coastal wetlands in Fuzhou city in recent 10 years. Wetland Science, 9(3): 251-256
魏兰, 汪小钦, 陈芸芝. 2011. 近10年福州市滨海湿地变化研究. 湿地科学, 9(3): 251-256 [DOI: 10.13248/j.cnki.wetlandsci.2011.03.003http://dx.doi.org/10.13248/j.cnki.wetlandsci.2011.03.003]
Wu J H, Zhang S, Jiang Y, Kang M Y and Qiu Y. 2004. Phytogeography. Beijing: Higher Education Press
武吉华, 张绅, 江源, 康慕谊, 邱扬. 2004. 植物地理学. 北京: 高等教育出版社
Wu W, Li C X and Chen X C. 2020. Evaluation of the effectiveness of a coastal ecological restoration project based on ecosystem services: a case study on Yingwuzhou Wetland, China. Journal of East China Normal University (Natural Science), (3): 98-108
吴威, 李彩霞, 陈雪初. 2020. 基于生态系统服务的海岸带生态修复工程成效评估——以鹦鹉洲湿地为例. 华东师范大学学报(自然科学版), (3): 98-108
Wu W T, Tian B, Zhou Y X, Shu M Y, Qi X Y and Xu W. 2016. The trends of coastal reclamation in China in the past three decades. Acta Ecologica Sinica, 36(16): 5007-5016
吴文挺, 田波, 周云轩, 舒敏彦, 戚纤云, 胥为. 2016. 中国海岸带围垦遥感分析. 生态学报, 36(16): 5007-5016 [DOI: 10.5846/stxb201501200168http://dx.doi.org/10.5846/stxb201501200168]
Xiao X M, Boles S, Liu J Y, Zhuang D F and Liu M L. 2002. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sensing of Environment, 82(2/3): 335-348 [DOI: 10.1016/s0034-4257(02)00051-2http://dx.doi.org/10.1016/s0034-4257(02)00051-2]
Xu H Q. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14): 3025-3033 [DOI: 10.1080/01431160600589179http://dx.doi.org/10.1080/01431160600589179]
Xu Y. 2014. The characteristics of tidal linear sands off the estuaries in Fujian, China. Xiamen: Third Institute of Oceanography, MNR (许艳. 2014. 福建近海河口潮流沉积沙体特征. 厦门: 国家海洋局第三海洋研究所)
Zhang K Y, Dong X Y, Liu Z G, Gao W X, Hu Z W and Wu G F. 2019. Mapping tidal flats with Landsat 8 images and Google earth engine: a case study of the China’s eastern coastal zone circa 2015. Remote Sensing, 11(8): 924 [DOI: 10.3390/rs11080924http://dx.doi.org/10.3390/rs11080924]
Zhang X H, Treitz P M, Chen D M, Quan C, Shi L X and Li X H. 2017. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure. International Journal of Applied Earth Observation and Geoinformation, 62: 201-214 [DOI: 10.1016/j.jag.2017.06.010http://dx.doi.org/10.1016/j.jag.2017.06.010]
Zhao C P, Qin C Z and Teng J K. 2020. Mapping large-area tidal flats without the dependence on tidal elevations: a case study of Southern China. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 256-270 [DOI: 10.1016/j.isprsjprs.2019.11.022http://dx.doi.org/10.1016/j.isprsjprs.2019.11.022]
Zhou Y, Dong J W, Xiao X M, Xiao T, Yang Z Q, Zhao G S, Zou Z H and Qin Y W. 2017. Open surface water mapping algorithms: a comparison of Water-Related spectral indices and sensors. Water, 9(4): 256 [DOI: 10.3390/w9040256http://dx.doi.org/10.3390/w9040256]
相关作者
相关机构