噪声鲁棒的高光谱图像波段选择方法
Noise robust band selection method for hyperspectral images
- 2022年26卷第11期 页码:2382-2398
纸质出版日期: 2022-11-07
DOI: 10.11834/jrs.20211128
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-11-07 ,
扫 描 看 全 文
路燕,任月,崔宾阁.2022.噪声鲁棒的高光谱图像波段选择方法.遥感学报,26(11): 2382-2398
Lu Y,Ren Y and Cui B G. 2022. Noise robust band selection method for hyperspectral images. National Remote Sensing Bulletin, 26(11):2382-2398
目前大多数高光谱图像波段选择方法仅考虑波段信息冗余问题,忽略了所选波段的噪声水平,致使选取的代表性波段子集中可能含有噪声水平较高的波段。为解决这一问题,本文提出一种噪声鲁棒的高光谱图像波段自适应分区与子空间搜索方法。首先,基于皮尔逊相关系数构造高光谱图像波段相关性矩阵;然后,将高光谱图像光谱波段等分为若干子空间,通过构造与皮尔逊相关系数相适应的子空间划分最优目标函数,自适应地调整子空间的分割点;最后,综合考虑波段的信息熵和噪声水平,在子空间波段选择时将噪声水平以惩罚项的形式反映在优化问题的目标函数中。在Indian Pines、Washington DC和Salinas这3个数据集上进行了实验,采用波段平均相关性、分类精度两种指标对不同方法的波段选择结果进行评价,并分析各种波段选择方法的噪声鲁棒性。实验结果表明,本文方法能够挑选出信息量大且噪声水平低的代表性波段。与其它波段选择方法相比,本文方法所选择的代表性波段平均相关性弱,分类精度高,在包含噪声波段的高光谱图像中效果尤为显著。
Most proposed hyperspectral image band selection methods only consider the problem of band information redundancy and ignore the noise level of the selected bands. Accordingly
the representative band subset may contain high-noise bands
which is not conducive to subsequent semantic segmentation
image classification
and other applications. In response to this problem
this work proposes a noise-robust band selection method based on Pearson correlation coefficient
Information Entropy and Noise Level
referred to as PIENL.
In the proposed PIENL method
the Pearson correlation coefficient is first used to calculate the correlation between the bands
and the band correlation matrix is constructed. Then
the spectral bands of the hyperspectral image are divided into several subspaces of the same size
and an optimal subspace division objective function adapted to the Pearson correlation coefficient is constructed to adjust the division points of the subspace. Finally
a new band information measurement criterion is proposed
which observes the band information entropy and noise level at the same time and uses the noise level as a penalty item in the objective function of the optimization problem. According to this criterion
the spectral band with high information entropy and low noise level in each subspace is selected as the representative band.
Experiments were conducted on three public hyperspectral datasets of Indian Pines
Salinas
and Washington DC. Different band selection methods are evaluated using the average correlation degree of bands
classification accuracy
and the noise robustness. The experimental results show that this proposed PIENL method demonstrated outstanding band selection performance in terms of class separability
average correlation of representative bands
and noise robustness compared with the other advanced band selection methods.
The PIENL method has strong robustness to noise and has achieved significant results on hyperspectral datasets containing noise bands. We can conclude that: (1) The similarity measurement method based on the Pearson correlation coefficient is more suitable for measuring the spectral difference between the noisy hyperspectral image bands compared with Euclidean distance; (2) Considering both information entropy and noise level to measure band information is helpful to select representative bands of hyperspectral image; (3) The representative bands selected by PIENL have better class separability. Compared with other advanced band selection methods
the overall accuracy of PIENL method is improved by 3%—13%
1.5%—6.0% and 1%—6% respectively on the three datasets with high-noise bands removed. The overall accuracy is improved by 6%—11%
2%—8% and 3%—7% respectively on the three datasets containing high-noise bands. This also shows that PIENL has better performance on hyperspectral images that contain high-noise bands.
高光谱波段选择噪声鲁棒子空间划分搜索准则
hyperspectralband selectionnoise robustnesssubspace partitionsearch criteria
Acito N, Diani M and Corsini G. 2011. Subspace-based striping noise reduction in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 49(4): 1325-1342 [DOI: 10.1109/TGRS.2010.2081370http://dx.doi.org/10.1109/TGRS.2010.2081370]
Algina J and Olejnik S. 2003. Sample size tables for correlation analysis with applications in partial correlation and multiple regression analysis. Multivariate Behavioral Research, 38(3): 309-323 [DOI: 10.1207/S15327906MBR3803_02http://dx.doi.org/10.1207/S15327906MBR3803_02]
Bandos T V, Bruzzone L and Camps-Valls G. 2009. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 862-873 [DOI: 10.1109/TGRS.2008.2005729http://dx.doi.org/10.1109/TGRS.2008.2005729]
Chang C I, Du Q, Sun T L and Althouse M L G. 1999. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 37(6): 2631-2641 [DOI: 10.1109/36.803411http://dx.doi.org/10.1109/36.803411]
Chang C I and Wang S. 2006. Constrained band selection for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 44(6): 1575-1585 [DOI: 10.1109/TGRS.2006.864389http://dx.doi.org/10.1109/TGRS.2006.864389]
Coakley J A and Bretherton F P. 1982. Cloud cover from high-resolution scanner data: detecting and allowing for partially filled fields of view. Journal of Geophysical Research: Oceans, 87(C7): 4917-4932 [DOI: 10.1029/JC087iC07p04917http://dx.doi.org/10.1029/JC087iC07p04917]
Cui B G, Cui J D, Lu Y, Guo N N and Gong M G. 2020. A sparse representation-based sample pseudo-labeling method for hyperspectral image classification. Remote Sensing, 12(4): 664 [DOI: 10.3390/rs12040664http://dx.doi.org/10.3390/rs12040664]
Cui B G, Wu Y N, Zhong Y, Zhong L W and Lu Y. 2019. Hyperspectral image rolling guidance recursive filtering and classification. Journal of Remote Sensing, 23(3): 431-442
崔宾阁, 吴亚男, 钟勇, 钟利伟, 路燕. 2019. 高光谱图像滚动引导递归滤波与地物分类. 遥感学报, 23(3): 431-442 [DOI: 10.11834/jrs.20197510http://dx.doi.org/10.11834/jrs.20197510]
Dópido I, Villa A, Plaza A and Gamba P. 2012. A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2): 421-435 [DOI: 10.1109/JSTARS.2011.2176721http://dx.doi.org/10.1109/JSTARS.2011.2176721]
Fauvel M, Tarabalka Y, Benediktsson J A, Chanussot J and Tilton J C. 2013. Advances in spectral-spatial classification of hyperspectral images. Proceedings of the IEEE, 101(3): 652-675 [DOI: 10.1109/JPROC.2012.2197589http://dx.doi.org/10.1109/JPROC.2012.2197589]
Geoffrion A M. 1974. Lagrangean relaxation for integer programming//Approaches to Integer Programming. Berlin, Heidelberg: Springer: 82-114 [DOI: 10.1007/BFb0120690http://dx.doi.org/10.1007/BFb0120690]
Gu Y F and Zhang Y. 2003. Feature extraction based on automatic subspace partition for hyperspectral images. Remote Sensing Technology and Application, 18(6): 384-387
谷延锋, 张晔. 2003. 基于自动子空间划分的高光谱数据特征提取. 遥感技术与应用, 18(6): 384-387 [DOI: 10.3969/j.issn.1004-0323.2003.06.006http://dx.doi.org/10.3969/j.issn.1004-0323.2003.06.006]
Guignard M. 2003. Lagrangean relaxation. Top, 11(2): 151-200 [DOI: 10.1007/BF02579036http://dx.doi.org/10.1007/BF02579036]
Jia S, Tang G H, Zhu J S and Li Q Q. 2016. A novel ranking-based clustering approach for hyperspectral band selection. IEEE Transactions on Geoscience and Remote Sensing, 54(1): 88-102 [DOI: 10.1109/TGRS.2015.2450759http://dx.doi.org/10.1109/TGRS.2015.2450759]
Jiang J B, Qiao X J, He R Y and Tian F M. 2016. Use of near-infrared hyperspectral images to differentiate architectural coatings with different qualities. Spectroscopy and Spectral Analysis, 36(2): 379-383
蒋金豹, 乔小军, 何汝艳, 田奋民. 2016. 用近红外高光谱图像区分不同品质的建筑涂料. 光谱学与光谱分析, 36(2): 379-383 [DOI: 10.3964/j.issn.1000-0593(2016)02-0379-05http://dx.doi.org/10.3964/j.issn.1000-0593(2016)02-0379-05]
Lees K J, Artz R R E, Khomik M, Clark J M, Ritson J, Hancock M H, Cowie N R and Quaife T. 2020. Using spectral indices to estimate water content and GPP in Sphagnum moss and other peatland vegetation. IEEE Transactions on Geoscience and Remote Sensing, 58(7): 4547-4557 [DOI: 10.1109/TGRS.2019.2961479http://dx.doi.org/10.1109/TGRS.2019.2961479]
Li W, Prasad S, Fowler J E and Bruce L M. 2012. Locality- preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Transactions on Geoscience and Remote Sensing, 50(4): 1185-1198 [DOI: 10.1109/TGRS.2011.2165957http://dx.doi.org/10.1109/TGRS.2011.2165957]
Liu X S, Ge L, Wang B and Zhang L M. 2012. An unsupervised band selection algorithm for hyperspectral imagery based on maximal information. Journal of Infrared and Millimeter Waves, 31(2): 166-171
刘雪松, 葛亮, 王斌, 张立明. 2012. 基于最大信息量的高光谱遥感图像无监督波段选择方法. 红外与毫米波学报, 31(2): 166-171 [DOI: 10.3724/SP.J.1010.2012.00166http://dx.doi.org/10.3724/SP.J.1010.2012.00166]
MartÍnez-Usómartinez-Uso A, Pla F, Sotoca J M and García-Sevilla P. 2007. Clustering-based hyperspectral band selection using information measures. IEEE Transactions on Geoscience and Remote Sensing, 45(12): 4158-4171 [DOI: 10.1109/TGRS.2007.904951http://dx.doi.org/10.1109/TGRS.2007.904951]
Nasrabadi N M. 2014. Hyperspectral target detection: an overview of current and future challenges. IEEE Signal Processing Magazine, 31(1): 34-44 [DOI: 10.1109/MSP.2013.2278992http://dx.doi.org/10.1109/MSP.2013.2278992]
Rodriguez A and Laio A. 2014. Clustering by fast search and find of density peaks. Science, 344(6191): 1492-1496 [DOI: 10.1126/science.1242072http://dx.doi.org/10.1126/science.1242072]
Sun W W and Du Q. 2019. Hyperspectral band selection: a review. IEEE Geoscience and Remote Sensing Magazine, 7(2): 118- 139 [DOI: 10.1109/MGRS.2019.2911100http://dx.doi.org/10.1109/MGRS.2019.2911100]
Sun W W, Halevy A, Benedetto J J, Czaja W, Liu C, Wu H B, Shi B Q and Li W Y. 2014. UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification. ISPRS Journal of Photogrammetry and Remote Sensing, 89: 25-36 [DOI: 10.1016/j.isprsjprs.2013.12.003http://dx.doi.org/10.1016/j.isprsjprs.2013.12.003]
Thenkabail P S and Lyon J G. 2011. Spectral and spatial methods of hyperspectral image analysis for estimation of biophysical and biochemical properties of agricultural crops//Hyperspectral Remote Sensing of Vegetation. Boca Raton, FL: CRC Press: 289-308[DOI: 10.1201/b11222-19http://dx.doi.org/10.1201/b11222-19]
Wang J and Chang C I. 2006. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Transactions on Geoscience and Remote Sensing, 44(6): 1586-1600 [DOI: 10.1109/TGRS.2005.863297http://dx.doi.org/10.1109/TGRS.2005.863297]
Wang Q, Li Q and Li X L. 2019. Hyperspectral band selection via adaptive subspace partition strategy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12): 4940-4950 [DOI: 10.1109/JSTARS.2019.2941454http://dx.doi.org/10.1109/JSTARS.2019.2941454]
Wang Q, Zhang F H and Li X L. 2018. Optimal clustering framework for hyperspectral band selection. IEEE Transactions on Geoscience and Remote Sensing, 56(10): 5910-5922 [DOI: 10.1109/TGRS.2018.2828161http://dx.doi.org/10.1109/TGRS.2018.2828161]
Yang H, Du Q and Chen G S. 2012. Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2): 544-554 [DOI: 10.1109/JSTARS.2012.2185822http://dx.doi.org/10.1109/JSTARS.2012.2185822]
Yuan Y, Lin J Z and Wang Q. 2016. Dual-clustering-based hyperspectral band selection by contextual analysis. IEEE Transactions on Geoscience and Remote Sensing, 54(3): 1431-1445 [DOI: 10.1109/TGRS.2015.2480866http://dx.doi.org/10.1109/TGRS.2015.2480866]
Zhai H, Zhang H Y, Zhang L P and Li P X. 2019. Total variation regularized collaborative representation clustering with a locally adaptive dictionary for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(1): 166-180 [DOI: 10.1109/TGRS.2018.2852708http://dx.doi.org/10.1109/TGRS.2018.2852708]
Zhang L P and Li J Y. 2016. Development and prospect of sparse representation-based hyperspectral image processing and analysis. Journal of Remote Sensing, 20(5): 1091-1101
张良培, 李家艺. 2016. 高光谱图像稀疏信息处理综述与展望. 遥感学报, 20(5): 1091-1101 [DOI: 10.11834/jrs.20166050http://dx.doi.org/10.11834/jrs.20166050]
Zhang W Q, Li X R and Zhao L Y. 2016. An advanced hyperspectral band selection approach based on mutual information//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE: 2703-2706 [DOI: 10.1109/IGARSS.2016.7729698http://dx.doi.org/10.1109/IGARSS.2016.7729698]
Zhang W Q, Li X R and Zhao L Y. 2018. A fast hyperspectral feature selection method based on band correlation analysis. IEEE Geoscience and Remote Sensing Letters, 15(11): 1750-1754 [DOI: 10.1109/LGRS.2018.2853805http://dx.doi.org/10.1109/LGRS.2018.2853805]
Zhao C H, Tian M H and Li J W. 2017. Research progress on spectral similarity measurement metrics. Journal of Harbin Engineering University, 38(8): 1179-1189
赵春晖, 田明华, 李佳伟. 2017. 光谱相似性度量方法研究进展. 哈尔滨工程大学学报, 38(8): 1179-1189 [DOI: 10.11990/jheu.201612063http://dx.doi.org/10.11990/jheu.201612063]
Zhao L, Wang L G and Liu D F. 2019. A subspace band selection method for hyperspectral imagery. Journal of Remote Sensing, 23(5): 904-910
赵亮, 王立国, 刘丹凤. 2019. 高光谱图像子空间的波段选择. 遥感学报, 23(5): 904-910 [DOI: 10.11834/jrs.20197508http://dx.doi.org/10.11834/jrs.20197508]
Zhao W Z and Du S H. 2016. Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4544-4554 [DOI: 10.1109/TGRS.2016.2543748http://dx.doi.org/10.1109/TGRS.2016.2543748]
Zhu D H, Du B and Zhang L P. 2019. Binary-class collaborative representation for target detection in hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 16(7): 1100-1104 [DOI: 10.1109/LGRS.2019.2893395http://dx.doi.org/10.1109/LGRS.2019.2893395]
相关作者
相关机构