斯里兰卡亚洲象栖息地生境质量时空变化及分异特征
Spatio-temporal patterns and differentiations of habitat quality for Asian elephant (
Elephas maximus ) habitat of Sri Lanka- 2021年25卷第12期 页码:2472-2487
纸质出版日期: 2021-12-07
DOI: 10.11834/jrs.20211013
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-12-07 ,
扫 描 看 全 文
吴林霖,王思远,杨瑞霞,马元旭,官云兰,刘卫华,海凯.2021.斯里兰卡亚洲象栖息地生境质量时空变化及分异特征.遥感学报,25(12): 2472-2487
Wu L L,Wang S Y,Yang R X, Ma Y X, Guan Y L, Liu W H and Hai K. 2021. Spatio-temporal patterns and differentiations of habitat quality for Asian elephant (Elephas maximus) habitat of Sri Lanka. National Remote Sensing Bulletin, 25(12):2472-2487
斯里兰卡亚洲象栖息地是全球重要的亚洲象保护区,象群分布密度约为其他地区的10倍,但由于生境破碎与丧失以及人象冲突等原因导致亚洲象数量急剧下降。对斯里兰卡亚洲象栖息地的生境质量监测与评估能够为亚洲象及其栖息地的保护政策制定与规划提供理论依据,并在全球物种多样性保护中具有重要意义。为评估斯里兰卡亚洲象栖息地的生境质量,综合考虑亚洲象栖息地需求以及影响亚洲象栖息地的关键要素,应用InVEST-HQ模型来估算生境质量指数,同时分析亚洲象栖息地生境质量在海拔梯度及植被覆盖梯度上的分布状况;随后引入空间自相关分析方法在像元尺度上探讨亚洲象栖息地生境质量的空间分布模式与时间演化过程,进而分析栖息地内不同保护区和气候分区的生境质量所存在的空间分异特征。研究结果表明:在空间分布上,斯里兰卡亚洲象栖息地生境质量具有高度聚集性,空间异常值不显著。生境质量高值区主要集中在中低海拔、植被覆盖情况较好、保护区范围密集的区域;生境质量低值区集中于耕地面积大、海拔偏高的区域。在梯度分布上,斯里兰卡亚洲象栖息地生境质量对海拔和植被覆盖度均具有显著线性相关关系,且在较低海拔和较高植被覆盖度梯度上存在聚集现象。在区域尺度上,斯里兰卡亚洲象栖息地生境质量存在显著的地域差异性。栖息地内自然保护区的生境质量明显高于非自然保护区,其中严格自然保护区的生境质量相对较高;热带雨林气候带的生境质量高值聚类大于其余气候分区,而热带疏林草原气候带与热带季风气候带生境质量受到季节性降水的影响较大,高值像元占比偏少。在时间尺度上,斯里兰卡亚洲象栖息地的生境质量总体呈现先降低后趋于平缓的态势。1995年—2010年,生境质量高值聚类占比明显减少,低值聚类占比缓慢上升;2010年—2020年生境质量低值占比有小幅度下降,高值聚类逐渐增加,生境质量逐渐稳定并呈缓慢上升的趋势。
Asian elephant habitat of Sri Lanka is one of the most important elephants protected area which the population density of Asian elephants is large in Sri Lanka more than tenfold with other regions
but habitat fragmentations and human-elephant conflicts result in a number of elephant populations declined dramatically. This study aimed to estimate the spatio-temporal pattern and differentiation of habitat quality to evaluate the status of Asian elephant habitat conservation in Sri Lanka.
In this study
we applied the InVEST-HQ model to calculate habitat quality index with consideration of habitat requirements and the influence factors of Asian elephant in the period of 1995 to 2020. DEM and NDVI were used to analyze the numerical distribution of habitat quality at different elevation gradients and vegetation cover gradients. Meanwhile
Spatial autocorrelation methods were used to quantify the spatial patterns of habitat quality in different protected areas and climate classifications.
The results showed that the overall habitat quality of Asian elephant habitat in Sri Lanka was relatively low (the percentage of low level was above 47%) and had a significant linear correlation between habitat quality and elevation and vegetation fraction coverage. Habitat quality was concentrated in low elevation gradient (elevation less than 500m) and high vegetation fraction coverage gradient (greater than 0.5). The spatial pattern of habitat quality was significantly positive autocorrelation which indicated a high spatial agglomeration was distributed over total Asian elephant habitat with high-high and low-low clustering. Different protected areas and climate classifications had a conspicuous variation in the spatial clustering of habitat quality. In the period of 2010 to 2020
the percentage of high-high clustering had a little increasing tendency and the percentage of low-low clustering declined
which could embody habitat quality was tended to stable in Asian elephant habitat of Sri Lanka.
Our study suggested that habitat quality evaluation should be considered the influence of spatial interaction to quantitatively analyze the spatial pattern
which could provide a new approach to evaluate and understand the status of specific species conservation based on remote sensing and geographic information technology.
遥感应用斯里兰卡亚洲象栖息地生境质量InVEST-HQ空间分异特征梯度分布
remote sensing applicationAsian elephant habitat of Sri Lankahabitat qualityInVEST-HQspatial differentiationgradient analysis
Alfred R, Ahmad A H, Payne J, Williams C, Ambu L N, How P M and Goossens B. 2012. Home range and ranging behaviour of Bornean elephant (Elephas maximus borneensis) Females. PLoS ONE, 7(2): e31400 [DOI: 10.1371/journal.pone.0031400http://dx.doi.org/10.1371/journal.pone.0031400]
Anselin L. 2010. Local indicators of spatial association-LISA. Geographical Analysis, 27(2): 93-115 [DOI: 10.1111/j.1538-4632.1995.tb00338.xhttp://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x]
Asian elephant range state meeting, Final report. Jakart, Indonesia: Ministry of Environment and Forestry, Government of Indonesia, 2017
Baskaran N. 2013. An overview of Asian elephants in the Western Ghats, southern India: implications for the conservation of Western Ghats ecology. Journal of Threatened Taxa, 25(14): 4854-4870 [DOI: 10.11609/JOTT.O3634.4854-70http://dx.doi.org/10.11609/JOTT.O3634.4854-70]
Baskaran N, Kannan G, Anbarasan U, Thapa A and Sukumar R. 2013. A landscape-level assessment of Asian elephant habitat, its population and elephant-human conflict in the Anamalai hill ranges of southern Western Ghats, India. Mammalian Biology, 78(6): 470-481 [DOI: 10.1016/j.mambio.2013.04.007http://dx.doi.org/10.1016/j.mambio.2013.04.007]
Bastiaanssen W G M and Chandrapala L. 2003. Water balance variability across Sri Lanka for assessing agricultural and environmental water use. Agricultural Water Management, 58(2): 171-192 [DOI: 10.1016/S0378-3774(02)00128-2http://dx.doi.org/10.1016/S0378-3774(02)00128-2]
Baur B, Cremene C, Groza G, Rakosy L, Schileyko A A, Baur A, Stoll P and Erhardt A. 2006. Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biological Conservation, 132(2): 261-273 [DOI: 10.1016/j.biocon.2006.04.018http://dx.doi.org/10.1016/j.biocon.2006.04.018]
Beck H E, Zimmermann N E, McVicar T R, Vergopolan N, Berg A and Wood E F. 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5: 180214 [DOI: 10.1038/sdata.2018.214http://dx.doi.org/10.1038/sdata.2018.214]
Bhagabati N K, Ricketts T, Sulistyawan T B S, Conte M, Ennaanay D, Hadian O, Mckenzie E, Olwero N, Rosenthal A, Tallis H and Wolny S. 2014. Ecosystem services reinforce Sumatran tiger conservation in land use plans. Biological Conservation, 169: 147-156 [DOI: 10.1016/j.biocon.2013.11.010http://dx.doi.org/10.1016/j.biocon.2013.11.010]
Chiang L C, Lin Y P, Huang T, Schmeller D S, Verburg P H, Liu Y L and Ding T S. 2014. Simulation of ecosystem service responses to multiple disturbances from an earthquake and several typhoons. Landscape and Urban Planning, 122: 41-55 [DOI: 10.1016/j.landurbplan.2013.10.007http://dx.doi.org/10.1016/j.landurbplan.2013.10.007]
Crooks K R, Burdett C L, Theobald D M, King S R B, Marco M D, Rondinini C and Boitani L. 2017. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proceedings of the National Academy of Sciences of the United States of America, 114(29): 7635-7640 [DOI: 10.1073/pnas.1705769114http://dx.doi.org/10.1073/pnas.1705769114]
de Silva S and Srinivasan K. 2019. Revisiting social natures: people-elephant conflict and coexistence in Sri Lanka. Geoforum,102: 182-190 [DOI: 10.1016/j.geoforum.2019.04.004http://dx.doi.org/10.1016/j.geoforum.2019.04.004]
ESA. 2017. Land Cover CCI Product User Guide Version 2[EB/OL]. http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfhttp://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
Feng S, Sun R H and Chen L D. 2018. Spatio-temporal variability of habitat quality based on land use pattern change in Beijing. Acta Ecologica Sinica, 38(12): 4167-4179
冯舒, 孙然好, 陈利顶. 2018. 基于土地利用格局变化的北京市生境质量时空演变研究. 生态学报, 38(12): 4167-4179 [DOI: 10.5846/stxb201801310258http://dx.doi.org/10.5846/stxb201801310258]
Fernando P, Jayewardene J, Prasad T, Hendavitharana W and Pastorini J. 2011. Current status of Asian elephants in Sri Lanka. Gajah, 35: 93-103 [DOI: 10.5167/UZH-59037http://dx.doi.org/10.5167/UZH-59037]
Fernando P and Pastorini J. 2011. Range-wide status of Asian elephants. Gajah, 35: 15-20 [DOI: 10.5167/uzh-59036http://dx.doi.org/10.5167/uzh-59036]
Fernando P, Wikramanayake E D, Janaka H K, Jayasinghe L K A, Gunawardena M, Kotagama S W, Weerakoon D and Pastorini J. 2008. Ranging behavior of the Asian elephant in Sri Lanka. Mammalian Biology, 73(1): 2-13 [DOI: 10.1016/j.mambio.2007.07.007http://dx.doi.org/10.1016/j.mambio.2007.07.007]
Foley J A, DeFries R, Asner G P, Barford C, Bonan G, Carpenter S R, Chapin F S, Coe M T, Daily G C, Gibbs H K, Helkowski J H, Holloway T, Howard E A, Kucharik C J, Monfreda C, Patz J A, Prentice I C, Ramankutty N and Snyder P K. 2005. Global consequences of land use. Science, 309(5734): 570-574 [DOI: 10.1126/science.1111772http://dx.doi.org/10.1126/science.1111772]
Fu W J, Jiang P K, Zhou G M and Zhao K L. 2014. Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences, 11(8): 2401-2409 [DOI: 10.5194/bg-11-2401-2014http://dx.doi.org/10.5194/bg-11-2401-2014]
Geldmann J, Barnes M, Coad L, Craigie I D, Hockings M and Burgess N D. 2013. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation, 161: 230-238 [DOI: 0.1016/j.biocon.2013.02.018http://dx.doi.org/0.1016/j.biocon.2013.02.018]
Hall L S, Krausman P R and Morrison M L. 1997. The habitat concept and a plea for standard terminology. Wildlife Society Bulletin, 25(1): 173-182
Han Y W, Kang W M, Thorne J and Song Y. 2019. Modeling the effects of landscape patterns of current forests on the habitat quality of historical remnants in a highly urbanized area. Urban Forestry and Urban Greening, 41: 354-363 [DOI: 10.1016/j.ufug.2019.04.015http://dx.doi.org/10.1016/j.ufug.2019.04.015]
Ishwaran N. 1983. Elephant and woody-plant relationships in Gal Oya, Sri Lanka. Biological Conservation, 26(3): 255-270 [DOI: 10.1016/0006-3207(83)90077-0http://dx.doi.org/10.1016/0006-3207(83)90077-0]
Ishwaran N. 1984. The Ecology of the Asian Elephant (Elephas maximus L.) in Sri Lanka. East Lansing, USA: Michigan State University
Ishwaran N. 1993. Ecology of the Asian elephant in lowland dry zone habitats of the Mahaweli River Basin, Sri Lanka. Journal of Tropical Ecology, 9(2): 169-182 [DOI: 10.1017/S0266467400007148http://dx.doi.org/10.1017/S0266467400007148]
Jarvis A, Reuter H I, Nelson A and Guevara E. 2008. Hole-filled SRTM for the globe Version 4. CGIAR-CSI SRTM 90m Database
Kanagaraj R, Araujo M B, Barman R, Davidar P, De R, Digal D K, Gopi G V, Johnsingh A J T, Kakati K, Kramer-Schadt S, Lamichhane B R, Lyngdoh S, Madhusudan M D, Najar M U I, Parida J, Pradhan N M B, Puyravaud J P, Raghunath R, Rahim P P A, Selvan K M, Subedi N, Trabucco A, Udayraj S, Wiegand T, Williams A C and Goyal S P. 2019. Predicting range shifts of Asian elephants under global change. Diversity and Distributions, 25(5): 822-838 [DOI: 10.1111/ddi.12898http://dx.doi.org/10.1111/ddi.12898]
Moreira M, Fonseca C, Vergílio M, Calado H and Gil A. 2018. Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: a case study of Pico Island (Azores, Portugal). Land Use Policy, 78: 637-649 [DOI: 10.1016/j.landusepol.2018.07.015http://dx.doi.org/10.1016/j.landusepol.2018.07.015]
Morrison M L. 2001. A proposed research emphasis to overcome the limits of wildlife-habitat relationship studies. The Journal of Wildlife Management, 65(4): 613-623 [DOI: 10.2307/3803012http://dx.doi.org/10.2307/3803012]
Neupane D, Kwon Y, Risch T S, Williams A C and Johnson R L. 2019. Habitat use by Asian elephants: context matters. Global Ecology and Conservation, 17: e00570 [DOI: 10.1016/j.gecco.2019.e00570http://dx.doi.org/10.1016/j.gecco.2019.e00570]
Ouyang Z Y and Zheng H. 2009. Ecological mechanisms of ecosystem services. Acta Ecologica Sinica, 29(11): 6183-6188
欧阳志云, 郑华. 2009. 生态系统服务的生态学机制研究进展. 生态学报, 29(11): 6183-6188 [DOI: 10.3321/j.issn:1000-0933.2009.11.053http://dx.doi.org/10.3321/j.issn:1000-0933.2009.11.053]
Pimm S L, Jenkins C N, Abell R, Brooks T M, Gittleman J L, Joppa L N, Raven P H, Roberts C M and Sexton J O. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187): 1246752 [DOI: 10.1126/science.1246752http://dx.doi.org/10.1126/science.1246752]
Premathilake R. 2006. Relationship of environmental changes in central Sri Lanka to possible prehistoric land-use and climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(3/4): 468-496 [DOI: 10.1016/j.palaeo.2006.03.001http://dx.doi.org/10.1016/j.palaeo.2006.03.001]
Ranjeewa A D G, Pastorini J, Isler K, Weerakoon D K, Kottage H D and Fernando P. 2018. Decreasing reservoir water levels improve habitat quality for Asian elephants. Mammalian Biology, 88: 130-137 [DOI: 10.1016/j.mambio.2017.10.002http://dx.doi.org/10.1016/j.mambio.2017.10.002]
Sala O E, Chapin F S III, Armesto J J, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke L F, Jackson R B, Kinzig A, Leemans R, Lodge D M, Mooney H A, Oesterheld M, Poff N L, Sykes M T, Walker B H, Walker M and Wall D H. 2000. Global biodiversity scenarios for the year 2100. Science, 287(5459): 1770-1774 [DOI: 10.1126/science.287.5459.1770http://dx.doi.org/10.1126/science.287.5459.1770]
Sallustio L, De Toni A, Strollo A, Di Febbraro M, Gissi E, Casella L, Geneletti D, Munafò M, Vizzarri M and Marchetti M. 2017. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. Journal of Environmental Management, 201: 129-137 [DOI: 10.1016/j.jenvman.2017.06.031http://dx.doi.org/10.1016/j.jenvman.2017.06.031]
Samarasinghe G B. 2003. Growth and yields of Sri Lanka’s major crops interpreted from public domain satellites. Agricultural Water Management, 58(2): 145-157 [DOI: 10.1016/S0378-3774(02)00130-0http://dx.doi.org/10.1016/S0378-3774(02)00130-0]
Sharp R, Douglass J, Wolny S, Arkema K, Bernhardt J, Bierbower W, Chaumont N, Denu D, Fisher D, Glowinski K, Griffin R, Guannel G, Guerry A, Johnson J, Hamel P, Kennedy C, Kim C K, Lacayo M, Lonsdorf E, Mandle L, Rogers L, Silver J, Toft J, Verutes G, Vogl A L, Wood S, and Wyatt K. 2020, InVEST 3.8.7 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
Shui Y P, Lu H T, Wang H F, Yan Y and Wu G. 2018. Assessment of habitat quality on the basis of land cover and NDVI changes in Lhasa River Basin. Acta Ecologica Sinica, 38(24): 8946-8954
税燕萍, 卢慧婷, 王慧芳, 严岩, 吴钢. 2018. 基于土地覆盖和NDVI变化的拉萨河流域生境质量评估. 生态学报, 38(24): 8946-8954 [DOI: 10.5846/stxb201806141331http://dx.doi.org/10.5846/stxb201806141331]
Song Y and Ma M G. 2007. Study on vegetation cover change in northwest China based on SPOT VEGETATION Data. Journal of Desert Research, 27(1): 89-93, 173
宋怡, 马明国. 2007. 基于SPOT VEGETATION数据的中国西北植被覆盖变化分析. 中国沙漠, 27(1): 89-93, 173 [DOI: 10.3321/j.issn:1000-694X.2007.01.021http://dx.doi.org/10.3321/j.issn:1000-694X.2007.01.021]
Sukumar R. 1990. Ecology of the Asian elephant in southern India. II. Feeding habits and crop raiding patterns. Journal of Tropical Ecology, 6(1): 33-53 [DOI: 10.1017/S0266467400004004http://dx.doi.org/10.1017/S0266467400004004]
Sukumar R. 2006. A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus. International Zoo Yearbook, 40(1): 1-8 [DOI: 10.1111/j.1748-1090.2006.00001.xhttp://dx.doi.org/10.1111/j.1748-1090.2006.00001.x]
Sun X Y, Jiang Z, Liu F and Zhang D Z. 2019. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecological Indicators, 102: 716-723 [DOI: 10.1016/j.ecolind.2019.03.041http://dx.doi.org/10.1016/j.ecolind.2019.03.041]
Terrado M, Sabater S, Chaplin-Kramer B, Mandle L, Ziv G and Acuña V. 2016. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Science of the Total Environment, 540: 63-70 [DOI: 10.1016/j.scitotenv.2015.03.064http://dx.doi.org/10.1016/j.scitotenv.2015.03.064]
WallisDeVries M F, Poschlod P and Willems J H. 2002. Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biological Conservation, 104(3): 265-273 [DOI: 10.1016/S0006-3207(01)00191-4http://dx.doi.org/10.1016/S0006-3207(01)00191-4]
Williams A C, Johnsingh A J T, Krausman P R and Qureshi Q. 2008. Ranging and habitat selection by Asian Elephants (Elephas maximus) in Rajaji National Park, North west India. Journal of the Bombay Natural History Society, 105(1): 145-155
Williams C, Tiwari S K, Goswami V R, de Silva S, Kumar A, Baskaran N, Yoganand K, Menon V. 2020. Elephas maximus. The IUCN Red List of Threatened Species 2020: e.T7140A45818198. https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T7140A45818198.enhttps://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T7140A45818198.en.
Wu L L, Sun C G and Fan F L. 2021. Estimating the characteristic spatiotemporal variation in habitat quality using the InVEST Model—A case study from Guangdong-Hong Kong-Macao greater bay area. Remote Sensing, 13(5): 1008 [DOI: 10.3390/rs13051008http://dx.doi.org/10.3390/rs13051008]
Xu J N, Sun J G and Chen H P. 2016. Habitat quality evaluation based on InVEST model-A case study of Xiaojiang watershed of Hengduan mountains. Journal of Anhui Agricultural Sciences, 44(15): 105-108, 134
徐建宁, 孙建国, 陈海鹏. 2016. 基于InVEST模型的生境质量评估——以横断山小江流域为例. 安徽农业科学, 44(15): 105-108, 134 [DOI: 10.13989/j.cnki.0517-6611.2016.15.037http://dx.doi.org/10.13989/j.cnki.0517-6611.2016.15.037]
Zheng S B. 2012. The Historical Distribution Area of Asian Elephant and the Influence of Land Cover Change. Beijing: Beijing Normal University
郑少勃. 2012. 亚洲象的历史分布区及土地覆盖变化对其的影响. 北京: 北京师范大学
相关作者
相关机构