地表温度日变化模型偏差系数解算的地表温度降尺度
Research on land surface temperature downscaling method based on diurnal temperature cycle model deviation coefficient calculation
- 2021年25卷第8期 页码:1735-1748
纸质出版日期: 2021-08-07
DOI: 10.11834/jrs.20211181
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-07 ,
扫 描 看 全 文
王爱辉,杨英宝,潘鑫,章勇,胡解君德.2021.地表温度日变化模型偏差系数解算的地表温度降尺度.遥感学报,25(8): 1735-1748
Wang A H,Yang Y B,Pan X,Zhang Y and Hu X J D. 2021. Research on land surface temperature downscaling method based on diurnal temperature cycle model deviation coefficient calculation. National Remote Sensing Bulletin, 25(8):1735-1748
地表温度LST(Land Surface Temperature)是全球气候变化研究的关键参数,遥感是获取全球和区域尺度地表温度的一种切实可行手段,但现有的单一传感器无法提供高时空分辨率的LST数据,限制了遥感地表温度数据的深入广泛应用。现有的降尺度方法难以生成无缝高时空分辨率的地表温度数据,且降尺度效果易受高空间分辨率LST数据缺失及有效时刻分布影响。本文提出了一种基于地表温度日变化模型DTC(Diurnal Temperature Cycle)偏差系数解算的地表温度降尺度方法,采用FY-4A、MODIS和Landsat 8的LST数据生成晴空及多云条件下逐小时100 m的无缝LST数据。方法主要包含4部分:(1)利用空值重建方法获取无缝的FY-4A的LST数据;(2)建立FY-4A LST数据的DTC模型;(3)采用时空融合模型对MODIS的LST数据进行空间降尺度;(4)解算DTC模型偏差系数,获取逐小时100 m分辨率的无缝LST数据。实验结果表明,本文提出的方法具有较高的降尺度精度,可获得晴空及多云条件下无缝高时空地表温度数据,且高空间分辨率的地表温度数据缺失和有效时刻分布对本文方法降尺度结果影响较小。
Land Surface Temperature (LST) is a key parameter in global climate change research. Remote sensing is a practical means of obtaining surface temperature at global and regional scales
However
the existing single sensor cannot provide LST data with high spatial and temporal resolution
which limits the wide application of LST data obtained by remote sensing. The present downscaling methods are difficult to generate seamless LST data with high spatial and temporal resolution
and the downscaling effect is easily affected by the effective time distribution of LST data with high spatial resolution.
In this paper
a land surface temperature downscaling method based on Diurnal Temperature Cycle (DTC)model deviation coefficient calculation is proposed.The LST data from FY-4A
MODIS and Landsat 8 are used to generate the seamless LST data of 100 meters per hour under clear skies and cloudy conditions.The proposed method mainly consists of four parts : (1) the seamless FY-4A LST data are obtained by using DTC model and LST reconstruction method considering spatial and temporal characteristics. (2) Establish the DTC model of FY-4A LST data. (3) The MODIS dataset are extended and then combined with the enhanced spatiotemporal adaptive reflectance fusion model (ESTARFM) to generate LST data of 100 meters at multiple moments every day. (4) Calculate the deviation coefficient of DTC model to obtain seamless LST data with a resolution of 100 meters per hour.
Compared with the observation data of three stations
the results showed that: (1) the proposed method in this paper had higher accuracy compared with the ESTARFM model and its average RMSE had been reduced 0.63 K. MAE of the three stations was all less than 3 K
RMSE range was 2.01 K to 3.22 K
and the correlation coefficients r were all higher than 0.98. (2) the proposed method to extend LST data with medium spatial resolution was simple and effective. Compared with the MODIS product accuracy at the transit time (RMSE: 1.14 K to 5.53 K)
LST data at the extended time all had higher accuracy (RMSE: 0.90 K to 3.57 K). (3)The method in this paper can generate more complete high resolution LST data set in space and time. On the one hand
it was less affected by high resolution images of missing values
based on the reconstruction of only low spatial resolution LST datasets
seamless and high spatial resolution LST datasets can be generated under clear sky and cloudy conditions. On the other hand
the effective time distribution of high spatial resolution images has little influence on the method in this paper
and the reconstruction results have high stability.
In this paper
a land surface temperature downscaling method based on DTC model deviation coefficient calculation is proposed.The method was evaluated by observed datum of three stations and real remote sensing images. The results showed that the proposed method has higher accuracy and can obtain seamless high temporal and spatial LST data under clear sky and cloudy conditions. Moreover
the lack of high spatial resolution LST data and the effective time distribution have less impact on the proposed method. Because the proposed method in this paper is based on the DTC model
it is not applicable to the surface temperature downscaling under rainy weather conditions
which should should be investigated in future studies.
地表温度降尺度高时空分辨率时空融合地表温度日变化模型风云四号A星(FY-4A)
downscaling of land surface temperaturehigh spatial and temporal resolutionspace-time fusiondiurnal temperature cycleFY-4A
Buscail C, Upegui E and Viel J F. 2012. Mapping heatwave health riskat the community level for public health action. International Journal of Health Geographics, 11(1): 38 [DOI: 10.1186/1476-072x-11-38http://dx.doi.org/10.1186/1476-072x-11-38]
Duan S B, Li Z L, Tang B H, Wu H and Tang R L. 2014. Generation of a time-consistent land surface temperature product from MODIS data. Remote Sensing of Environment, 140: 339-349 [DOI: 10.1016/j.rse.2013.09.003http://dx.doi.org/10.1016/j.rse.2013.09.003]
Duan S B, Li Z L, Wang N, Wu H and Tang B H. 2012. Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data. Remote Sensing of Environment, 124: 15-25 [DOI: 10.1016/j.rse.2012.04.016http://dx.doi.org/10.1016/j.rse.2012.04.016]
Gao F, Masek J, Schwaller M and Hall F. 2006. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2207-2218 [DOI: 10.1109/tgrs.2006.872081http://dx.doi.org/10.1109/tgrs.2006.872081]
Gevaert C M and García H F J. 2015. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion.Remote Sensing of Environment,156: 34-44 [DOI:10.1016/j.rse.2014.09.012http://dx.doi.org/10.1016/j.rse.2014.09.012]
Hong F, Zhan W, Goettsche F M, Liu Z,Zhou J,Huang F,Lai J M and Li M. 2018.Comprehensive assessment of four-parameter diurnal land surface temperature cycle models under clear-sky. ISPRS Journal of Photogrammetry and Remote Sensing, 142(AUG.): 190-204 [DOI:10.1016/j.isprsjprs.2018.06.008http://dx.doi.org/10.1016/j.isprsjprs.2018.06.008]
Hu J,Yang Y, Pan X, Zhu Q, Zhan W, Wang Y, Ma W and Su W. 2019.Analysis of the Spatial and Temporal Variations of Land Surface Temperature Based on Local Climate Zones: A Case Study in Nanjing, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, PP(99): 1-11[DOI:10.1109/JSTARS.2019.2926502http://dx.doi.org/10.1109/JSTARS.2019.2926502]
Jiang G M, Li Z L and Nerry F. 2006. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSGSEVIRI. Remote Sensing of Environment, 105(4): 326-340[DOI: 10.1016/j.rse.2006.07.015http://dx.doi.org/10.1016/j.rse.2006.07.015]
Jiang Y H, Jiao L M and Zhang B E. 2018. Scale effect of the spatial correlation between urban land surface temperature and NDVI. Progress in Geography, 37(10): 1362-1370
江颖慧, 焦利民, 张博恩. 2018. 城市地表温度与NDVI 空间相关性的尺度效应. 地理科学进展, 37(10): 1362-1370 [DOI: 10.18306/dlkxjz. 2018.10.006http://dx.doi.org/10.18306/dlkxjz.2018.10.006]
Jin M L and Dickinson R E. 1999. Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle: 1. without clouds. Journal of Geophysical Research Atmospheres,104(D2): 2105-2116 [DOI: 10.1029/1998jd200005http://dx.doi.org/10.1029/1998jd200005]
Li Z L,Tang B H, Wu H, Ren H Z, Yan G J, Wan Z M, Trigo I F and Sobrino J A. 2013. Satellite-derived land surface temperature: current status and perspectives. Remote Sensing of Environment,131: 14-37 [DOI: 10.1016/j.rse.2012.12.008http://dx.doi.org/10.1016/j.rse.2012.12.008]
Liu D and Pu R. 2008.Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval[J].Sensors, 8(4):2695-2706 [DOI:10.3390/s8042695http://dx.doi.org/10.3390/s8042695]
Liu Z H, Wu P H, Wu Y L, Shen H F and Zeng C. 2017. Robust reconstruction of missing data in Feng Yun geostationary satellite land surface temperature products. Journal of Remote Sensing, 21(1): 40-51
刘紫涵, 吴鹏海, 吴艳兰, 沈焕锋, 曾超. 2017. 风云静止卫星地表温度产品空值数据稳健修复. 遥感学报, 21(1): 40-51[DOI: 10.11834/jrs.20176003http://dx.doi.org/10.11834/jrs.20176003]
Liu S M, Li X, Xu Z W, Che T, Xiao Q, Ma M G, Liu Q H, Jin R, Guo J W, Wang L X, Wang W Z, Qi Y, Li H Y, Xu T R, Ran Y H, Hu X L, Shi S J, Zhu Z L, Tan J L, Zhang Y, and Ren Z G. 2018. The Heihe integrated observatory network: a basin-scale land surface processes observatory in China. Vadose Zone Journal, 17(1): 1-21[DOI: 10.2136/vzj2018.04.0072http://dx.doi.org/10.2136/vzj2018.04.0072]
Meng X C, Liu H and Cheng J. 2019. Evaluation and characteristic research in diurnal surface temperature cycle in China using FY-2F data. Journal of Remote Sensing, 23(4): 570-581
孟翔晨, 刘昊, 程洁.2019. 基于FY-2F数据的中国区域地表温度日变化模型评价及特征研究. 遥感学报, 23(4): 570-581 [DOI: 10.11834/jrs.20197330http://dx.doi.org/10.11834/jrs.20197330]
Nichol and Janet. 2009. An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis. Photogrammetric Engineering & Remote Sensing [DOI:10.14358/pers.75.5.547http://dx.doi.org/10.14358/pers.75.5.547]
Quan J L, Chen Y H, Zhan W F, Wang J F, Voogt J and Li J. 2014. A hybrid method combining neighborhood information from satellite data with modeled diurnal temperature cycles over consecutive days. Remote Sensing of Environment, 155: 257-274 [DOI:10.1016/j.rse.2014.08.034http://dx.doi.org/10.1016/j.rse.2014.08.034]
Quan J L, Zhan W F, Chen Y H and Liu W Y. 2013. Downscaling remotely sensed land surface temperatures: A comparison of typical methods. Journal of Remote Sensing, 17(2): 361-387.
全金玲, 占文凤, 陈云浩, 刘闻雨. 2013. 遥感地表温度降尺度方法比较——性能对比及适应性评价.遥感学报,17(2):361-387 [DOI: 10.11 834/jrs.20132007http://dx.doi.org/10.11834/jrs.20132007]
Quan J L, Zhan W F, Ma T, Du Y Y, Guo Z and Qin B Y. 2018. An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes. Remote Sensing of Environment,206: 403-423 [DOI: 10.1016/j.rse.2017.12.003http://dx.doi.org/10.1016/j.rse.2017.12.003]
Stathopoulou M and Cartalis C. 2009.Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sensing of Environment, 113(12): 2592-2605 [DOI:10.1016/j.rse.2009.07.017http://dx.doi.org/10.1016/j.rse.2009.07.017]
Tan Z, Peng Y, Di L and Tang J. 2018. Deriving High Spatiotemporal Remote Sensing Images Using Deep Convolutional Network. Remote Sensing, 10(7): 1066 [DOI:10.3390/rs10071066http://dx.doi.org/10.3390/rs10071066]
Wang A H, Yang Y B, Pan X and Hu X. 2021.A Land Surface Temperature Reconstruction Model of FY-4A Cloudy Pixels Based on Spatiotemporal Characteristics.Geomatics and Information Science of Wuhan University, 46(06): 852-862
王爱辉, 杨英宝, 潘鑫, 胡解君德. 2021.顾 及时空特征的FY-4A云覆盖像元地表温度重建模型. 武汉大学学报•信息科学版, 46(06): 852-862 [DOI: 10.13203/j. whugis20200039http://dx.doi.org/10.13203/j.whugis20200039]
Wang K C, Wan Z M, Wang P C, Sparrow M, Liu J M, Zhou X J and Haginoya S. 2005. Estimation of surface long wave radiation and broadband emissivity using moderate resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products.Journal of Geophysical Research Atmospheres, 110(D11):D11109 [DOI: 10.1029/2004JD005566http://dx.doi.org/10.1029/2004JD005566]
Weng Q and Fu P. 2014a. Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 97: 78-88 [DOI: 10. 1016/j.isprsjprs.2014.08.009http://dx.doi.org/10.1016/j.isprsjprs.2014.08.009]
Weng Q H and Fu P. 2014b. Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data. Remote Sensing of Environment, 140: 267-278 [DOI: 10.1016/j.rse.2013.09.002http://dx.doi.org/10.1016/j.rse.2013.09.002]
Wu P H, Shen H F, Ai T H and Liu Y L. 2013. Land-surface temperature retrieval at high spatial and temporal resolutions based on multi-sensor fusion. International Journal of Digital Earth, 6(S1): 113-133 [DOI: 10.1080/17538947.2013.783131http://dx.doi.org/10.1080/17538947.2013.783131]
Wu P H, Shen H F, Zhang L P and Göttsche F M. 2015. Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature. Remote Sensing of Environment, 156: 169-181 [DOI: 10.1016/j.rse.2014.09.013http://dx.doi.org/10.1016/j.rse.2014.09.013]
Wu P, Yin Z, Zeng C, Duan S B and Shen H. 2021. “Spatially Continuous and High-Resolution Land Surface Temperature Product Generation: A Review of Reconstruction and Spatiotemporal Fusion Techniques,” in IEEE Geoscience and Remote Sensing Magazine,PP(99) [DOI: 10.1109/MGRS.2021.3050782]
Xia H, Chen Y, Li Y and Quan J. 2019. Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures[J].Remote Sensing of Environment, 224: 259-274 [DOI:10.1016/j.rse.2019.02.006http://dx.doi.org/10.1016/j.rse.2019.02.006]
Xin P, Zhu X, Yang Y, Cao C, Zhang X and Shan L. 2018. Applicability of Downscaling Land Surface Temperature by Using Normalized Difference Sand Index[J].Scientific Reports, 8(1): 9530- [10.1038/s41598-018-27905-0]
Yang Y B, Cao C, Pan X, Li X L and Zhu X. 2017. Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression. Remote Sensing, 9(8): 789 [DOI: 10.3390/rs9080789http://dx.doi.org/10.3390/rs9080789]
Yin Z X, Wu P H, Foody G M, Wu Y L, Liu Z H, Du Y and Ling F. 2021. Spatiotemporal fusion of land surface temperature based on a convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 59(2): 1808-1822 [DOI: 10.1109/tgrs.2020. 2999943http://dx.doi.org/10.1109/tgrs.2020.2999943]
Zhan W F, Chen Y H, Zhou J, Li J and Liu W Y. 2011. Sharpening thermal imageries: a generalized theoretical framework from an assimilation perspective. IEEE Transactions on Geoscience and Remote Sensing, 49(2): 773-789 [DOI: 10.1109/tgrs.2010.2060342http://dx.doi.org/10.1109/tgrs.2010.2060342]
Zhang H K , Zhang M , Huang B, Cao K and Yu L. 2015. A generalization of spatial and temporal fusion methods for remotely sensed surface parameters. International Journal of Remote Sensing, 36(17-18): 4411-4445 [DOI:10.1080/01431161.2015.1083633http://dx.doi.org/10.1080/01431161.2015.1083633]
Zhao Y , Huang B and Song H. 2018.A robust adaptive spatial and temporal image fusion model for complex land surface changes[J].Remote Sensing of Environment, 208: 42-62. [DOI:10.1016/j.rse.2018.02.009http://dx.doi.org/10.1016/j.rse.2018.02.009]
Zhou J, Chen Y H, Zhang X and Zhan W F. 2013. Modelling the diurnal variations of urban heat islands with multi-source satellite data. International Journal of Remote Sensing, 34(21): 7568-7588 [DOI: 10.1080/01431161.2013.821576http://dx.doi.org/10.1080/01431161.2013.821576].
Zhu L Q, Zhou J, Liu S M and Li G Q. 2017. Temporal normalization research of airborne land surface temperature. Journal of Remote Sensing, 21(2): 193-205
朱琳清, 周纪, 刘绍民, 李国全. 2017. 航空遥感地表温度时间归一化. 遥感学报, 21(2): 193-205 [DOI: 10.11834/jrs.20176103http://dx.doi.org/10.11834/jrs.20176103]
Zhu X L, Chen J, Gao F, Chen X H and Masek J G. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11): 2610-2623 [DOI: 10.1016/j.rse.2010.05.032http://dx.doi.org/10.1016/j.rse.2010.05.032]
Zhu, X L, Helmer E H, Gao F, Liu D S, Chen J and Lefsky M A. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment: An Interdisciplinary Journal, 172: 165-177 [DOI: 10.1016/j.rse.2015.11.016http://dx.doi.org/10.1016/j.rse.2015.11.016]
相关文章
相关作者
相关机构