时序InSAR郑州地铁沿线地面沉降分析
Analysis of ground subsidence along Zhengzhou metro based on time series InSAR
- 2022年26卷第7期 页码:1342-1353
纸质出版日期: 2022-07-07
DOI: 10.11834/jrs.20211246
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-07-07 ,
扫 描 看 全 文
叶勇超,闫超德,罗先学,张瑞峰,袁观杰.2022.时序InSAR郑州地铁沿线地面沉降分析.遥感学报,26(7): 1342-1353
Ye Y C,Yan C D,Luo X X,Zhang R F and Yuan G J. 2022. Analysis of ground subsidence along Zhengzhou metro based on time series InSAR. National Remote Sensing Bulletin, 26(7):1342-1353
针对郑州市地铁网络缺少长时间序列的地面沉降研究,本文基于永久散射体合成孔径雷达干涉测量PS-InSAR(Persistent Scatterers Interferometric Synthetic Aperture Radar)技术生成的长周期地面沉降数据分析了郑州市地铁沿线地面沉降的时空特征,并通过反距离内插等距化处理,基于长短期记忆网络LSTM(Long Short-Term Memory)模型对典型地铁站点地面沉降进行了预测与分析。研究结果表明:空间上,沉降路段主要集中在1号线和5号线的东段,最大沉降速率超过20 mm/a,且1号线沿线不均匀形变较为突出;时间上,不同区域PS点在时间序列上的变化有较大不同,沉降槽中心处沉降呈逐年扩大趋势。实验表明LSTM模型具有较高的预测精度,预测发现1号线市体育中心站南边河南省档案馆新馆北侧未来两年里仍将以大约0.5 mm/月的速率继续沉降,有必要对该站及其附近继续监测。
As a mega city in central China
Zhengzhou is in a period of large-scale metro construction. The problem of ground subsidence along metro lines occurs during metro construction and operation. Thus
monitoring and analysis of ground subsidence along metro lines are important to ensure the safety of metro operation. However
the researches on long-time-series ground subsidence in the Zhengzhou metro network are lacking. Permanent scatterers–interferometric synthetic aperture radar (PS-InSAR) technology overcomes many shortcomings of traditional ground subsidence monitoring methods
such as high cost
limited monitoring range and points
and difficulties in long-term monitoring. Therefore
PS-InSAR technology is used to monitor the subsidence of the Zhengzhou metro network in this study.
35 Envisat ASAR images and 44 Sentinel-1 images are employed to obtain the surface deformation information of Zhengzhou City from February 2005 to October 2010 and from July 2015 to May 2019 via PS-InSAR technology. By extracting PS points in a certain range on both sides of the metro lines
the temporal and spatial characteristics of ground subsidence along Zhengzhou metro are subjected to statistical
profile
and overlay analyses. To address the unequal time interval of ground subsidence time series data caused by SAR image discontinuity
an equidistant processing method based on inverse distance interpolation is proposed
and the subsidence of a typical metro station is predicted and analyzed using the Long Short-Term Memory (LSTM) model.
Results show that the subsidence sections are mainly concentrated in the east of Lines 1 and 5
the maximum subsidence rate is more than 20 mm/a
and the maximum cumulative subsidence is about 80 mm. The overall deformation trend of Line 1 is similar to a parabola
and the uneven deformation is prominent. The changes in PS points in the time series differ in various regions. The subsidence trough near the Henan Orthopedic Hospital Station of Line 5 is basically symmetrical in space
and the subsidence at the center is expanding yearly. Experiments show that the LSTM model has high prediction accuracy
and the prediction results reveal that the north of the New Archives of Henan Province located in the south of Zhengzhou Sports Center Station will continue to settle at a rate of about 0.5 mm/month in the next two years. Hence
the station and its vicinity must be continuously monitored. This study confirms that PS-InSAR technology can meet the application needs of large-scale urban ground subsidence monitoring
and the results provide a scientific basis for the continuous dynamic monitoring of ground subsidence along Zhengzhou metro network and metro maintenance.
郑州地铁地面沉降PS-InSARLSTM预测分析
Zhengzhou metroground subsidencePS-InSARLSTMprediction analysis
Bai S J. 2017. Application of InSAR Technology in Deformation Monitoring Along Subway. Beijing: China University of Geosciences (Beijing): 1-2
白书建. 2017. InSAR技术在地铁沿线形变监测中的应用研究. 北京: 中国地质大学(北京): 1-2
Duan G Y, Liu H H, Gong H L and Chen B B. 2017. Evolution characteristics of uneven land subsidence along Beijing-Tianjin inter-city railway. Geomatics and Information Science of Wuhan University, 42(12): 1847-1853
段光耀, 刘欢欢, 宫辉力, 陈蓓蓓. 2017. 京津城际铁路沿线不均匀地面沉降演化特征. 武汉大学学报(信息科学版), 42(12): 1847-1853 [DOI: 10.13203/j.whugis20150537http://dx.doi.org/10.13203/j.whugis20150537]
Fan Z L and Zhang Y H. 2019. Research progress on intelligent algorithms based ground subsidence prediction. Geomatics and Spatial Information Technology, 42(5): 183-188
范泽琳, 张永红. 2019. 智能算法在地面沉降预测中的应用综述. 测绘与空间地理信息, 42(5): 183-188 [DOI: 10.3969/j.issn.1672-5867.2019.05.054http://dx.doi.org/10.3969/j.issn.1672-5867.2019.05.054]
Ferretti A, Prati C and Rocca F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212 [DOI: 10.1109/36.868878http://dx.doi.org/10.1109/36.868878]
Ferretti A, Prati C and Rocca F. 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20 [DOI: 10.1109/36.898661http://dx.doi.org/10.1109/36.898661]
Ge D Q, Zhang L, Wang Y, Li M and Liu B. 2014. Monitoring subsidence on Shanghai metro line 10 during construction and operation using high-resolution InSAR. Shanghai Land and Resources, 35(4): 62-67
葛大庆, 张玲, 王艳, 李曼, 刘斌. 2014. 上海地铁10号线建设与运营过程中地面沉降效应的高分辨率InSAR监测及分析. 上海国土资源, 35(4): 62-67 [DOI: 10.3969/j.issn.2095-1329.2014.04.014http://dx.doi.org/10.3969/j.issn.2095-1329.2014.04.014]
Guan L, Tang W, Dai H Y and Jia Z H. 2019. Monitoring ground subsidence in Zhengzhou city based on SBAS-InSAR technology. Beijing Surveying and Mapping, 33(4): 462-467
管力, 唐伟, 戴华阳, 贾智慧. 2019. 采用SBAS-InSAR技术监测郑州城区地面沉降. 北京测绘, 33(4): 462-467 [DOI: 10.19580/j.cnki.1007-3000.2019.04.021http://dx.doi.org/10.19580/j.cnki.1007-3000.2019.04.021]
Hochreiter S and Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735-1780 [DOI: 10.1162/neco.1997.9.8.1735http://dx.doi.org/10.1162/neco.1997.9.8.1735]
Jia X, Gong H L, Chen B B and Duan G Y. 2014. Impact of uneven land subsidence on operation of Beijing subway line 15. Remote Sensing Information, 29(6): 58-63
贾煦, 宫辉力, 陈蓓蓓, 段光耀. 2014. 不均匀地面沉降对北京地铁15号线运营的影响分析. 遥感信息, 29(6): 58-63 [DOI: 10.3969/j.issn.1000-3177.2014.06.012http://dx.doi.org/10.3969/j.issn.1000-3177.2014.06.012]
Jiang D C, Zhang Y H, Zhang J X, Wu H A and Kang Y H. 2017. Uneven land subsidence along Tianjin subway lines monitored by InSAR technology. Remote Sensing Information, 32(6): 27-32
姜德才, 张永红, 张继贤, 吴宏安, 康永辉. 2017. 天津市地铁线不均匀地表沉降InSAR监测. 遥感信息, 32(6): 27-32 [DOI: 10.3969/j.issn.1000-3177.2017.06.005http://dx.doi.org/10.3969/j.issn.1000-3177.2017.06.005]
Li H X, Zhao X H, Chi H Y and Zhang J J. 2009. Prediction and analysis of land subsidence based on improved BP neural network model. Journal of Tianjin University, 42(1): 60-64
李红霞, 赵新华, 迟海燕, 张建军. 2009. 基于改进BP神经网络模型的地面沉降预测及分析. 天津大学学报, 42(1): 60-64 [DOI: 10.3969/j.issn.0493-2137.2009.01.010http://dx.doi.org/10.3969/j.issn.0493-2137.2009.01.010]
Lin H, Ma P F and Wang W X. 2017. Urban infrastructure health monitoring with spaceborne multi-temporal synthetic aperture radar interferometry. Acta Geodaetica et Cartographica Sinica, 46(10): 1421-1433
林珲, 马培峰, 王伟玺. 2017. 监测城市基础设施健康的星载MT-InSAR方法介绍. 测绘学报, 46(10): 1421-1433 [DOI: 10.11947/j.AGCS.2017.20170339http://dx.doi.org/10.11947/j.AGCS.2017.20170339]
Liu H R. 2016. Study on the Influence Applied to Surrounding Environment Induced by the Shield Construction of Zhengzhou Metro. Zhengzhou: Henan University of Technology: 28-45
刘浩然. 2016. 郑州地铁一号线盾构施工对周边环境的影响研究. 郑州: 河南工业大学: 28-45
Liu M K. 2014. The Research of Urban Village Reconstruction in Zhengzhou City. Wuhan: Central China Normal University: 11-28
刘梦珂. 2014. 郑州市“城中村”问题研究. 武汉: 华中师范大学: 11-28
Liu Q, Yue G S, Ding X B, Yang K, Feng G C and Xiong Z Q. 2019. Temporal and spatial characteristics analysis of deformation along Foshan subway using time series InSAR. Geomatics and Information Science of Wuhan University, 44(7): 1099-1106
刘琦, 岳国森, 丁孝兵, 杨坤, 冯光财, 熊志强. 2019. 佛山地铁沿线时序InSAR形变时空特征分析. 武汉大学学报(信息科学版), 44(7): 1099-1106 [DOI: 10.13203/j.whugis20190025http://dx.doi.org/10.13203/j.whugis20190025]
Perissin D, Wang Z Y and Lin H. 2012. Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS Journal of Photogrammetry and Remote Sensing, 73: 58-67 [DOI: 10.1016/j.isprsjprs.2012.07.002http://dx.doi.org/10.1016/j.isprsjprs.2012.07.002]
Qin X Q, Yang M S, Wang H M, Yang T L, Lin J X and Liao M S. 2016. Application of high-resolution PS-InSAR in deformation characteristics probe of urban rail transit. Acta Geodaetica et Cartographica Sinica, 45(6): 713-721
秦晓琼, 杨梦诗, 王寒梅, 杨天亮, 林金鑫, 廖明生. 2016. 高分辨率PS-InSAR在轨道交通形变特征探测中的应用. 测绘学报, 45(6): 713-721 [DOI: 10.11947/j.AGCS.2016.20150440http://dx.doi.org/10.11947/j.AGCS.2016.20150440]
Wang B C, Zhu L, Pan D, Guo L F and Peng P. 2020. Research on temporal and spatial evolution law of land subsidence in Zhengzhou. Remote Sensing for Land and Resources, 32(3): 143-148
汪宝存, 朱琳, 潘登, 郭凌飞, 彭鹏. 2020. 郑州市地面沉降时空演变规律研究. 国土资源遥感, 32(3): 143-148 [DOI: 10.6046/gtzyyg.2020.03.19http://dx.doi.org/10.6046/gtzyyg.2020.03.19]
Wang H Q, Feng G C, Xu B, Yu Y P, Li Z W, Du Y N and Zhu J J. 2017. Deriving spatio-temporal development of ground subsidence due to subway construction and operation in delta regions with PS-InSAR data: a case study in Guangzhou, China. Remote Sensing, 9(10): 1004 [DOI: 10.3390/rs9101004http://dx.doi.org/10.3390/rs9101004]
Wang H Q and Li S M. 2013. Estimating of sunshine percentage using the cloud classification data from FY-2C. Journal of Remote Sensing, 17(5): 1295-1310
王怀清, 李三妹. 2013. FY-2C云分类资料估算日照百分率. 遥感学报, 17(5): 1295-1310 [DOI: 10.11834/jrs.20132125http://dx.doi.org/10.11834/jrs.20132125]
Wang S H and Zhu B Q. 2021. Time series prediction for ground settlement in portal section of mountain tunnels. Chinese Journal of Geotechnical Engineering, 43(5): 813-821
王述红, 朱宝强. 2021. 山岭隧道洞口段地表沉降时序预测研究. 岩土工程学报, 43(5): 813-821 [DOI: 10.11779/CJGE202105004http://dx.doi.org/10.11779/CJGE202105004]
Wang Y M, Luo X J, Yu B, Hao R C and Zhang S J. 2019. Monitoring ground subsidence in Zhengzhou with InSAR. Science of Surveying and Mapping, 44(9): 100-106
王义梅, 罗小军, 于冰, 郝瑞琛, 张帅娟. 2019. 郑州市地面沉降InSAR监测. 测绘科学, 44(9): 100-106 [DOI: 10.16251/j.cnki.1009-2307.2019.09.014http://dx.doi.org/10.16251/j.cnki.1009-2307.2019.09.014]
Wu S B, Le Y Y, Zhang L and Ding X L. 2020. Multi-temporal InSAR for urban deformation monitoring: progress and challenges. Journal of Radars, 9(2): 277-294 [DOI: 10.12000/JR20037http://dx.doi.org/10.12000/JR20037]
Xi L T. 2020. Research on Monitoring Data Forecasting Method of Mining-Induced Overburden Deformation Based on LSTM. Xi’an: Xi’an University of Science and Technology: 26-52
郗刘涛. 2020. 基于LSTM的采动覆岩变形监测数据预测方法研究. 西安: 西安科技大学: 26-52 [DOI: 10.27397/d.cnki.gxaku.2020.000544http://dx.doi.org/10.27397/d.cnki.gxaku.2020.000544]
Zhang J S and Liu K. 2021. Land subsidence monitoring in Zhengzhou based on sentinel-1 A data. Shanxi Architecture, 47(6): 72-75
张介山, 刘凯. 2021. 基于Sentinel-1A卫星数据的郑州地面沉降监测. 山西建筑, 47(6): 72-75 [DOI: 10.3969/j.issn.1009-6825.2021.06.024http://dx.doi.org/10.3969/j.issn.1009-6825.2021.06.024]
Zhu X X, Chen M, Gong H L, Li X J, Yu J, Zhu L, Zhou Y Y and Li Y. 2018. The subsidence monitoring along Beijing subway network based on MT-InSAR. Journal of Geo-Information Science, 20(12): 1810-1819
祝秀星, 陈蜜, 宫辉力, 李小娟, 余洁, 朱琳, 周玉营, 李昱. 2018. 采用时序InSAR技术监测北京地铁网络沿线地面沉降. 地球信息科学学报, 20(12): 1810-1819 [DOI: 10.12082/dqxxkx.2018.180322http://dx.doi.org/10.12082/dqxxkx.2018.180322]
相关作者
相关机构