基于欧比特高光谱影像的滇池叶绿素a浓度遥感反演研究
Remote sensing retrieval of chlorophyll-a concentration in Dianchi lake based on orbita hyperspectral imagery
- 2022年26卷第11期 页码:2162-2173
纸质出版日期: 2022-11-07
DOI: 10.11834/jrs.20211264
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-11-07 ,
扫 描 看 全 文
郑著彬,张润飞,李建忠,林琳,杨虹.2022.基于欧比特高光谱影像的滇池叶绿素a浓度遥感反演研究.遥感学报,26(11): 2162-2173
Zheng Z B,Zhang R F,Li J Z,Lin L and Yang H. 2022. Remote sensing retrieval of chlorophyll-a concentration in Dianchi lake based on orbita hyperspectral imagery. National Remote Sensing Bulletin, 26(11):2162-2173
水体叶绿素a ,即Chla(chlorophyll-a)浓度是表征水体富营养化程度的关键性指标,对于水环境评估和水质遥感监测具有重要意义。欧比特高光谱卫星是中国于2018年发射的新一代高光谱卫星,然而其在内陆水体水质遥感监测的适用性仍有待验证。本研究以高原富营养化湖泊滇池为研究区,以叶绿素a浓度为反演指标,利用滇池两次野外现场实测数据和欧比特高光谱OHS(Orbita Hyperspectral)影像,通过分析滇池水体的光学特性,构建了适用于欧比特高光谱影像的滇池水体叶绿素a浓度遥感反演模型,并通过星地同步数据验证了反演模型的有效性与可行性,获得了滇池叶绿素a浓度的空间格局。结果表明:(1)波段比值模型(B17/B9)适合于基于欧比特高光谱影像的滇池水体叶绿素a浓度的遥感反演,模型反演精度较高,决定系数(
R
2
)为0.804,均方根误差(RMSE)和平均绝对误差百分比(MAPE)分别为6.99 μg/L和6.32%;(2)2019年4月2日滇池水体叶绿素a浓度呈现出由湖岸向湖泊中心逐渐降低的趋势,东北部与东南部呈幂函数型递减,西北部呈线性递减;(3)滇池欧比特高光谱影像的近岸4个水体像元易受到陆地邻近效应的影响。本研究提出的基于欧比特高光谱影像的波段比值模型能够实现滇池叶绿素a浓度的遥感反演,为内陆富营养化水体叶绿素a浓度的遥感监测提供了一种新的思路与方法。
The chlorophyll-a (Chla) concentration that refers to the content of Chla contained in per unit volume water
is a key indicator describing the eutrophication degree of lake waters. Accurate quantification of Chla concentration is of great significance for water environment assessment and water quality monitoring and has become a focus on the study of watercolor remote sensing. Orbita hyperspectral (OHS) satellite is a new generation of hyperspectral satellites launched by Zhuhai Orbita Aerospace Technology Co.
Ltd. in 2018
which covers spectral range of 400~1000 nm and 32 spectral channels with both high spectral and high spatial resolution (2.5 nm and 10 m
respectively)
showing great potential for inland water quality monitoring application. However
this satellite has a short operating period from launch
and the applicability of the generated images needs to be further investigated and validated.
Dianchi Lake
a typical eutrophic plateau lake
was used as the study area for Chla concentration retrieval based on the OHS hyperspectral imagery. We collected in-situ spectra and Chla concentration from two cruise surveys in Dianchi Lake and acquired the satellite-ground synchronization data within one day of the OHS satellite overpass. Data from two field campaigns including 72 sampling sites were used for model calibration and validation
and ground data matched with satellite overpass including 10 sampling sites was used to further validate the retrieval results after the calibrated model was applied to the OHS imagery. We first utilized all 72 in-situ spectra to explore the relationship between all possible combinations of band ratio and Chla concentrations to seek the optimal band ratio model. Immediately after we used the spectral response function of the OHS imagery to resample the in-situ spectra to the band configuration of the OHS imagery
the OHS-based band ratio model was calibrated using 48 field-measured data according to the optimal band ratio combination of in-situ spectra
and the remaining 24 data were used to evaluate model accuracy. We further validated the retrieval results using the Chla concentrations at 10 sampling points synchronized with the OHS image after the OHS-based band ratio model was applied to the OHS image
and the spatial pattern of Chla concentration in Dianchi Lake was revealed.
The band ratio
R
rs
(716)/
R
rs
(595) had the highest correlation with Chla concentration in terms of the in-situ spectra with
R
2
=0.819
and the corresponding OHS-based band ratio model (B17/B9) was suitable for remote sensing retrieval of Chla concentration in Dianchi Lake with
R
2
of 0.804
the root-mean-square error (RMSE) of 6.99 μg/L and the mean absolute percentage error (MAPE) of 6.32%. The retrieval results of the OHS-based band ratio model applied to the OHS image and the spatial pattern of Chla concentration were reasonable with acceptable errors (RMSE=12.47 μg/L
MAPE=22.53%). The spatial pattern of Chla concentration in Dianchi Lake showed a decreasing trend from the lakeshore to the center of the lake on April 2
2019
the northeast and southeast decrease fitted a power function
whereas the northwest decrease described a linear function. The pixel reflectance of the nearshore waters may be higher than that of the normal waters due to the land adjacency effect
which may lead to a high concentration of retrieved Chla along the coast. In the OHS imagery of Dianchi Lake
four nearshore water pixels could be easily influenced by the land adjacency effect
so these four pixels needed to be masked to eliminate the influence. In addition
compared with the existing Chla concentration retrieval algorithms
the band ratio model (B17/B9) proposed in this study improved the retrieval accuracy of Chla concentration.
In conclusion
the OHS-based band ratio model works efficiently and reliably for retrieving Chla concentration in Dianchi Lake. OHS hyperspectral data show great potential in terms of accurate retrieval of Chla concentration for inland waters
providing a new means for remote sensing monitoring of Chla concentration. However
whether the OHS-based band ratio model developed in this study applies to other water bodies with different optical properties still needs to be further investigated and tested. In future studies
the performance of the model will be further examined by collecting more field data in different lakes.
欧比特高光谱影像叶绿素a滇池陆地邻近效应
Orbita hyperspectral imagerychlorophyll-aDianchi Lakeland adjacency effect
Beck R, Zhan S G, Liu H X, Tong S, Yang B, Xu M, Ye Z X, Huang Y, Shu S, Wu Q S, Wang S J, Berling K, Murray A, Emery E, Reif M, Harwood J, Young J, Nietch C, Macke D, Martin M, Stillings G, Stump R and Su H B. 2016. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sensing of Environment, 178: 15-30 [DOI: 10.1016/j.rse.2016.03.002http://dx.doi.org/10.1016/j.rse.2016.03.002]
Bi S, Li Y M, Lü H, Zhu L, Mu M, Lei S H, Xu J, Wen S and Ding X L. 2018. Estimation of chlorophyll-a concentration in Lake Erhai based on OLCI data. Journal of Lake Sciences, 30(3): 701-712
毕顺, 李云梅, 吕恒, 朱利, 牟蒙, 雷少华, 徐杰, 温爽, 丁潇蕾. 2018. 基于OLCI数据的洱海叶绿素a浓度估算. 湖泊科学, 30(3): 701-712 [DOI: 10.18307/2018.0312http://dx.doi.org/10.18307/2018.0312]
Brando V E, Anstee J M, Wettle M, Dekker A G, Phinn S R and Roelfsema C. 2009. A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sensing of Environment, 113(4): 755-770 [DOI: 10.1016/j.rse.2008.12.003http://dx.doi.org/10.1016/j.rse.2008.12.003]
Chen Y W, Chen K N and Hu Y H. 2006. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method. Journal of Lake Sciences, 18(5): 550-552
陈宇炜, 陈开宁, 胡耀辉. 2006. 浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨. 湖泊科学, 18(5): 550-552 [DOI: 10.18307/2006.0519http://dx.doi.org/10.18307/2006.0519]
Du C, Wang S X, Zhou Y and Yan F L. 2009. Remote chlorophyll a retrieval in Taihu lake by three-band model using Hyperion hyperspectral data. Environmental Science, 30(10): 2904-2910
杜聪, 王世新, 周艺, 阎福礼. 2009. 利用Hyperion高光谱数据的三波段法反演太湖叶绿素a浓度. 环境科学, 30(10): 2904-2910 [DOI: 10.13227/j.hjkx.2009.10.013http://dx.doi.org/10.13227/j.hjkx.2009.10.013]
Feng L. 2021. Key issues in detecting lacustrine cyanobacterial bloom using satellite remote sensing. Journal of Lake Sciences, 33(3): 647-652
冯炼. 2021. 卫星遥感解译湖泊蓝藻水华的几个关键问题探讨. 湖泊科学, 33(3): 647-652 [DOI: 10.18307/2021.0301http://dx.doi.org/10.18307/2021.0301]
Gilerson A A, Gitelson A A, Zhou J, Gurlin D, Moses W, Ioannou I and Ahmed S A. 2010. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Optics Express, 18(23): 24109-24125 [DOI: 10.1364/OE.18.024109http://dx.doi.org/10.1364/OE.18.024109]
Gordon H R and Morel A Y. 1983. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review. New York: Springer-Verlag: 1-114.
Guo Y L, Li Y M, Li Y, Lü H, Liu G, Wang X D and Zhang S M. 2015. A three band chlorophyll-a concentration estimation model based on GOCI imagery. Environmental Science, 36(9): 3175-3185
郭宇龙, 李云梅, 李渊, 吕恒, 刘阁, 王旭东, 张思敏. 2015. 一种基于GOCI数据的叶绿素a浓度三波段估算模型. 环境科学, 36(9): 3175-3185 [DOI: 10.13227/j.hjkx.2015.09.008http://dx.doi.org/10.13227/j.hjkx.2015.09.008]
Guo Y L, Huang C C, Li Y M, Du C G, Shi L F, Li Y, Chen W Q, Wei H J, Cai E X and Ji G X. 2022. Hyperspectral reconstruction method for optically complex inland waters based on bio-optical model and sparse representing. Remote Sensing of Environment, 276: 113045 [DOI: 10.1016/j.rse.2022.113045http://dx.doi.org/10.1016/j.rse.2022.113045]
Gurlin D, Gitelson A A and Moses W J. 2011. Remote estimation of chl-a concentration in turbid productive waters — return to a simple two-band NIR-red model?. Remote Sensing of Environment, 115(12): 3479-3490 [DOI: 10.1016/j.rse.2011.08.011http://dx.doi.org/10.1016/j.rse.2011.08.011]
Härmä P, Vepsäläinen J, Hannonen T, Pyhälahti T, Kämäri J, Kallio K, Eloheimo K and Koponen S. 2001. Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. Science of the Total Environment, 268(1/3): 107-121 [DOI: 10.1016/S0048-9697(00)00688-4http://dx.doi.org/10.1016/S0048-9697(00)00688-4]
Huang C C, Wang X L, Yang H, Li Y M, Wang Y H, Chen X and Xu L J. 2014. Satellite data regarding the eutrophication response to human activities in the plateau lake Dianchi in China from 1974 to 2009. Science of the Total Environment, 485-486: 1-11 [DOI: 10.1016/j.scitotenv.2014.03.031http://dx.doi.org/10.1016/j.scitotenv.2014.03.031]
Kong F X and Gao G. 2005. Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes. Acta Ecologica Sinica, 25(3): 589-595
孔繁翔, 高光. 2005. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考. 生态学报, 25(3): 589-595 [DOI: 10.3321/j.issn:1000-0933.2005.03.028http://dx.doi.org/10.3321/j.issn:1000-0933.2005.03.028]
Kuchinke C P, Gordon H R, Harding Jr L W and Voss K J. 2009. Spectral optimization for constituent retrieval in Case 2 waters Ⅱ: validation study in the Chesapeake Bay. Remote Sensing of Environment, 113(3): 610-621 [DOI: 10.1016/j.rse.2008.11.002http://dx.doi.org/10.1016/j.rse.2008.11.002]
Kutser T, Herlevi A, Kallio K and Arst H. 2001. A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes. Science of the Total Environment, 268(1/3): 47-58 [DOI: 10.1016/S0048-9697(00)00682-3http://dx.doi.org/10.1016/S0048-9697(00)00682-3]
Li J, Chen X L, Tian L Q, Huang J and Feng L. 2015. Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: Radiometric and spatial considerations. ISPRS Journal of Photogrammetry and Remote Sensing, 106: 145-156 [DOI: 10.1016/j.isprsjprs.2015.05.009http://dx.doi.org/10.1016/j.isprsjprs.2015.05.009]
Li Y, Li Y M, Lü H, Zhu L, Wu C Q, Du C G and Wang S. 2014. Muti-model collaborative retrieval of chlorophyll a in Taihu lake based on data assimilation. Environmental Science, 35(9): 3389-3396
李渊, 李云梅, 吕恒, 朱利, 吴传庆, 杜成功, 王帅. 2014. 基于数据同化的太湖叶绿素多模型协同反演. 环境科学, 35(9): 3389-3396 [DOI: 10.13227/j.hjkx.2014.09.020http://dx.doi.org/10.13227/j.hjkx.2014.09.020]
Li Y M, Huang J Z, Wei Y C and Lu W N. 2006. Inversing chlorophyll concentration of Taihu lake by analytic model. Journal of Remote Sensing, 10(2): 169-175
李云梅, 黄家柱, 韦玉春, 陆皖宁. 2006. 用分析模型方法反演水体叶绿素的浓度. 遥感学报, 10(2): 169-175
Li Z H, Chen Z Z, Wang L Y, Sun D Y, Zhao B R and Wang S Q. 2021. Remote sensing inversion of concentration of phytoplankton chlorophyll and carotenoid from GOCI measurements in coastal waters. Acta Optica Sinica, 41(2): 7-17
李正浩, 陈志钊, 王力彦, 孙德勇, 赵彬如, 王胜强. 2021. 结合GOCI数据反演近海浮游植物叶绿素和类胡萝卜素浓度. 光学学报, 41(2): 7-17 [DOI: 10.3788/AOS202141.0201001http://dx.doi.org/10.3788/AOS202141.0201001]
Liu D, Pan D L, Bai Y, He X Q, Wang D F, Wei J A and Zhang L. 2015. Remote sensing observation of particulate organic carbon in the Pearl River estuary. Remote Sensing, 7(7): 8683-8704 [DOI: 10.3390/rs70708683http://dx.doi.org/10.3390/rs70708683]
Liu G, Li L, Song K S, Li Y M, Lyu H, Wen Z D, Fang C, Bi S, Sun X P, Wang Z M, Cao Z G, Shang Y X, Yu G L, Zheng Z B, Huang C C, Xu Y F and Shi K. 2020. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters. Remote Sensing of Environment, 239: 111648 [DOI: 10.1016/j.rse.2020.111648http://dx.doi.org/10.1016/j.rse.2020.111648]
Liu G, Li Y M, Lü H, Mu M, Lei S H, Wen S, Bi S and Ding X L. 2017. Remote sensing of chlorophyll-a concentration in Lake Hongze using long time series MERIS observations. Environmental Science, 38(9): 3645-3656
刘阁, 李云梅, 吕恒, 牟蒙, 雷少华, 温爽, 毕顺, 丁潇蕾. 2017. 基于MERIS影像的洪泽湖叶绿素a浓度时空变化规律分析. 环境科学, 38(9): 3645-3656 [DOI: 10.13227/j.hjkx.201702192http://dx.doi.org/10.13227/j.hjkx.201702192]
Liu G, Simis S G H, Li L, Wang Q, Li Y M, Song K S, Lyu H, Zheng Z B and Shi K. 2018. A four-band semi-analytical model for estimating phycocyanin in Inland waters from simulated MERIS and OLCI data. IEEE Transactions on Geoscience and Remote Sensing, 56(3): 1374-1385 [DOI: 10.1109/TGRS.2017.2761996http://dx.doi.org/10.1109/TGRS.2017.2761996]
Liu Q, Pan D L, Bai Y, Wu K, Authur Chen C T, Liu Z L and Zhang L. 2014. Estimating dissolved organic carbon inventories in the East China Sea using remote-sensing data. Journal of Geophysical Research: Oceans, 119(10): 6557-6574 [DOI: 10.1002/2014JC009868http://dx.doi.org/10.1002/2014JC009868]
Liu Y, Li J S, Xiao C C, Zhang F F and Wang S L. 2022. Inland water chlorophyll-a retrieval based on ZY-1 02D satellite hyperspectral observations. National Remote Sensing Bulletin, 26(1): 168-178
刘瑶, 李俊生, 肖晨超, 张方方, 王胜蕾. 2022. 资源一号02D高光谱影像内陆水体叶绿素a浓度反演. 遥感学报, 26(1): 168-178 [DOI: 10.11834/jrs.20221244http://dx.doi.org/10.11834/jrs.20221244]
Lyu H, Li X J, Wang Y N, Jin Q, Cao K, Wang Q and Li Y M. 2015. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes. Science of the Total Environment, 530-531: 373-382 [DOI: 10.1016/j.scitotenv.2015.05.115http://dx.doi.org/10.1016/j.scitotenv.2015.05.115]
Ma R H, Tang J W, Duan H T and Pan D L. 2009. Progress in lake water color remote sensing. Journal of Lake Sciences, 21(2): 143-158
马荣华, 唐军武, 段洪涛, 潘德炉. 2009. 湖泊水色遥感研究进展. 湖泊科学, 21(2): 143-158 [DOI: 10.18307/2009.0201http://dx.doi.org/10.18307/2009.0201]
Mobley C D. 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36): 7442-7455 [DOI: 10.1364/AO.38.007442http://dx.doi.org/10.1364/AO.38.007442]
Morel A and Prieur L. 1977. Analysis of variations in ocean color. Limnology and Oceanography, 22(4): 709-722 [DOI: 10.4319/lo.1977.22.4.0709http://dx.doi.org/10.4319/lo.1977.22.4.0709]
Morel A Y and Gordon H R. 1980. Report of the working group on water color. Boundary-Layer Meteorology, 18(3): 343-355 [DOI: 10.1007/BF00122030http://dx.doi.org/10.1007/BF00122030]
Mu M, Li Y M, Bi S, Lyu H, Xu J, Lei S H, Miao S, Zeng S, Zheng Z B and Du C G. 2021. Prediction of algal bloom occurrence based on the naive Bayesian model considering satellite image pixel differences. Ecological Indicators, 124: 107416 [DOI: 10.1016/j.ecolind.2021.107416http://dx.doi.org/10.1016/j.ecolind.2021.107416]
Neil C, Spyrakos E, Hunter P D and Tyler A N. 2019. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sensing of Environment, 229: 159-178 [DOI: 10.1016/j.rse.2019.04.027http://dx.doi.org/10.1016/j.rse.2019.04.027]
Paerl H W and Paul V J. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research, 46(5): 1349-1363 [DOI: 10.1016/j.watres.2011.08.002http://dx.doi.org/10.1016/j.watres.2011.08.002]
Shen M, Duan H T, Cao Z G, Xue K and Ma R H. 2017. Remote sensing estimation algorithm of diffuse attenuation coefficient applicable to different satellite data in Lake Taihu, China. Journal of Lake Sciences, 29(6): 1473-1484
沈明, 段洪涛, 曹志刚, 薛坤, 马荣华. 2017. 适用于多种卫星数据的太湖水体漫衰减系数估算算法. 湖泊科学, 29(6): 1473-1484 [DOI: 10.18307/2017.0619http://dx.doi.org/10.18307/2017.0619]
Smith M E, Lain L R and Bernard S. 2018. An optimized Chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters. Remote Sensing of Environment, 215: 217-227 [DOI: 10.1016/j.rse.2018.06.002http://dx.doi.org/10.1016/j.rse.2018.06.002]
Sun D Y, Li Y M, Huang J Z, Le C F, Gong S Q and Wu L. 2008. Spectral absorption characteristics and slope coefficients analysis of in-water constituents in Meiliang Bay of Lake Taihu in the summer season. Acta Ecologica Sinica, 28(2): 749-760
孙德勇, 李云梅, 黄家柱, 乐成峰, 龚绍琦, 伍蓝. 2008. 太湖梅梁湾夏季水体组分光谱吸收特性. 生态学报, 28(2): 749-760 [DOI: 10.3321/j.issn:1000-0933.2008.02.037http://dx.doi.org/10.3321/j.issn:1000-0933.2008.02.037]
Tang J W, Tian G L, Wang X Y, Wang X M and Song Q J. 2004. The methods of water spectra measurement and analysis Ⅰ: above-water method. Journal of Remote Sensing, 8(1): 37-44
唐军武, 田国良, 汪小勇, 王晓梅, 宋庆君. 2004. 水体光谱测量与分析Ⅰ: 水面以上测量法. 遥感学报, 8(1): 37-44 [DOI: 10.11834/jrs.20040106http://dx.doi.org/10.11834/jrs.20040106]
Vincent R K, Qin X M, McKay R M L, Miner J, Czajkowski K, Savino J and Bridgeman T. 2004. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sensing of Environment, 89(3): 381-392 [DOI: 10.1016/j.rse.2003.10.014http://dx.doi.org/10.1016/j.rse.2003.10.014]
Wang J F, Chen J A, Chen Q, Jin Z X and Zeng H X. 2021. Biogeochemical cycling of phosphorus in deep-water reservoirs. Quaternary Sciences, 41(4): 1192-1205
王敬富, 陈敬安, 陈权, 金祖雪, 曾华献. 2021. 深水水库磷的生物地球化学循环. 第四纪研究, 41(4): 1192-1205 [DOI: 10.11928/j.issn.1001-7410.2021.04.25http://dx.doi.org/10.11928/j.issn.1001-7410.2021.04.25]
Yang W, Matsushita B K, Chen J, Fukushima T and Ma R H. 2010. An enhanced three-band index for estimating chlorophyll-a in turbid case-II waters: case studies of Lake Kasumigaura, Japan, and Lake Dianchi, China. IEEE Geoscience and Remote Sensing Letters, 7(4): 655-659 [DOI: 10.1109/LGRS.2010.2044364http://dx.doi.org/10.1109/LGRS.2010.2044364]
Yin Z Y, Li J S, Fan H S, Gao M and Xie Y. 2021. Preliminary study on water quality parameter inversion for the Yuqiao reservoir based on Zhuhai-1 hyperspectral satellite data. Spectroscopy and Spectral Analysis, 41(2): 494-498
殷子瑶, 李俊生, 范海生, 高敏, 谢娅. 2021. 珠海一号高光谱卫星的于桥水库水质参数反演初步研究. 光谱学与光谱分析, 41(2): 494-498 [DOI: 10.3964/j.issn.1000-0593(2021)02-0494-05http://dx.doi.org/10.3964/j.issn.1000-0593(2021)02-0494-05]
Zhang R F, Zheng Z B, Liu G, Du C G, Du C, Lei S H, Xu Y F, Xu J, Mu M, Bi S and Li J Z. 2021. Simulation and assessment of the capabilities of Orbita Hyperspectral (OHS) imagery for remotely monitoring chlorophyll-a in eutrophic plateau lakes. Remote Sensing, 13(14): 2821 [DOI: 10.3390/rs13142821http://dx.doi.org/10.3390/rs13142821]
Zheng Z B, Li Y M, Guo Y L, Xu Y F, Liu G and Du C G. 2015. Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting Lake, China. Remote Sensing, 7(10): 13975-13999 [DOI: 10.3390/rs71013975http://dx.doi.org/10.3390/rs71013975]
相关作者
相关机构