长波红外空间光学遥感器高精度辐射定标技术
Research on high-precision radiation calibration technology of long-wave infrared space optical remote sensor
- 2021年25卷第8期 页码:1646-1654
纸质出版日期: 2021-08-07
DOI: 10.11834/jrs.20211225
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-07 ,
扫 描 看 全 文
赵艳华,王浩,李云飞,李岩,张秀茜.2021.长波红外空间光学遥感器高精度辐射定标技术.遥感学报,25(8): 1646-1654
Zhao Y H,Wang H,Li Y F,Li Y and Zhang X Q. 2021. Research on high-precision radiation calibration technology of long-wave infrared space optical remote sensor. National Remote Sensing Bulletin, 25(8):1646-1654
为了满足中国环保、国土、农业、气象、减灾等行业对地表温度遥感高精度监测的需求,近些年来中国长波红外空间光学遥感器空间分辨率从公里尺度提高到十米尺度分辨率,定量化应用的需求也越来越高。高精度的辐射定标是保证红外数据定量化应用的关键,本文通过全链路分析了影响辐射定标精度的因素,结合某型号任务的研制过程的具体实际,分析了主要影响因素的优化方法,包括星上定标方案优化、提高星上定标黑体控温精度和标定精度、提升长波探测器性能、提高长波探测器焦面控温精度等措施提高相机的性能和输出稳定性,并通过该型号真空辐射定标试验对辐射定标精度、系统定标响应情况进行了验证,试验结果绝对辐射定标精度为0.8 K@300 K,达到国内空间分辨率小于100 m的同类长波红外空间光学遥感器的较高水平。本文介绍的长波红外空间光学遥感器性能提升方法可为今后同类遥感器的研制及辐射定标提供参考借鉴,同时提供的定标试验验证结果也可以为同类红外卫星在轨应用提供参考。
In order to meet the needs of high-precision monitoring of surface temperature remote sensing in environmental protection
land
agriculture
meteorology
disaster reduction and other industries of our country
the spatial resolution of our country’s long-wave infrared optical remote sensors has been increased from kilometer scale to ten-meter scale in recent years. The demand for quantitative applications is also increasing gradually. High-precision radiation calibration is the key to ensuring the quantitative application of infrared data. The detector of long wave infrared camera is limited by the chip material
chip preparation process
readout circuit design and production capacity and other reasons. Although the long wave infrared detector is constantly improving and developing
there are still some problems in varying degrees
such as large dark current
non-uniform response
low response and low temperature response
which directly affect the performance and radiometric calibration accuracy of long wave infrared camera.This article analyzes the factors that affect the accuracy of radiation calibration through the entire link. Combining with the specific development process of a certain model task
this article analyzes the optimization methods of the main influencing factors
including the optimization of the on-board calibration scheme
the improvement of temperature controlling accuracy and calibrating accuracy of the on-board blackbody calibration
the improvement of the performance of the long-wave detector and the improvement of the temperature controlling accuracy of the long-wave detector on the focal plane to improve the performance and output stability of the camera. The radiation calibration accuracy and the response state of system calibration has been verified through the vacuum radiation calibration test of this model. The test results show that the response slope of the radiometric calibration equation of the long wave infrared camera is effectively improved (from better than 45 of GF-5 01 satellite to better than 125 of GF-5 02 satellite)
the output stability of the camera system is improved (DN value fluctuation is reduced from 20-30DN of GF-5 01 satellite to 1-2 DN of GF-5 02 satellite)
and the accuracy of radiometric calibration is improved (from 1 K@300 K of GF-5 01 satellite decreased to 0.8 K@300 K of GF-5 01 satellite).It reaches a high level among the same type of domestic long-wave infrared space optical remote sensors with a spatial resolution of less than 100 m. The performance improvement method of long-wave infrared space optical remote sensor introduced in this article can provide reference for the development and radiation calibration of similar remote sensors in the future. The calibration test verification results provided in this article can also provide references for the in-orbit applications of similar infrared satellites.
光学遥感空间光学遥感器长波红外真空辐射定标试验绝对辐射定标精度
optical remote sensingspace optical remote sensorlong-wave infraredvacuum radiation calibration testabsolute radiation calibration accuracy
Cao L H, Zhang Y F and Yang C Y. 2007.Research on high accurate calibration for a large aperture infrared system. Chinese Journal of Scientific Instrument, 28(4):55-58
曹立华, 张云峰 ,杨词银. 2007. 大口径红外系统高精度定标方法研究. 仪器仪表学报, 28(4):55-58
Chen C S and Wang S Y. 2017. Infrared radiation characteristics measurement and temperature retrieval based on DJI unmanned aerial vehicle. Opt-Electronic Engineering, 444
) (陈超帅, 王世勇. 2017. 大疆无人机目标红外辐射特性测量及温度反演. 光电工程, 44(4):427-434 [DOI: 10.3969/j.issn.1003-501X.2017.04.007http://dx.doi.org/10.3969/j.issn.1003-501X.2017.04.007]
Chen S P, Yang B X and Wang H Y. 2003. Space Camera Design and Experiment. 1(1) Beijing: China Astronautics Press(陈世平, 杨秉新, 王怀义. 2003. 空间光学遥感器设计与试验. 1(1). 北京:宇航出版社)
Gu X F, Tian G L and Yu T. 2013. Radiation calibration principle and method of space optical remote sensors. 11
). Beijing: Science Press 顾行发, 田国良, 余涛. 航天光学遥感器辐射定标原理与方法. 1(1
). 北京:科学出版)
José A, Sobrino J C and Jiménez-Muñoz. 2014. Minimum configuration of thermal infrared bands for land surface temperature and emissivity estimation in the context of potential future missions. Remote Sensing of Environment, 148:158-167 [DOI: 10.1016/j.rse.2014.03.027http://dx.doi.org/10.1016/j.rse.2014.03.027]
LI Z Z, Zheng X B, Li C R ,Tang L L and Xi X H.2006. A New Method for Absolute Radiometric Calibration of Optical Remote Sensors, Proceedings of 2006 Annual Conference on environmental remote sensing 李照洲, 郑小兵, 李传荣, 唐伶俐, 习晓环. 2006. 面向光学有效载荷的高精度绝对辐射定标新方法研究, 2006环境遥感学术年会论文集)
Liu L, Chen L, Xu H L, Hu X Q, Zhang Z H and Wang H Q.2019. On-orbit Radiometric Calibration in Long Wave Infrared Band of VRSS-2 Satellit.Spacecraft Recovery & Remote Sensing, 40(3):91-102
刘莉, 陈林, 徐寒列, 胡秀清, 张正慧, 汪红强. 2019. “委遥二号”卫星长波红外通道在轨辐射定标. 航天返回与遥感, 40(3):91-102 [DOI: 10.3969/issn.1009-8518.2019.03.012http://dx.doi.org/10.3969/issn.1009-8518.2019.03.012]
Ma W P. 2011. Space optical remote sensing technology. 11
). Beijing:China science press 马文坡. 2011. 航天光学遥感技术.1(1
).北京:中国科学出版社)
Tian G L. 2014. Thermal Remote Sensing.21
). Beijing: Electronic industry press 田国良.2014. 热红外遥感. 2(1
). 北京:电子工业出版社)
Xu N,Hu X Q, Chen L, Zhang Z, Hu J Y and Sun L. 2014. On-Orbit Radiometric Calibration Accuracy of FY-3A MERSI Thermal Infrared Channel. Spectroscopy and Spectral Analysis, 12: 3429-3434
徐娜, 胡秀清, 陈林, 张勇, 胡菊旸, 孙凌. 2014. FY-3A/MERSI热红外通道在轨辐射定标精度评估. 光谱学与光谱分析, 12: 3429-3434) [DOI:10.3964/j.issn.1000-0593(201412-3429-06http://dx.doi.org/10.3964/j.issn.1000-0593(2014)12-3429-06]
Yang Y K, Li H, Sun L, Du Y M, Cao B, Liu Q H and Zhu J S. 2019. Land surface temperature and emissivity separation from GF-5 visual and infrared multispectral imager data. Journal of Remote Sensing, 23(6): 1132-1146
杨以坤, 历华, 孙林, 杜永明, 曹彪, 柳钦火, 朱金山. 2019. 高分五号全谱段光谱成像仪地表温度与发射率反演. 遥感学报, 23(6): 1132-1146 [DOI: 10.11834/jrs.20198053http://dx.doi.org/10.11834/jrs.20198053]
Zhang Y. 2006. Study on Thermal Infrared Remote Sensors’Absolutely Radiometric Calibrations. Doctoral Dissertation
张勇. 2006. 遥感传感器热红外数据辐射定标研究. 北京:中国科学院遥感应用研究所
相关作者
相关机构