国产卫星多光谱数据云与云影检测算法研究
Research on multispectral satellite image cloud and cloud shadow detection algorithm of domestic satellite
- 2023年27卷第3期 页码:623-634
纸质出版日期: 2023-03-07
DOI: 10.11834/jrs.20211209
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-03-07 ,
扫 描 看 全 文
胡昌苗,张正,唐娉.2023.国产卫星多光谱数据云与云影检测算法研究.遥感学报,27(3): 623-634
Hu C M,Zhang Z and Tang P. 2023. Research on multispectral satellite image cloud and cloud shadow detection algorithm of domestic satellite. National Remote Sensing Bulletin, 27(3):623-634
云与云影降低了遥感数据的应用价值,对多光谱卫星影像进行精确、自动的云与云影检测与标记有利于遥感影像的后续应用。中国目前有海量的高分辨率多光谱卫星影像,但卫星数据产品中很少包含逐像素的云与云影标记数据。高质量的云检测算法通常需要卫星成像几何、时间与定标系数等参数,但很多国产数据在多次产品迭代过程中丢失了参数辅助文件,很多军事应用卫星数据缺失或不提供参数文件,本文研究在参数缺失情况下的国产四波段多光谱卫星影像云与云影检测方法,以经典光谱阈值云与阴影检测算法为基础,利用图像处理与形态学算法改善精度,并对于缺失参数的数据提出了一种基于形态学的云影相对云区方位与距离的估算方法。实验数据利用包含高亮地表与雪山的中国甘肃敦煌区域86景高分一号卫星图像,结果表明在缺失参数的情况下本文算法检测结果依然能达到与常用算法相近的精度,同时本文也对算法存在的误检情况进行了分析,明确后续研究的挑战。
The existence of a cloud reduces the application value of remote sensing images. Accurate and automatic cloud and cloud shadow detection and labeling for multispectral satellite images is conducive to the subsequent application of remote sensing images. China currently has a large number of high-resolution multispectral satellite images. However
standard data products rarely contain pixel-by-pixel cloud and cloud shadow tag data for quality analysis. Traditional cloud detection algorithms usually require parameters
such as satellite imaging geometry
imaging time
and calibration coefficients. However
many Chinese satellites’ images have lost parameter auxiliary files during multiple product iterations. Moreover
many military application satellite images are missing or do not provide parameter files. Multispectral satellite image cloud and cloud shadow detection with missing parameters requires special research.
The present study investigates the cloud and cloud shadow detection method of domestic four-band multispectral satellite imagery with missing related parameters. This algorithm process is based on the classic spectral threshold cloud and cloud shadow detection algorithm. It also uses image processing and morphological algorithms to improve detection accuracy. A morphology-based method for estimating the azimuth and distance of the cloud shadow relative to the cloud area is proposed for the data with missing parameters.
The experimental data in this study is from the GF-1 satellite Wide-Field View (WFV) sensor
and the 86 test images are from Dunhuang
Gansu
China. The experimental area contains a large area of a bright surface and snow-capped mountains that are easily misdetected in cloud and cloud shadow detection. The result of the cloud and cloud shadow detection experiment in this study for the case of missing parameters achieves accuracy similar to that achieved by normal algorithms. This study also analyzes the misdetection of the algorithm and clarifies the challenges of subsequent research.
In this study
we propose a set of refined cloud and cloud shadow detection algorithms in case of missing parameters for domestic four-band multispectral satellite imagery. The algorithms are based on the classical spectral threshold cloud and cloud shadow detection algorithms. They also use image processing and morphological algorithms to improve accuracy further. Moreover
a morphology-based method for estimating the orientation and distance of cloud shadow relative to the cloud area is proposed for the data with missing parameters. The experimental results of GF-1 WFV data show that the detection results of this algorithm achieve an accuracy similar to that of the widely used MFC algorithm in the case of missing parameters.
云检测阴影检测高分一号多光谱影像参数缺失
cloud detectioncloud shadow detectionGF-1multispectral satellite imagemissing parameters
Chai D F, Newsam S, Zhang H K, Qiu Y F and Huang J F. 2019. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks. Remote Sensing of Environment, 225: 307-316 [DOI: 10.1016/j.rse.2019.03.007http://dx.doi.org/10.1016/j.rse.2019.03.007]
Chen M Z and Gao X J. 2020. Automatic detection of cloud shadows from high-resolution remote sensing images based on cloud location. Geospatial Information, 18(4): 70-73
陈明珠, 高贤君. 2020. 高分遥感影像利用云定位的云阴影自动检测. 地理空间信息, 18(4): 70-73 [DOI: 10.3969/j.issn.1672-4623.2020.04.017http://dx.doi.org/10.3969/j.issn.1672-4623.2020.04.017]
Foga S, Scaramuzza P L, Guo S, Zhu Z, Dilley R D, Beckmann T, Schmidt G L, Dwyer J L, Joseph Hughes M and Laue B. 2017. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194: 379-390 [DOI: 10.1016/j.rse.2017.03.026http://dx.doi.org/10.1016/j.rse.2017.03.026]
He K M, Sun J and Tang X O. 2013. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6): 1397-1409 [DOI: 10.1109/TPAMI.2012.213http://dx.doi.org/10.1109/TPAMI.2012.213]
Huang C Q, Thomas N, Goward S N, Masek J G, Zhu Z L, Townshend J R G and Vogelmann J E. 2010. Automated masking of cloud and cloud shadow for forest change analysis using Landsat images. International Journal of Remote Sensing, 31(20): 5449-5464 [DOI: 10.1080/01431160903369642http://dx.doi.org/10.1080/01431160903369642]
Hughes M J and Hayes D J. 2014. Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing. Remote Sensing, 6(6): 4907-4926 [DOI: 10.3390/rs6064907http://dx.doi.org/10.3390/rs6064907]
Irish R R, Barker J L, Goward S N and Arvidson T. 2006. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogrammetric Engineering and Remote Sensing, 72(10): 1179-1188 [DOI: 10.14358/PERS.72.10.1179http://dx.doi.org/10.14358/PERS.72.10.1179]
Jiao L B, Huo L Z, Hu C M and Tang P. 2020a. Refined UNet: UNet-based refinement network for cloud and shadow precise segmentation. Remote Sensing, 12(12): 2001 [DOI: 10.3390/rs12122001http://dx.doi.org/10.3390/rs12122001]
Jiao L B, Huo L Z, Hu C M and Tang P. 2020b. Refined UNet V2: end-to-end patch-wise network for noise-free cloud and shadow segmentation. Remote Sensing, 12(21): 3530 [DOI: 10.3390/rs12213530http://dx.doi.org/10.3390/rs12213530]
King M D, Platnick S, Menzel W P, Ackerman S A and Hubanks P A. 2013. Spatial and temporal distribution of clouds observed by MODIS onboard the terra and aqua satellites. IEEE Transactions on Geoscience and Remote Sensing, 51(7): 3826-3852 [DOI: 10.1109/TGRS.2012.2227333http://dx.doi.org/10.1109/TGRS.2012.2227333]
Li T T, Tang X M and Gao X M. 2016. Research on separation of snow and cloud in ZY-3 images cloud recognition. Bulletin of Surveying and Mapping, 2: 46-49, 68
李腾腾, 唐新明, 高小明. 2016. 资源三号影像朵云识别中云雪分离研究. 测绘通报, (2): 46-49, 68 [DOI: 10.13474/j.cnki.11-2246.2016.0046http://dx.doi.org/10.13474/j.cnki.11-2246.2016.0046]
Li Z W, Shen H F, Li H F, Xia G S, Gamba P and Zhang L P. 2017. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sensing of Environment, 191: 342-358 [DOI: 10.1016/j.rse.2017.01.026http://dx.doi.org/10.1016/j.rse.2017.01.026]
Liu Q H, Wen J G, Zhou X, Zhao J, Li Z Y, Li X, Ma M G, Wang W Z, Liao X H, Liu S M, Fan W J, Xiao Q, Zhong B, Li J, Xin X Z, Li L, Jia L, Gao Z H, Jin J D, Liang S, Xin J, Liao C J and Wu Y R. 2023. Technique system of remote sensing product generation and validation of GF common products. National Remote Sensing Bulletin, 27(3): 544-562
柳钦火, 闻建光, 周翔, 赵坚, 李增元, 李新, 马明国, 王维真, 廖小罕, 刘绍民, 范闻捷, 肖青, 仲波, 李静, 辛晓洲, 李丽, 贾立, 高志海, 金家栋, 梁师, 邢进, 廖楚江, 吴一戎. 2023. 高分遥感共性产品生成和真实性检验技术体系. 遥感学报, 27(3): 544-562 [DOI: 10.11834/jrs.20235022http://dx.doi.org/10.11834/jrs.20235022]
McGarigal K and Marks B J. 1995. FRAGSTATS: spatial Pattern Analysis Program for Quantifying Landscape Structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station
Ojala T, Pietikäinen M and Mäenpää T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7): 971-987 [DOI: 10.1109/TPAMI.2002.1017623http://dx.doi.org/10.1109/TPAMI.2002.1017623]
Qiu S, He B B, Zhu Z, Liao Z M and Quan X W. 2017. Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats 4-8 images. Remote Sensing of Environment, 199: 107-119 [DOI: 10.1016/j.rse.2017.07.002http://dx.doi.org/10.1016/j.rse.2017.07.002]
Sun L, Liu X Y, Yang Y K, Chen T T, Wang Q and Zhou X Y. 2018. A cloud shadow detection method combined with cloud height iteration and spectral analysis for Landsat 8 OLI data. ISPRS Journal of Photogrammetry and Remote Sensing, 138: 193-207 [DOI: 10.1016/j.isprsjprs.2018.02.016http://dx.doi.org/10.1016/j.isprsjprs.2018.02.016]
Viola P and Jones M. 2001. Rapid object detection using a boosted cascade of simple features//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai: IEEE: 1 [DOI: 10.1109/CVPR.2001.990517]
Wang M, Zhang Z Q, Dong Z P, Jin S Y and Su H B. 2018. Stream-computing based high accuracy on-board real-time cloud detection for high resolution optical satellite imagery. Acta Geodaetica et Cartographica Sinica, 47(6): 76-769 [DOI: 10.11947/j.AGCS.2018.20170618http://dx.doi.org/10.11947/j.AGCS.2018.20170618]
王密, 张致齐, 董志鹏, 金淑英, Su Hong bo. 2018. 高分辨率光学卫星影像高精度在轨实时云检测的流式计算. 测绘学报, 47(6): 760-769
Yang A X, Zhong B, Lv W B, Wu S L and Liu Q H. 2015. Cross-calibration of GF-1/WFV over a desert site using Landsat-8/OLI imagery and ZY-3/TLC data. Remote Sensing, 7(8): 10763-10787 [DOI: 10.3390/rs70810763http://dx.doi.org/10.3390/rs70810763]
Zhang Y, Guindon B and Li X W. 2014. A robust approach for object-based detection and radiometric characterization of cloud shadow using haze optimized transformation. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5540-5547 [DOI: 10.1109/TGRS.2013.2290237http://dx.doi.org/10.1109/TGRS.2013.2290237]
Zhu Z and Woodcock C E. 2012. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118: 83-94 [DOI: 10.1016/j.rse.2011.10.028http://dx.doi.org/10.1016/j.rse.2011.10.028]
Zhu Z and Woodcock C E. 2014. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change. Remote Sensing of Environment, 152: 217-234 [doi: 10.1016/j.rse.2014.06.012http://dx.doi.org/10.1016/j.rse.2014.06.012]
相关作者
相关机构