热红外遥感器温度灵敏度提升手段简析
Analysis of the means to improve the temperature sensitivity of thermal IR remote sensing system
- 2021年25卷第8期 页码:1655-1660
纸质出版日期: 2021-08-07
DOI: 10.11834/jrs.20211231
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-07 ,
扫 描 看 全 文
李晓曼,赵艳华,马文坡.2021.热红外遥感器温度灵敏度提升手段简析.遥感学报,25(8): 1655-1660
Li X M,Zhao Y H and Ma W P. 2021. Analysis of the means to improve the temperature sensitivity of thermal IR remote sensing system. National Remote Sensing Bulletin, 25(8):1655-1660
热红外遥感器主要使用遥感手段感应地物热红外辐射信息,可用于识别地物和反演地表温度参数。由于热红外遥感器在夜间的工作工作能力优于可见光,且环境适应性好,已广泛应用于资源调查、生态环境监测、灾害评估以及军事目标探测识别等领域。随着工程应用及科学研究的不断深入,提升热红外遥感器的探测灵敏度需求日益迫切。热红外遥感器的温度灵敏度与遥感器自身收集目标能量的能力和遥感器系统噪声特性相关。其中,遥感器系统噪声由光子噪声(景物辐射和遥感器本体背景辐射共同到达焦平面处的光子的波动)、探测器组件噪声、电路噪声共同组成。在成像谱段、积分时间、探测器及视频电路参数固定的条件下,光学系统降温能够减小其自身背景辐射,降低光子噪声,提升系统的温度灵敏度。本文通过仿真分析量化了光学系统辐射与光路设计、光学系统工作温度以及探测器冷屏设置的关系,并以某热红外遥感器为例验证了光学系统温度对热红外遥感器温度灵敏度的影响。文中的仿真分析方法和验证情况对于热红外遥感器的设计研制有参考意义。
TIR remote sensing systems mainly use remote sensing means to sense the thermal infrared radiation difference of ground objects
which can be used to identify ground objects and retrieve surface temperature parameters. TIR remote sensing detecting technology has been widely used in resource investigation
ecological environment monitoring
disaster assessment and military target detection and recognition because of its excellent working ability in bad weather and night. With the deepening of engineering application and scientific research
it is urgent to improve the thermal sensitivity of infrared remote sensors. In the design of TIR remote sensing system
for the application needs of detection capability
the target
background need to consider the three main factors of the system. Noise Equivalent Temperature Difference (NETD) is an important indicator of representing the temperature sensitivity of the remote sensing system. NETD could be affected by the optical system radiation on the TIR remote sensing system.The influence of NETD by optical system radiation could be analyzed by the method of the number of noise electron or by the method of
D*
of the detector. The noise of the remote sensor system consists of photon noise (scene radiation and the fluctuation of the main background radiation reaching the focal plane)
detector assembly noise and circuit noise. Under the condition of fixed imaging spectrum
integral time
detector and video circuit parameters
the cryogenic optical system can reduce its own radiation
reduce the photon noise
and improve the temperature sensitivity of the system. This paper quantified the relationship between optical system radiation and optical path design
operating temperature and the temperature sensitivity of thermal infrared remote sensing camera. The simulation method uses the software TracePro to conduct light tracing
analyzes the irradiance distribution of the optical system and the optical machine structure at the respective working temperature
and finally accumulates all the components to obtain the total radiation amount on the detector. The working temperature of optical system will affect the temperature sensitivity of the system. When the optical system radiation drops to lower than 1/10 of the target signal radiation
it could be regarded as a background-limiting detecting system
where the optical system radiation impact on the temperature sensitivity of the thermal infrared remote sensor can be ignored. In the load design
when the detector type is fixed
the sensitivity of load detection can be improved by reducing the optical system temperature. In order to verify the influence of changing the temperature of the optical system on the temperature sensitivity of the thermal infrared remote sensor
an airborne infrared remote sensor was designed and developed. The working temperature of the optical lens of the infrared remote sensor was changed form 313 K to 293 K
and NETD was tested. With the decrease of optical system temperature
the temperature sensitivity is improved. So the performance improvement was verified by the NETD testing. With the limitation of atmospheric temperature of airborne thermal infrared remote sensor below the dew point
this test did not carry out the performance verification of the temperature below 293 K. NETD test of the remote sensor with the lower temperature work on the deep low temperature working in the vacuum tank will be done in future. The development of this study is important for the design and development of cryogenic optical TIR remote sensing systems.
遥感热红外遥感器探测能力测试温度灵敏度
remote sensingFIR remote sensing systemdetection capabilityperformance testingNoise Equivalent Temperature Difference (NETD)
Collaudin B and Rando N. 2000. Cryogenics in space: A review of the missions and the technologies. Cryogenics, 40(12): 797-819 [DOI:10.1016/S0011-2275(01)00035-2http://dx.doi.org/10.1016/S0011-2275(01)00035-2]
Duan S B, Ru C, Li Z L, Wang M M, Xu H Q, Li H, Wu P H, Zhan W F, Zhou J, Zhao W, Ren H Z, Wu H, Tang B H, Zhang X, Shang Guo F and Qin Z H. 2021. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data. National Remote Sensing Bulletin, 25(8): 1591-1617
段四波, 茹晨, 李召良, 王猛猛, 徐涵秋, 历华, 吴鹏海, 占文凤, 周纪, 赵伟, 任华忠, 吴骅, 唐伯惠, 张霞, 尚国琲, 覃志豪. 2021. Landsat卫星热红外数据地表温度遥感反演研究进展. 遥感学报, 25(8): 1591-1617 [DOI:10.11834/jrs.20211296http://dx.doi.org/10.11834/jrs.20211296]
Li C L, Wu G, Liu Y N and Wang J Y. 2006. Study of cryogenic optics system’s radiation characteristic. Laser & Infrared, 36(012): 1146-1148
李春来, 吴刚, 刘银年, 王建宇. 2006. 低温光学系统辐射特性研究. 激光与红外, 36(12): 1146-1148 [DOI:10.3969/j.issn.1001-5078.2006.12.018http://dx.doi.org/10.3969/j.issn.1001-5078.2006.12.018]
Li J S, Chen X and Li J H. 2014. Infrared radiation characteristics contrast between target and background on different grounds. Infrared and Laser Engineering, 43(02): 424-428
李俊山, 陈霞, 李建华. 2014. 不同地面背景下目标与背景红外辐射对比特性. 红外与激光工程, 43(02): 424-428 [DOI:10.3969/j.issn.1007-2276.2014.02.015http://dx.doi.org/10.3969/j.issn.1007-2276.2014.02.015]
Liu Z J, Zhou F, Luo Q and Wang H Y. 2006. The Study on Detect ability Calculation Method of Space Infrared Camera. Proceedings of the 19th Academic Conference of the Space Exploration Committee of the Chinese Society of Space Sciences (Volume I), Zhejiang: Space Exploration Committee of the Chinese Society of Space Sciences: 289-294
刘兆军, 周峰, 罗渠, 王怀义. 2006. 空间红外相机探测能力理论计算方法研究. 中国空间科学学会空间探测专业委员会第十九次学术会议论文集(上册), 浙江:中国空间科学学会空间探测专业委员会:289-294
Long L and WANG Z M. 2013. An on-orbit calibration method based on characteristic of satellites. Spacecraft Recovery&Remote Sensing, 34(04): 77-85
龙亮, 王中民. 2013. 一种基于卫星敏捷特性的在轨辐射定标方法. 航天返回与遥感, 34(04): 77-85 [DOI:10.3969/j.issn.1009-8518.2013.04.011http://dx.doi.org/10.3969/j.issn.1009-8518.2013.04.011]
Ma W P. Space Optical Remote Sensing Technology. 2011. Beijing:China Science Press:213-217
马文坡. 航天光学遥感技术. 北京:中国科学技术出版社:163-170
Sobrino J A, Jimenez-Muiioz J C and Aolini L. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(04): 434-440 [DOI: 10.1016/j.rse.2004.02.003http://dx.doi.org/10.1016/j.rse.2004.02.003]
Wang S T, Zhang W and Wang Q. 2012. Measurement for detectivity of infrared detectors in low temperature background. Optics and Precision Engineering, 20(3): 484-484
王世涛, 张伟, 王强. 2012. 红外探测器件在低温背景下的探测率测试. 光学精密工程, 20(3): 484-484 [DOI: 10.3788/OPE.20122003.0484http://dx.doi.org/10.3788/OPE.20122003.0484]
Wu H, Li X J, Li Z L, Duan S B and Qian Y G. 2021. Hyperspectral thermal infrared remote sensing:current status and perspectives. National Remote Sensing Bulletin, 25(8): 1567-1590
吴骅, 李秀娟, 李召良, 段四波, 钱永刚. 2021. 高光谱热红外遥感: 现状与展望. 遥感学报, 25(8): 1567-1590 [DOI:10.11834/jrs.20211306http://dx.doi.org/10.11834/jrs.20211306]
Wu L M, Zhou F and Wang H Y. 2010. Study on the relationship between the infrared detectors background limit detectiviy and the optical systems work temperature. Spacecraft Recovery&Remote Sensing, 31(01):40-45
吴立民, 周峰, 王怀义. 2010. 红外探测器比探测率与光学系统工作温度关系研究. 航天返回与遥感, 31(01): 40-45 [DOI:10.3969/j.issn.1009-8518.2010.01.006http://dx.doi.org/10.3969/j.issn.1009-8518.2010.01.006]
Xiong X, Wenny B, Sun J, Angal A, Chen H, Geng X, Choi T, Madhavan S and Link D. 2013. Status of MODIS on-orbit calibration and characterization. Remote Sensing, 8889(1): S89. [DOI:10.1117/12.2028953http://dx.doi.org/10.1117/12.2028953]
Zeng G H. 2012. Performance HgCdTe infrared detector at different temperatures. Infrared Technology, 34(01): 1-3
曾戈虹. 2012. HgCdTe红外探测器性能分析. 红外技术, 34(01): 1-3 [DOI:10.3969/j.issn.1001-8891.2012.01.001http://dx.doi.org/10.3969/j.issn.1001-8891.2012.01.001]
Zhao L M, Yu T, Tian Q J, Gu X F, Li J G and Wan W. 2010. Error analysis of the land surface temperature retrieval using HJ-1B thermal infrared remote sensing data. Spectroscopy and Spectral Analysis, 30(12): 3359-3362
赵利民, 余涛, 田庆久, 顾行发, 李家国, 万玮. HJ-1B热红外遥感数据陆表温度反演误差分析. 光谱学与光谱分析, 30(12): 3359-3362) [DOI: 10.3964/j.issn.1000-0593(201012-3359-04http://dx.doi.org/10.3964/j.issn.1000-0593(2010)12-3359-04]
Zhou T Y, Wang Z H, Qin H Y and Zeng Y Q. 2020. Remote sensing extraction of geothermal anomaly based on terrain effect correction. Journal of Remote Sensing, 24(03): 55-66.
周桃勇, 王正海, 秦昊洋,曾雅琦. 2020. 地形效应校正的遥感地热异常提取. 遥感学报, 24(03): 55-66 [DOI:CNKI:SUN:YGXB.0.2020-03-006http://dx.doi.org/CNKI:SUN:YGXB.0.2020-03-006]
相关作者
相关机构