中国区域植树造林对地表温度的影响
The influence of afforestation on land surface temperature in China
- 2021年25卷第8期 页码:1862-1872
纸质出版日期: 2021-08-07
DOI: 10.11834/jrs.20211284
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-07 ,
扫 描 看 全 文
王丽平,段四波,张霄羽,常胜,刘向阳,黄成,钱永刚.2021.中国区域植树造林对地表温度的影响.遥感学报,25(8): 1862-1872
Wang L P,Duan S B,Zhang X Y,Chang S,Liu X Y,Huang C and Qian Y G. 2021. The influence of afforestation on land surface temperature in China. National Remote Sensing Bulletin, 25(8):1862-1872
近些年随着中国植树造林计划的持续进行,植被覆盖不断增长,进而影响中国地表环境。地表温度是表征地表物理过程的重要参数,是地表—大气能量交换中的驱动因子,广泛应用于气候、水文、生态及气象等研究中,是众多基础学科研究的关键参数之一。为了分析植树造林战略对局地和区域尺度的影响,以指导相应政策的制定,本文采用IBM(Intrinsic Biophysical Mechanism)方法研究了中国区域植树造林对地表温度的影响,并讨论了辐射效应与非辐射效应以及不同林地类型对地表温度的影响。结果表明:(1)植树造林对地表温度的影响在高纬度地区的寒冷季节表现为增温作用,而在温暖季节各纬度均表现为降温作用。(2)寒冷季节高纬度地区植树造林对地表温度的辐射效应较为强烈,而在其他季节各纬度植树造林对地表温度的非辐射效应占主导作用,辐射效应较为微弱。(3)开阔地转为林地时,不同林地类型对地表温度有不同的影响特征。开阔地转为落叶阔叶林时对地表温度的影响与植树造林对地表温度的总体影响变化具有相似特征,表现为在寒冷季节高纬度地区为增温作用,在低纬度地区均表现为降温作用,开阔地转为常绿针叶林、常绿阔叶林时对地表温度的影响均表现为降温作用。
In recent years
as China’s afforestation plan continues
vegetation cover has continued to increase
which in turn affects China’s surface environment. Land Surface Temperature (LST) is an important parameter that characterizes the physical processes of the surface
and is the driving factor for the energy exchange between the surface and the atmosphere. It is widely used in the research of basic subjects such as climate
hydrology
ecology and meteorology
and is one of the key parameters in many basic researches. To study the impact of afforestation strategies on local and regional scales and guide the implementation of corresponding policies
this study uses the IBM (Intrinsic Biophysical Mechanism) method to investigate the impact of afforestation in China on LST
and discusses the effects of radiative and non-radiative forcing and different vegetation cover types on LST. The results show that: (1) the influence of afforestation on LST is shown as a warming effect in the cold season in high latitudes
but as a cooling effect at all latitudes in the warm season. (2) The radiative effect of afforestation on LST in high latitude areas in cold season is relatively strong
while in other seasons
the non-radiative effect of afforestation on LST at various latitudes is dominant
and the radiative effect is relatively weak. (3) When open land is converted to forest land
different types of forest land cover have different characteristics of impact on LST. When open land is converted to deciduous broad-leaved forest
the impact on LST is similar to the overall impact of afforestation on LST
showing a warming effect in high latitude areas in the cold season
and a cooling effect in low latitude areas. The effect of open land into evergreen coniferous forests and evergreen broad-leaved forests on LST is shown as a cooling effect. This study analyzes the impact of afforestation on LST in the context of continuous afforestation in China. The research has practical significance for current afforestation policies and provides theoretical guidance for future afforestation strategies.
地表温度IBM方法植树造林非辐射效应
land surface temperatureIBM methodafforestationnon-radiative effect
Anderson R G, Canadell J G, Randerson J T, Jackson R B, Hungate B A, Baldocchi D D, Ban-Weiss G A, Bonan G B, Caldeira K, Cao L, Diffenbaugh N S, Gurney K R, Kueppers L M, Law B E, Luyssaert S and O'halloran T L. 2011. Biophysical considerations in forestry for climate protection. Frontiers in Ecology and the Environment, 9(3): 174-182 [DOI: 10.1890/090179http://dx.doi.org/10.1890/090179]
Betts R. 2007. Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus B: Chemical and Physical Meteorology, 59(3): 602-615 [DOI: 10.1111/j.1600-0889.2007.00284.xhttp://dx.doi.org/10.1111/j.1600-0889.2007.00284.x]
Bonan G B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882): 1444-1449 [DOI: 10.1126/science.1155121http://dx.doi.org/10.1126/science.1155121]
Bright R M, Davin E, O’halloran T, Pongratz J, Zhao K G and Cescatti A. 2017. Local temperature response to land cover and management change driven by non-radiative processes. Nature Climate Change, 7(4): 296-302 [DOI: 10.1038/nclimate3250http://dx.doi.org/10.1038/nclimate3250]
Chen C, Wang L, Myneni R B and Lin D. 2020. Attribution of land-use/land-cover change induced surface temperature anomaly: how accurate is the first-order Taylor series expansion?. Journal of Geophysical Research: Biogeosciences, 125(9): e2020JG005787 [DOI: 10.1029/2020JG005787http://dx.doi.org/10.1029/2020JG005787]
Duan S B, Li Z L, Li H, Frank-M. Göttsche, Wu H, Zhao W, Leng P, Zhang X and César Coll. 2019. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sensing of Environment, 225, 16-29
Duan S B, Ru C, Li Z L, Wang M M, Xu H Q, Li H, Wu P H, Zhan W F, Zhou J, Zhao W, Ren H Z, Wu H, Tang B H, Zhang X, Shang Guo F and Qin Z H. 2021. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data. National Remote Sensing Bulletin, 25(8): 1591-1617
段四波, 茹晨, 李召良, 王猛猛, 徐涵秋, 历华, 吴鹏海, 占文凤, 周纪, 赵伟, 任华忠, 吴骅, 唐伯惠, 张霞, 尚国琲, 覃志豪. 2021. Landsat卫星热红外数据地表温度遥感反演研究进展. 遥感学报, 25(8): 1591-1617 [DOI: 10.11834/jrs.20211296http://dx.doi.org/10.11834/jrs.20211296]
Friedl M A, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A and Huang X M. 2010. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1): 168-182 [DOI: 10.1016/j.rse.2009.08.016http://dx.doi.org/10.1016/j.rse.2009.08.016]
Gao F, He T, Wang Z S, Ghimire B, Shuai Y M, Masek J G, Schaaf C and Williams C. 2014. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products. Journal of Applied Remote Sensing, 8(1): 083532 [DOI: 10.1117/1.JRS.8.083532http://dx.doi.org/10.1117/1.JRS.8.083532]
Ge J, Guo W D, Pitman A J, Kauwe M G D, Chen X L and Fu C B. 2019. The nonradiative effect dominates local surface temperature change caused by afforestation in China. Journal of Climate, 32(14): 4445-4471 [DOI: 10.1175/JCLI-D-18-0772.1http://dx.doi.org/10.1175/JCLI-D-18-0772.1]
Guan Y L, Wang R H, Yao J, Qin J K and Zhu M. 2015. Features of surface albedo of Tianshan Mountains area under the background of climate change. Arid Land Geography, 38(2): 351-358
管延龙, 王让会, 姚建, 秦晋凯, 朱旻. 2015. 气候变化背景下天山区域地表反照率特征分析. 干旱区地理, 38(2): 351-358 [DOI: 10.13826/j.cnki.cn65-1103/x.2015.02.019http://dx.doi.org/10.13826/j.cnki.cn65-1103/x.2015.02.019]
He T. 2016. Effects of Afforestation on Land Surface Energy Balance and Regional Temperature Based on Surface Remote-Sensing Model. Beijing: Graduate Department of Chinese Academy of Sciences
贺添. 2016. 基于地面-遥感-模型的造林对地表能量平衡及区域温度的影响研究. 北京: 中国科学院地理科学与资源研究所
He T, Shao Q Q, Cao W, Huang L and Liu L L. 2015. Satellite-observed energy budget change of deforestation in northeastern China and its climate implications. Remote Sensing, 7(9): 11586-11601 [DOI: 10.3390/rs70911586http://dx.doi.org/10.3390/rs70911586]
Juang J Y, Katul G, Siqueira M, Stoy P and Novick K. 2007. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophysical Research Letters, 34(21): L21408 [DOI: 10.1029/2007GL031296http://dx.doi.org/10.1029/2007GL031296]
Lawrence D and Vandecar K. 2015. Effects of tropical deforestation on climate and agriculture. Nature Climate Change, 5(1): 27-36 [DOI: 10.1038/nclimate2430http://dx.doi.org/10.1038/nclimate2430]
Lee X H, Goulden M L, Hollinger D Y, Barr A, Black T A, Bohrer G, Bracho R, Drake B, Goldstein A, Gu L H, Katul G, Kolb T, Law B E, Margolis H, Meyers T, Monson R, Munger W, Oren R, Kyaw T P U, Richardson A D, Schmid H P, Staebler R, Wofsy S and Zhao L. 2011. Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479(7373): 384-387 [DOI: 10.1038/nature10588http://dx.doi.org/10.1038/nature10588]
Li D and Wang L. 2019. Sensitivity of surface temperature to land use and land cover change-induced biophysical changes: the scale issue. Geophysical Research Letters, 46(16): 9678-9689 [DOI: 10.1029/2019GL084861http://dx.doi.org/10.1029/2019GL084861]
Li Y, Zhao M S, Motesharrei S, Mu Q Z, Kalnay E and Li S C. 2015. Local cooling and warming effects of forests based on satellite observations. Nature Communications, 6(1): 6603 [DOI: 10.1038/ncomms7603http://dx.doi.org/10.1038/ncomms7603]
Luyssaert S, Jammet M, Stoy, P C, Estel S, Pongratz J, Ceschia E, Churkina G, Don A, Erb K, Ferlicoq M, Gielen B, Grünwald T, Houghton R A, Klumpp K, Knohl A, Kolb T, Kuemmerle T, Laurila T, Lohila A, Loustau D, Mcgrath M J, Meyfroidt P, Moors E J, Naudts K, Novick K, Otto J, Pilegaard K, Pio C A, Rambal S, Rebmann C, Ryder J, Suyker A E, Varlagin A, Wattenbach M and Dolman A J. 2014. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 4(5): 389-393 [DOI: 10.1038/nclimate2196http://dx.doi.org/10.1038/nclimate2196]
Mahmood R, Pielke P A, Hubbard K G, Niyogi D, Dirmeyer P A, Mcalpine C, Carleton A M, Hale R, Gameda S, Beltrán-Przekurat A, Baker B, Mcnider R, Legates D R, Shepherd M, Du J Y, Blanken P D, Frauenfeld O W, Nair U S and Fall S. 2014. Land cover changes and their biogeophysical effects on climate. International Journal of Climatology, 34(4): 929-953 [DOI: 10.1002/joc.3736http://dx.doi.org/10.1002/joc.3736]
Oleson K W, Bonan G B, Levis S and Vertenstein M. 2004. Effects of land use change on North American climate: impact of surface datasets and model biogeophysics. Climate Dynamics, 23(2): 117-132 [DOI: 10.1007/s00382-004-0426-9http://dx.doi.org/10.1007/s00382-004-0426-9]
Peng S S, Piao S L, Zeng Z Z, Ciais P, Zhou L, Li L Z X, Myneni R B, Yin Y and Zeng H. 2014. Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences of the United States of America, 111(8): 2915-2919 [DOI: 10.1073/pnas.1315126111http://dx.doi.org/10.1073/pnas.1315126111]
Pielke R A, Marland G, Betts R A, Chase T N, Eastman J L, Niles J O, Niyogi D D S and Running S W. 2002. The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society A. Mathematical, Physical, and Engineering Sciences, 360(1797): 1705-1719 [DOI: 10.1098/rsta.2002.1027http://dx.doi.org/10.1098/rsta.2002.1027]
Pielke R A, Pitman A, Niyogi D, Mahmood R, Mcalpine C, Hossain F, Goldewijk K K, Nair U, Betts R, Fall S, Reichstein M, Kabat P and Noblet N D. 2011. Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdisciplinary Reviews Climate Change, 2(6): 828-850 [DOI: 10.1002/wcc.144http://dx.doi.org/10.1002/wcc.144]
Rotenberg E and Yakir D. 2010. Contribution of semi-arid forests to the climate system. Science, 327(5964): 451-454 [DOI: 10.1126/science.1179998http://dx.doi.org/10.1126/science.1179998]
Shen W J, He J Y, Huang C Q and Li M S. 2020. Quantifying the actual impacts of forest cover change on surface temperature in Guangdong, China. Remote Sensing, 12(15): 2354. [DOI: 10.3390/rs12152354http://dx.doi.org/10.3390/rs12152354]
Wang L, Lee X, Schultz N, Chen S, Wei Z, Fu C,Gao Y,Yang Y andLin G. 2018. Response of surface temperature to afforestation in the Kubuqi Desert, Inner Mongolia. Journal of Geophysical Research: Atmospheres, 123(2):948-964
Wang M N, Hang Z and Zhang Q Y. 2016. Impact of land use and cover change in the semi-arid regions of China on the temperature in the early 21st century. Climatic and Environmental Research, 21(1): 65-77
王明娜, 韩哲, 张庆云. 2016. 21世纪初中国北方半干旱区土地利用变化对地表温度的影响. 气候与环境研究, 21(1): 65-77 [DOI: 10.3878/j.issn.1006-9585.2015.15197http://dx.doi.org/10.3878/j.issn.1006-9585.2015.15197]
Wang Y S. 2018. Inter-decadal and interannual change of precipitation in the Qiangtang Plateau and possible mechanism. Nanjing: Nanjing University
王彦双. 2018. 羌塘高原年代际和年际降水变化及原因探究. 南京: 南京大学
Zhao K G and Jackson R B. 2014. Biophysical forcings of land-use changes from potential forestry activities in North America. Ecological Monographs, 84(2): 329-353.
Zhao W X, Du H M, Dong T X and Hu L L. 2018. Temporal-spatial characteristics of the vegetation net primary production in the farming-pastoral eco-tone of Southern China during 2005-2014. Research of Soil and Water Conservation, 25(6): 236-241
赵唯茜, 杜华明, 董廷旭, 胡利利. 2018. 2005-2014年南方农牧交错带净初级生产力时空分布特征. 水土保持研究, 25(6): 236-241 [DOI: 10.13869/j.cnki.rswc.2018.06.035http://dx.doi.org/10.13869/j.cnki.rswc.2018.06.035]
Zhu J S, Ren H Z, Ye X, Zeng H, Nie J, Jiang C C and Guo J X. 2021. Ground validation of land surface temperature and surface emissivity from thermal infrared remote sensing data: A review. National Remote Sensing Bulletin, 25(8): 1538-1566
朱金顺, 任华忠, 叶昕, 曾晖, 聂婧, 蒋晨琛, 郭金鑫. 2021. 热红外遥感地表温度与发射率地面验证进展. 遥感学报, 25(8): 1538-1566 [DOI: 10.11834/jrs.20211299http://dx.doi.org/10.11834/jrs.20211299]
相关作者
相关机构