利用IGGIII模型的多模多频GNSS-MR潮位反演
Sea level combined retrievals using multi-GNSS multipath reflectometry based on the IGGIII scheme
- 2024年28卷第2期 页码:426-436
纸质出版日期: 2024-02-07
DOI: 10.11834/jrs.20211227
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-02-07 ,
移动端阅览
陈殊,何秀凤,王笑蕾,宋敏峰.2024.利用IGGIII模型的多模多频GNSS-MR潮位反演.遥感学报,28(2): 426-436
Chen S,He X F,Wang X L and Song M F. 2024. Sea level combined retrievals using multi-GNSS multipath reflectometry based on the IGGIII scheme. National Remote Sensing Bulletin, 28(2):426-436
潮位是保证沿海安全、监测海洋气候、维持高程基准的重要参数。近年来基于地基Global Navigation Satellite Systems(GNSS)反射信号的遥感方法被证实可以用于潮位监测。相较于传统的潮位测量方法,GNSS-multipath reflectometry(GNSS-MR)技术有成本低、连续跟踪、全天候等优势;但是目前技术的精度不高、时间分辨率较低。通过获取更多GNSS卫星系统的观测数据可以提高潮位监测结果的时间分辨率,本文利用GPS、GLONASS、Galileo和BeiDou的观测数据,采用基于IGGIII模型的稳健回归方法对四系统的潮位反演数据进行融合研究。测站选取BRST站和HKQT站,这两个测站均可接收四系统数据;实验结果表明,利用多模多频GNSS-MR进行潮位反演,二个测站的反演精度分别优于13 cm和8 cm,相比于单系统单频精度有40%—70%的提升,而且能够大大提高时间分辨率。
Sea level is an important parameter to ensure coastal safety
monitor marine climate
and maintain elevation data. In recent years
the remote-sensing method using ground-based GNSS reflection signal can be used for sea-level monitoring. Compared with the traditional sea-level measurement method
GNSS multipath reflectometry (GNSS-MR) technology has the advantages of low cost and continuous tracking and can make all-weather
all-day observations. However
GNSS-MR technology is limited by two problems: low accuracy and low time resolution. The time resolution of retrievals can be improved by acquiring more observation data from more satellite systems. In this work
a robust regression strategy based on the IGGIII scheme is proposed to address the two limitations. This method uses the SNR data of GPS
GLONASS
Galileo
and Beidou. The Lomb-Scargle periodogram method in the classical tide level-inversion principle is used to obtain the sea-level estimates of each frequency band from quad-constellation. Then
a specific time window is established. The state-transition equation set is established in each time window considering the sea-surface dynamic change and tropospheric delay. Finally
the sea-level time series is solved by a robust estimation model. To prove the feasibility and effectiveness of this method
BRST station in France and HKQT station in Hong Kong are selected to validate the performance of the proposed method. The Root-Mean-Square Errors (RMSEs) between sea-level combined retrievals of multi-GNSS signals and the tide gauge records are calculated. The RMSE of BRST station is 12.43 cm
which is about 40%—60% higher than the single-signal results of each system. The RMSE of HKQT station is 7.09 cm
which is about 72% higher than the results of the four systems. BRST and HKQT stations can formulate a 10-min sea-level time series
which greatly improves the time resolution of sea-level retrievals compared with single-signal retrievals. Comparing the inversion results of the two stations
we conclude that using robust regression strategy based on the IGGIII scheme can lead to a clear increase in precision and thus achieve a higher temporal sampling because of the more frequent GNSS retrievals and better retrieval combination strategy. The estimated value of sea level well agrees agreement with the data of tide-gauge records and can clearly describe the sea-level fluctuation. In essence
it is a method of quality control and optimal valuation for GNSS-MR that is theoretically suitable for different geographical environments.
遥感GNSS-MR潮位反演多模多频稳健回归IGGIII
remote sensingGNSS-MRsea level estimationmultiple systemrobust regressionIGGIII
Anderson K D. 2000. Determination of water level and tides using interferometric observations of GPS signals. Journal of Atmospheric and Oceanic Technology, 17(8): 1118-1127 [DOI: 10.1175/1520-0426(2000)017<1118:DOWLAT>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(2000)017<1118:DOWLAT>2.0.CO;2]
Fang X, Huang L X, Zeng W X and Wu Y. 2018. On an improved iterative reweighted least squares algorithm in robust estimation. Acta Geodaetica et Cartographica Sinica, 47(10): 1301-1306
方兴, 黄李雄, 曾文宪, 吴云. 2018. 稳健估计的一种改进迭代算法. 测绘学报, 47(10): 1301-1306 [DOI: 10.11947/j.AGCS.2018.20170576http://dx.doi.org/10.11947/j.AGCS.2018.20170576]
Geremia-Nievinski F, Hobiger T, Haas R, Liu W, Strandberg J, Tabibi S, Vey S, Wickert J and Williams S. 2020. SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign. Journal of Geodesy, 94(8): 70 [DOI: 10.1007/s00190-020-01387-3http://dx.doi.org/10.1007/s00190-020-01387-3]
He X F, Wang J, Wang X L and Song M F. 2020. Retrieval of coastal typhoon storm surge using multi-GNSS-IR. Acta Geodaetica et Cartographica Sinica, 49(9): 1168-1178
何秀凤, 王杰, 王笑蕾, 宋敏峰. 2020. 利用多模多频GNSS-IR信号反演沿海台风风暴潮. 测绘学报, 49(9): 1168-1178 [DOI: 10.11947/j.AGCS.2020.20200228http://dx.doi.org/10.11947/j.AGCS.2020.20200228]
Jin S G, Cardellach E and Xie F Q. 2014. GNSS Remote Sensing. Dordrecht: Springer [DOI: 10.1007/978-94-007-7482-7http://dx.doi.org/10.1007/978-94-007-7482-7]
Jin S G, Qian X D and Wu X. 2017. Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): first results and evaluation. Global and Planetary Change, 149: 20-25 [DOI: 10.1016/j.gloplacha.2016.12.010http://dx.doi.org/10.1016/j.gloplacha.2016.12.010]
Jin S G, Zhang Q Y and Qian X D. 2017. New progress and application prospects of global navigation satellite system reflectometry (GNSS+R). Acta Geodaetica et Cartographica Sinica, 46(10): 1389-1398
金双根, 张勤耘, 钱晓东. 2017. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景. 测绘学报, 46(10): 1389-1398 [DOI: 10.11947/j.AGCS.2017.20170282http://dx.doi.org/10.11947/j.AGCS.2017.20170282]
Larson K M, Löfgren J S and Haas R. 2013a. Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research, 51(8): 1301-1310 [DOI: 10.1016/j.asr.2012.04.017http://dx.doi.org/10.1016/j.asr.2012.04.017]
Larson K M, Ray R D, Nievinski F G and Freymueller J T. 2013b. The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska. IEEE Geoscience and Remote Sensing Letters, 10(5): 1200-1204 [DOI: 10.1109/LGRS.2012.2236075http://dx.doi.org/10.1109/LGRS.2012.2236075]
Larson K M, Ray R D and Williams S D P. 2017. A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. Journal of Atmospheric and Oceanic Technology, 34(2): 295-307 [DOI: 10.1175/JTECH-D-16-0101.1http://dx.doi.org/10.1175/JTECH-D-16-0101.1]
Larson K M, Small E E, Gutmann E, Bilich A, Axelrad P and Braun J. 2008. Using GPS multipath to measure soil moisture fluctuations: initial results. GPS Solutions, 12(3): 173-177 [DOI: 10.1007/s10291-007-0076-6http://dx.doi.org/10.1007/s10291-007-0076-6]
Löfgren J S and Haas R. 2014. Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP Journal on Advances in Signal Processing, 2014(1): 50 [DOI: 10.1186/1687-6180-2014-50http://dx.doi.org/10.1186/1687-6180-2014-50]
Lomb N R. 1976. Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39(2): 447-462 [DOI: 10.1007/BF00648343http://dx.doi.org/10.1007/BF00648343]
Martin-Neira M. 1993. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry. ESA Journal, 17(4): 331-355
Melet A, Meyssignac B, Almar R and Le Cozannet G. 2018. Under-estimated wave contribution to coastal sea-level rise. Nature Climate Change, 8(3): 234-239 [DOI: 10.1038/s41558-018-0088-yhttp://dx.doi.org/10.1038/s41558-018-0088-y]
Nievinski F G and Larson K M. 2014. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications. GPS Solutions, 18(2): 309-322 [DOI: 10.1007/s10291-013-0331-yhttp://dx.doi.org/10.1007/s10291-013-0331-y]
Roesler C and Larson K M. 2018. Software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solutions, 22(3): 80 [DOI: 10.1007/s10291-018-0744-8http://dx.doi.org/10.1007/s10291-018-0744-8]
Roussel N, Ramillien G, Frappart F, Darrozes J, Gay A, Biancale R, Striebig N, Hanquiez V, Bertin X and Allain D. 2015. Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sensing of Environment, 171: 261-277 [DOI: 10.1016/j.rse.2015.10.011http://dx.doi.org/10.1016/j.rse.2015.10.011]
Santamaría-Gómez A and Watson C. 2017. Remote leveling of tide gauges using GNSS reflectometry: case study at Spring Bay, Australia. GPS Solutions, 21(2): 451-459 [DOI: 10.1007/s10291-016-0537-xhttp://dx.doi.org/10.1007/s10291-016-0537-x]
Santamaría-Gómez A, Watson C, Gravelle M, King M and Wöppelmann G. 2015. Levelling co-located GNSS and tide gauge stations using GNSS reflectometry. Journal of Geodesy, 89(3): 241-258 [DOI: 10.1007/s00190-014-0784-yhttp://dx.doi.org/10.1007/s00190-014-0784-y]
Scargle J D. 1982. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, 263: 835-853 [DOI: 10.1086/160554http://dx.doi.org/10.1086/160554]
Strandberg J, Hobiger T and Haas R. 2016. Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Science, 51(8): 1286-1296 [DOI: 10.1002/2016RS006057http://dx.doi.org/10.1002/2016RS006057]
Tabibi S, Geremia-Nievinski F and van Dam T. 2017. Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3773-3785 [DOI: 10.1109/TGRS.2017.2679899http://dx.doi.org/10.1109/TGRS.2017.2679899]
Wang X L, He X F and Zhang Q. 2019. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval. Remote Sensing of Environment, 231: 111229 [DOI: 10.1016/j.rse.2019.111229http://dx.doi.org/10.1016/j.rse.2019.111229]
Williams S D P and Nievinski F G. 2017. Tropospheric delays in ground‐based GNSS multipath reflectometry—Experimental evidence from coastal sites. Journal of Geophysical Research: Solid Earth, 122(3): 2310-2327 [DOI: 10.1002/2016JB013612http://dx.doi.org/10.1002/2016JB013612]
Yang Y, Song L and Xu T. 2002. Robust estimator for correlated observations based on bifactor equivalent weights. Journal of Geodesy, 76(6): 353-358 [doi: 10.1007/s00190-002-0256-7http://dx.doi.org/10.1007/s00190-002-0256-7]
相关作者
相关机构