高分五号痕量气体差分吸收光谱仪的地表UV-B辐照度初步反演
Preliminary inversion of surface UV-B irradiance based on GF-5 environmental trace gas monitoring instrument
- 2023年27卷第8期 页码:1856-1865
纸质出版日期: 2023-08-07
DOI: 10.11834/jrs.20210603
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-08-07 ,
扫 描 看 全 文
麻文杰,周海金,赵欣,司福祺,罗宇涵,杨东上,杨太平,钱园园,汤付颖.2023.高分五号痕量气体差分吸收光谱仪的地表UV-B辐照度初步反演.遥感学报,27(8): 1856-1865
Ma W J,Zhou H J,Zhao X,Si F Q,Luo Y H,Yang D S,Yang T P,Qian Y Y and Tang F Y. 2023. Preliminary inversion of surface UV-B irradiance based on GF-5 environmental trace gas monitoring instrument. National Remote Sensing Bulletin, 27(8):1856-1865
地表UV-B辐照度会对地球生态系统产生非常重要的影响。利用卫星遥感探测,可实现全球地表UV-B辐照度的长期探测,对于生态系统评估和大气科学研究等具有重要意义。目前基于国产卫星的地表UV-B辐照度产品较少,因此本文开展了高分五号卫星大气痕量气体差分吸收光谱仪(EMI)的地表UV-B辐照度的初步反演。首先基于地表UV-B辐照度的敏感性分析结果,建立无气溶胶情况下晴空地表UV-B辐照度查找表。随后提出了云、气溶胶场景下的校正方法,实现了全球地表UV-B辐照度的反演。最后,为验证该算法的准确性,将EMI结果分别与欧洲OMI卫星数据、WOUDC地面站点数据进行了对比,其中与OMI数据的相关系数大于0.9,与WOUDC地面站点数据的相关系数达到0.91。研究结果表明EMI载荷的地表UV-B辐照度产品准确性高,为后续地表UV-B辐照度等相关产品的发布提供研究基础,也证明了该载荷在全球地表紫外辐射时空分布监测应用中的能力。
Surface UV-B irradiance can have a very important impact on the ecosystem. In the modern industrialization process
human activities have led to significant changes in the atmospheric system
such as the reduction of stratospheric ozone
emergence of ozone holes
tropospheric atmospheric composite pollution
and other phenomena
and changes in the global surface UV-B irradiance
all of which significantly affect human health (e.g.
skin cancers) and ecological environment (e.g.
reduced crop yields). Therefore
monitoring the surface UV-B irradiance has become essential.
Surface UV-B irradiance can be monitored in two ways
namely
by ground-based monitoring and satellite monitoring. Ground-based platform surface UV-B irradiance monitoring faces several disadvantages
including its sparse site distribution and short operation time. Meanwhile
satellite remote sensing technology can realize a long-term monitoring of global surface UV-B irradiance
which is important for ecosystem assessment and atmospheric science research. Given the availability of few surface UV-B irradiance products based on domestic satellites
this paper carries out a preliminary inversion of the surface UV-B irradiance from the environmental trace gas monitoring instrument (EMI) on the GF-5 satellite.
First
a sensitivity analysis of those factors influencing surface UV-B irradiance was performed using the SCIATRAN model to reduce the time consumed in lookup table construction and lookup interpolation. On the basis of the results of the sensitivity analysis of surface UV-B irradiance
the input parameter nodes of the clear-sky surface UV-B irradiance lookup table are reasonably determined
and the surface UV-B irradiance of EMI under clear-sky conditions is calculated. Second
the correction methods applied in the presence of clouds and aerosol scenarios were examined. The surface UV-B irradiance under clear sky conditions was corrected by using the cloud correction method based on Lambert equivalent reflectance
and the aerosol correction method based on aerosol index was used to obtain the surface UV-B irradiance under actual conditions. After applying these corrections
the global surface UV-B irradiance was eventually inversed. Third
to verify its correctness
the results of the EMI surface UV-B irradiance algorithm were compared with the European OMI satellite and WOUDC site data at the same time by using a linear fitting method. The correlation coefficient R with the OMI data exceeded 0.9
and the correlation coefficient R with the WOUDC site data exceeded 0.91
thereby suggesting that the results of the proposed algorithm show high agreement with both the OMI and WOUDC data. However
several shortcomings were noted. For example
the surface UV-B irradiance inversion algorithm of EMI shows high accuracy in the region with low surface albedo
while the results are large in the region with high surface albedo.
The surface UV-B irradiance products of EMI are highly accurate and can provide a research basis for the subsequent releases of surface UV-B irradiance and other related products. These results also demonstrate the capability of the payload in global surface UV radiation spatial and temporal distribution monitoring applications and provide a basis for the long-term monitoring of the spatial and temporal variations of surface UV-B irradiance.
遥感痕量气体差分吸收光谱仪地表UV-B辐照度SCIATRAN模型查找表
remote sensingenvironmental trace gas monitoring instrumentsurface UV-B irradianceSCIATRANlookup table
Cheng L X, Tao J H, Valks P, Yu C, Liu S, Wang Y P, Xiong X Z, Wang Z F and Chen L F. 2019. NO2 retrieval from the environmental trace gases monitoring instrument (EMI): preliminary results and intercomparison with OMI and TROPOMI. Remote Sensing, 11(24): 3017 [DOI: 10.3390/rs11243017http://dx.doi.org/10.3390/rs11243017]
Krotkov N A, Bhartia P K, Herman J R, Fioletov V and Kerr J. 1998. Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols: 1. Cloud-free case. Journal of Geophysical Research: Atmospheres, 103(D8): 8779-8793 [DOI: 10.1029/98JD00233http://dx.doi.org/10.1029/98JD00233]
Krotkov N A, Herman J R, Bhartia P K, Fioletov V and Ahmad Z. 2001. Satellite estimation of spectral surface UV irradiance: 2. Effects of homogeneous clouds and snow. Journal of Geophysical Research: Atmospheres, 106(D11): 11743-11759 [DOI: 10.1029/2000jd900721http://dx.doi.org/10.1029/2000jd900721]
Lindfors A V, Kujanpää J, Kalakoski N, Heikkilä A, Lakkala K, Mielonen T, Sneep M, Krotkov N A, Arola A and Tamminen J. 2017. The TROPOMI surface UV algorithm. Atmospheric Measurement Techniques, 11(2): 997-1008 [DOI: 10.5194/amt-11-997-2018http://dx.doi.org/10.5194/amt-11-997-2018]
Tanskanen A, Arola A and Kujanpää J. 2003. Use of the moving time-window technique to determine surface albedo from TOMS reflectivity data//Proceedings of SPIE 4896, Ultraviolet Ground-and Space-based Measurements, Models, and Effects II. Hangzhou: SPIE: 239-250 [DOI: 10.1117/12.483407http://dx.doi.org/10.1117/12.483407]
Wang P C, Wu B Y and Zhang W X. 1999. Analysis on the factors affecting surface UV radiation. Chinese Journal of Atmospheric Sciences, 23(1): 1-8
王普才, 吴北婴, 章文星. 1999. 影响地面紫外辐射的因素分析. 大气科学, 23(1): 1-8 [DOI: 10.3878/j.issn.1006-9895.1999.01.01http://dx.doi.org/10.3878/j.issn.1006-9895.1999.01.01]
Yan H H, Wang W H and Zhang X Y. 2019. Ozone column retrieved from GF-5 satellite environmental trace gas monitoring instrument. Aerospace Shanghai, 36(S2): 200-204, 210
闫欢欢, 王维和, 张兴赢. 2019. 高分五号卫星大气痕量气体差分吸收光谱仪臭氧总量反演方法研究. 上海航天, 36(S2): 200-204, 210 [DOI: 10.19328/j.cnki.1006-1630.2019.S.030http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.S.030]
Yang T P, Si F Q, Wang P, Luo Y H, Zhou H J and Zhao M J. 2020. Research on cloud fraction inversion algorithm of environmental trace gas monitoring instrument. Acta Optica Sinica, 40(9): 0901001
杨太平, 司福祺, Wang P, 罗宇涵, 周海金, 赵敏杰. 2020. 大气痕量气体差分吸收光谱仪云量反演算法研究. 光学学报, 40(9): 0901001 [DOI: 10.3788/AOS202040.0901001http://dx.doi.org/10.3788/AOS202040.0901001]
Zhang X H, Zhang T L and Chen S G. 2015. Mapping the UV radiation in the Western Pacific Ocean with the simplified UV radiation model from OMI satellite sensor data. Remote Sensing Technology and Application, 30(1): 163-169
张学海, 张亭禄, 陈树果. 2015. 简化紫外辐射模型在基于OMI卫星传感器数据反演西太平洋海面紫外辐射中的应用. 遥感技术与应用, 30(1): 163-169 [DOI: 10.11873/j.issn.1004-0323.2015.1.0163http://dx.doi.org/10.11873/j.issn.1004-0323.2015.1.0163]
Zhao Y. 2014. Spatio-Temporal Vairation of Earth Surface UV-B Irradiance and Sensitivity Analysis. Jilin: Jilin University
赵莹. 2014. 地表UV-B辐照度时空变化及其敏感性分析. 吉林: 吉林大学
Zhao Y, Chen S B and Zhang Y. 2014. Comparison between ultraviolet irradiation data of TOMS and OMI. Science Technology and Engineering, 14(16): 195-199
赵莹, 陈圣波, 张莹. 2014. 臭氧总量测绘分光仪和臭氧监测仪紫外辐照度数据的对比研究. 科学技术与工程, 14(16): 195-199 [DOI: 10.3969/j.issn.1671-1815.2014.16.036http://dx.doi.org/10.3969/j.issn.1671-1815.2014.16.036]
相关作者
相关机构