石窟寺文物的数字化保护与利用
Digital protection and utilization of Grotto cultural relics
- 2021年25卷第12期 页码:2351-2364
纸质出版日期: 2021-12-07
DOI: 10.11834/jrs.20211182
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-12-07 ,
扫 描 看 全 文
李敏,刁常宇,葛云飞,裘霖山,李丽.2021.石窟寺文物的数字化保护与利用.遥感学报,25(12): 2351-2364
Li M,Diao C Y,Ge Y F,Qiu L S and Li L. 2021. Digital protection and utilization of Grotto cultural relics. National Remote Sensing Bulletin, 25(12):2351-2364
随着信息技术的飞速发展,石窟寺文物的数字化保护与利用引起了国内外的广泛关注。文章从石窟寺文物数字化采集、保护和利用等方面进行系统梳理,重点分析石窟寺文物数字化保护中三维信息获取、三维重建评价以及三维打印等相关前沿信息技术的应用现状。并针对石窟寺文物数字化保护和利用工程实践中的难点,给出采用激光脉冲三维采集细部结合多视图重建采集整体形状的三维重建结合三维打印的解决方案。同时,针对摄影测量计算过程中可能出现的整体形状偏差,采用脉冲式激光三维扫描仪在石窟中进行整体扫描来建立石窟三维形状的框架,以对多视图重建计算中的空间解算误差进行约束。其中,提出了基于关键参数一致化的分布式集中约束调整方法,在保障精确度的同时得到更好的计算效率。然后通过云冈石窟和龙门石窟字化保护和利用的经典案例,具体分析工程实践中的难点,并探讨以上解决方案的可行性。综合考虑成本与效果等多种因素,该方案是当前技术条件下性价比相对较高,同时可以兼顾色彩与质感原真再现的解决思路。最后对未来趋势进行展望并给出相关技术和应用建议。
With the rapid development of digital technology
the digital protection and utilization of grotto cultural relics have attracted worldwide attention. We introduce the digitalization of grotto cultural relics from three perspectives
namely
the collection
protection
and utilization of grotto cultural relics. Moreover
it laid special stress on analyzing the applying status of the cutting-edge technology related to the digital protection of these cultural relics. In analyzing the cutting-edge research
we found that digital protection research on grotto temple cultural relics has been formed
which is developing rapidly with the dropping cost of technology.
The rapid update of cultural relics digitization technology and endless applications extended the scope of cultural relics digitization technology from the initial digital recording to various applications. Thus
listing all the types of technologies involved in cultural relics digitization is impossible. This study discusses the digital protection and utilization of the cultural relics of the cave temple in recent years
mainly involving the visual information category. Moreover
other technical scopes will not be introduced.
The protection and utilization of digitization include protection related to digital recording and the utilization of digitized information. The technologies used by them are different but not completely unrelated. This study classifies and summarizes from the technology perspective. The Longmen Grottoes art mainly includes cave niche architecture
stone sculptures
and stele inscriptions. Cave niche architecture refers to the shape of cave niches
eaves
lintels
wood-like buildings on the walls
stone relief towers
and so on. Therefore
the technology used must also be covered extensively. Next
this study mainly introduces 3D information acquisition technology and 3D printing.
However
current research topics remain relatively scattered
hence a complete system has not yet been formed. Domestic research also has problems
such as convergence of research perspectives and lack of international exchanges. Finally
through the introduction and analysis of the classic cases of Yungang Grottoes and Longmen Grottoes
the paper explores the future trends and provides relevant technology and application suggestions.
The success of the two cases also shows that the digital work of the cave temple is the result of the cross integration of multiple technologies and multiple
and that over emphasis on a certain technology often fails to solve practical problems. How to deeply mine the effective information of the collected data
and flexibly use VR
AR
and artificial intelligence
and other related technologies to use and inherit the cave temple culture is a hot research trend in the future.
遥感数字化文化遗产石窟寺与古建筑考古三维建模三维打印颜色科学
remote sensingdigitizationcultural relicsgrotto temple and ancient architecture archeologythree dimensional modelingthree dimensional printingcolor science
Aloimonos J. 1988. Shape from texture. Biological Cybernetics, 58(5): 345-360 [DOI: 10.1007/BF00363944http://dx.doi.org/10.1007/BF00363944]
Diao C Y and Li Z R. 2018. High-fidelity digitalization and application of stone cultural relics. China Cultural Heritage, (4): 61-67
刁常宇, 李志荣. 2018. 石质文物高保真数字化技术与应用. 中国文化遗产, (4): 61-67
Hideo Kodama. 1981. A scheme for three-dimensional display by automatic fabrication of three-dimensional model. IEICE TRANSACTIONS on Electronics (Japanese Edition), J64-C(4): 237-241
Horn B K P. 1989. Obtaining shape from shading information//Shape from Shading. Cambridge, MA, USA: MIT Press: 123-171
Kaiser M L, Kucera T A, Davila J M, St Cyr O C, Guhathakurta M and Christian E. 2008. The STEREO mission: an introduction//Russell C T, ed. The STEREO Mission. New York: Springer: 5-16 [DOI: 10.1007/978-0-387-09649-0_2http://dx.doi.org/10.1007/978-0-387-09649-0_2]
Li M, Zhou Z L, Wu Z, Shi B X, Diao C Y and Tan P. 2020. Multi-view photometric stereo: a robust solution and benchmark dataset for spatially varying isotropic materials. IEEE Transactions on Image Processing, 29: 4159-4173 [DOI: 10.1109/TIP.2020.2968818http://dx.doi.org/10.1109/TIP.2020.2968818]
Liu Z H, Diao C Y, Xing W and Lu D M. 2019. Critical parameter consensus for efficient distributed bundle adjustment//Proceedings of the 14th International joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP. Prague, Czech Republic: [s.n.]: 800-807 [DOI: 10.5220/0007361108000807http://dx.doi.org/10.5220/0007361108000807]
Marr D and Poggio T. 1976. Cooperative computation of stereo disparity. Science, 194(4262): 283-287 [DOI: 10.1126/science.968482http://dx.doi.org/10.1126/science.968482]
Martin W N and Aggarwal J K. 1983. Volumetric descriptions of objects from multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(2): 150-158 [DOI: 10.1109/TPAMI.1983.4767367http://dx.doi.org/10.1109/TPAMI.1983.4767367]
Mytum H and Peterson J R. 2018. The application of reflectance transformation imaging (RTI) in historical archaeology. Historical Archaeology, 52(2): 489-503 [DOI: 10.1007/s41636-018-0107-xhttp://dx.doi.org/10.1007/s41636-018-0107-x]
Nikolov I and Madsen C. 2016. Benchmarking close-range structure from motion 3D reconstruction software under varying capturing conditions//Proceedings of the 6th International Conference, EuroMed 2016. Nicosia, Cyprus: Springer: 15-26 [DOI: 10.1007/978-3-319-48496-9_2http://dx.doi.org/10.1007/978-3-319-48496-9_2]
Okutomi M and Kanade T. 1993. A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4): 353-363 [DOI: 10.1109/34.206955http://dx.doi.org/10.1109/34.206955]
Posdamer J L and Altschuler M D. 1982. Surface measurement by space-encoded projected beam systems. Computer Graphics and Image Processing, 18(1): 1-17 [DOI: 10.1016/0146-664X(82)90096-Xhttp://dx.doi.org/10.1016/0146-664X(82)90096-X]
Salvi J, Pagès J and Batlle J. 2004. Pattern codification strategies in structured light systems. Pattern Recognition, 37(4): 827-849 [DOI: 10.1016/j.patcog.2003.10.002http://dx.doi.org/10.1016/j.patcog.2003.10.002]
Schönberger J L, Zheng E L, Frahm J M and Pollefeys M. 2016. Pixelwise view selection for unstructured multi-view stereo//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer: 501-518 [DOI: 10.1007/978-3-319-46487-9_31http://dx.doi.org/10.1007/978-3-319-46487-9_31]
Schroer C and Mudge M. 2017. A context metadata collection and management tool for computational photography projects//Archiving Conference, Archiving 2017 Final Program and Proceedings. [s.l.]: Society for Imaging Science and Technology: 99-104 [DOI: 10.2352/issn.2168-3204.2017.1.0.99http://dx.doi.org/10.2352/issn.2168-3204.2017.1.0.99]
Seitz S M, Curless B, Diebel J, Scharstein D and Szeliski R. 2006. A comparison and evaluation of multi-view stereo reconstruction algorithms//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York, NY, USA: IEEE: 519-528 [DOI: 10.1109/CVPR.2006.19http://dx.doi.org/10.1109/CVPR.2006.19]
Snavely N, Steven S M and Szeliski R. 2006. Photo tourism: exploring photo collections in 3D. ACM Transactions on Graphics, 25(3): 835-846 [DOI: 10.1145/1141911.1141964http://dx.doi.org/10.1145/1141911.1141964]
Tomasi C and Kanade T. 1992. Shape and motion from image streams under orthography: a factorization method. International Journal of Computer Vision, 9(2): 137-154 [DOI: 10.1007/BF00129684http://dx.doi.org/10.1007/BF00129684]
Triggs B, McLauchlan P F, Hartley R I and Fitzgibbon A W. 2000. Bundle adjustment - a modern synthesis//International Workshop on Vision Algorithms. Corfu, Greece: Springer: 298-372 [DOI: 10.1007/3-540-44480-7_21http://dx.doi.org/10.1007/3-540-44480-7_21]
Vlachos M, Berger L, Mathelier R, Agrafiotis P and Skarlatos D. 2019. Software comparison for underwater archaeological photogrammetric applications. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2-W15: 1195-1201 [DOI: 10.5194/ISPRS-ARCHIVES-XLII-2-W15-1195-2019http://dx.doi.org/10.5194/ISPRS-ARCHIVES-XLII-2-W15-1195-2019]
Wiley W C and McLaren I H. 1955. Time-of-flight mass spectrometer with improved resolution. Review of Scientific Instruments, 26(12): 1150-1157 [DOI: 10.1063/1.1715212http://dx.doi.org/10.1063/1.1715212]
Woodham R J. 1979. Photometric stereo: a reflectance map technique for determining surface orientation from image intensity//Proceedings Volume 0155, Image Understanding Systems and Industrial Applications I. San Diego, United States: SPIE: 136-144 [DOI: 10.1117/12.956740http://dx.doi.org/10.1117/12.956740]
相关作者
相关机构