高光谱热红外星上辐亮度图像模拟及初步应用
Hyperspectral thermal infrared TOA image simulation and preliminary applications
- 2021年25卷第8期 页码:1633-1645
收稿:2021-05-10,
纸质出版:2021-08-07
DOI: 10.11834/jrs.20211294
移动端阅览
收稿:2021-05-10,
纸质出版:2021-08-07
移动端阅览
基于卫星数据的热红外图像模拟可以为热红外大气校正、地表温度和发射率反演和前期验证提供数据支撑,同时也可以为热红外传感器的波段设置和优化提供参考。热红外图像模拟是进行热红外定量遥感研究的有效手段。本研究利用Terra星上搭载的ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer)遥感数据所反演得到的地表温度和发射率产品,基于高光谱辐射传输模型,模拟8—14 μm(714—1250 cm
-1
),波谱分辨率为0.25 cm
-1
的星上TOA(Top of Atmosphere)高光谱热红外成像模拟数据。在此基础上,结合高光谱热红外图像数据的特点,实现了温度和发射率分离算法,以及对比了不同的基于图像的大气校正算法。结果显示,本文提出的热红外图像模拟方法可行,能够为评价不同的大气校正、温度和发射率分离算法提供有效的数据支撑。
Hyperspectral thermal infrared image simulation provides potential application in military
scientific
and commercial fields
such as target detection
atmospheric correction
Land Surface Temperature (LST) and emissivity (LSE) separation and validation
and future satellite sensor bandwidth/resolution setup and optimization. Therefore
thermal infrared image simulation is an effective means for quantitative remote sensing research. In this paper
we simulated the Top of Atmosphere (TOA) hyperspectral thermal infrared radiation data with a spectral resolution of 0.25 cm
-1
ranging from 8—14 μm (714—1250 cm
-1
)
using ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) land surface temperature (AST08)
land surface emissivity (AST05) product and the Seebor V5.0 atmospheric profiles. The surface hyperspectral emissivity is obtained from ASTER multi-spectral emissivity data using the principal component regression
while the various atmospheric parameters are obtained using the hyperspectral atmospheric radiative transfer model 4A/OP (operational release for automatized atmospheric absorption atlas) with the Seebor V5.0 atmospheric profile. At-nadir observations are considered in the simulations in this study. Finally
based on the above-mentioned simulation method of thermal infrared hyperspectral data
and further considering the influence of instrument observation error and other factors
two atmospheric correction algorithms based on image information
namely AAC algorithm (Autonomous Atmospheric Compensation) and combined ISAC (In Scene Atmospheric Correction) and AAC algorithm
and Iterative Spectrally Smooth Temperature Emissivity Separation (ISSTES) algorithm were evaluated respectively. And we also analyze the sensitivity of these methods to different noise levels and other error sources. The results show that the ISSTES temperature and emissivity separation algorithm is reliable and feasible when the accuracy of the atmospheric profile is relatively high
but when instrument noises and errors in the atmospheric profile are considered
the accuracy of ISSTES algorithm decreases. In the absence of instrument noise
the accuracy of AAC and ISAC-AAC atmospheric correction methods is close and can obtain high-precision atmospheric parameters of atmospheric transmittance
atmospheric downward radiation and atmospheric upwelling radiation
which are required in the atmospheric radiative transfer equation. When 1 K instrument noise is added
the accuracy of ISAC-AAC is significantly higher than that of AAC. And under the same instrument noise
with the increase of water vapor content
the accuracy of AAC algorithm decreases rapidly
while the accuracy of ISAC-AAC does not decrease significantly. The above evaluation results are consistent with the previous evaluation results based on the measured data. In general
the thermal infrared image simulation method proposed in this paper is feasible and can provide effective data for evaluating different atmospheric correction algorithms and temperature and emissivity separation algorithms.
Abrams M . 2000 . The advanced spaceborne thermal emission and reflection radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform . International Journal of Remote Sensing , 21 ( 5 ): 847 - 859 [ DOI: 10.1080/014311600210326 http://dx.doi.org/10.1080/014311600210326 ]
Borbas E , Suzanne S S , Huang H L , Li J and Menzel W P . 2005 . Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity // Proceedings of the Fourteenth International ATOVS Study Conference . Beijing : CIMSS : 763 - 770
Borel C C . 1998 . Surface emissivity and temperature retrieval for a hyperspectral sensor// IGARSS' 98 .
Sensing and Managing the Environment . 1998 IEEE International Geoscience and Remote Sensing . Symposium Proceedings. (Cat. No . 98 CH36174). Seattle: IEEE: 546 - 549 [ DOI: 10.1109/IGARSS.1998.702966 http://dx.doi.org/10.1109/IGARSS.1998.702966 ]
Borel C C . 2008 . Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data . International Journal of Remote Sensing , 29 ( 17/18 ): 5029 - 5045 [ DOI: 10.1080/01431160802036540 http://dx.doi.org/10.1080/01431160802036540 ]
Cheng G D and Li X . 2019 . Heihe River Basin Model Integration . Beijing : Science Press
程国栋 , 李新 . 2019 . 黑河流域模型集成 . 北京 : 科学出版社
Duan S B , Ru C , Li Z L , Wang M M , Xu H Q , Li H , Wu P H , Zhan W F , Zhou J , Zhao W , Ren H Z , Wu H , Tang B H , Zhang X , Shang Guo F and Qin Z H . 2021 . Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data . National Remote Sensing Bulletin , 25 ( 8 ): 1591 - 1617
段四波 , 茹晨 , 李召良 , 王猛猛 , 徐涵秋 , 历华 , 吴鹏海 , 占文凤 , 周纪 , 赵伟 , 任华忠 , 吴骅 , 唐伯惠 , 张霞 , 尚国琲 , 覃志豪 . 2021 . Landsat卫星热红外数据地表温度遥感反演研究进展 . 遥感学报 , 25 ( 8 ): 1591- 1617 [ DOI: 10.11834/jrs.20211296 http://dx.doi.org/10.11834/jrs.20211296 ]
Gillespie A R , Abbott E A , Gilson L , Hulley G , Jiménez-Muñoz J C and Sobrino J A . 2011 . Residual errors in ASTER temperature and emissivity standard products AST08 and AST05 . Remote Sensing of Environment , 115 ( 12 ): 3681 - 3694 [ DOI: 10.1016/j.rse.2011.09.007 http://dx.doi.org/10.1016/j.rse.2011.09.007 ]
Gillespie A R , Matsunaga T , Rokugawa S and Hook S J . 1996 . Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images // Proceedings of SPIE 2817 , Infrared Spaceborne Remote Sensing IV. Denver : SPIE : 82 - 94 [ DOI: 10.1117/12.255172 http://dx.doi.org/10.1117/12.255172 ]
Gu D , Gillespie A R , Kahle A B and Palluconi F D . 2000 . Autonomous atmospheric compensation (AAC) of high resolution hyperspectral thermal infrared remote-sensing imagery . IEEE Transactions on Geoscience and Remote Sensing , 38 ( 6 ): 2557 - 2570 [ DOI: 10.1109/36.885203 http://dx.doi.org/10.1109/36.885203 ]
Li X , Li X W , Li Z Y , Wang J , Ma M G , Liu Q , Xiao Q , Hu Z Y , Che T , Wang J M , Liu Q H , Chen E X , Yan G J , Liu S M , Wang W Z , Zhang L X , Wang J D , Niu Z , Jin R , Ran Y H and Wang L X . 2012 . Progresses on the Watershed Allied Telemetry Experimental Research (WATER) . Remote Sensing Technology and Application , 27 ( 5 ): 637 - 649
李新 , 李小文 , 李增元 , 王建 , 马明国 , 刘强 肖青 , 胡泽勇 , 车涛 , 王介民 , 柳钦火 , 陈尔学 , 阎广建 , 刘绍民 , 王维真 , 张立新 , 王锦地 , 牛铮 , 晋锐 , 冉有华 , 王亮绪 . 2012 . 黑河综合遥感联合试验研究进展: 概述 . 遥感技术与应用 , 27 ( 5 ): 637 - 649
Li Z L , Tang B H , Wu H , Ren H Z , Yan G J , Wan Z M , Trigo I F and Sobrino J A . 2013 . Satellite-derived land surface temperature: current status and perspectives . Remote Sensing of Environment , 131 : 14 - 37 [ DOI: 10.1016/j.rse.2012.12.008 http://dx.doi.org/10.1016/j.rse.2012.12.008 ]
Liu Y B , Hiyama T and Yamaguchi Y . 2006 . Scaling of land surface temperature using satellite data: a case examination on ASTER and MODIS products over a heterogeneous terrain area . Remote Sensing of Environment , 105 ( 2 ): 115 - 128 [ DOI: 10.1016/j.rse.2006.06.012 http://dx.doi.org/10.1016/j.rse.2006.06.012 ]
Manolakis D , Pieper M , Truslow E , Lockwood R , Weisner A , Jacobson J and Cooley T . 2019 . Longwave infrared hyperspectral imaging: principles, progress, and challenges . IEEE Geoscience and Remote Sensing Magazine , 7 ( 2 ): 72 - 100 [ DOI: 10.1109/MGRS.2018.2889610 http://dx.doi.org/10.1109/MGRS.2018.2889610 ]
Ouyang X Y , Kang G T , Zeng F N , Qi E Y and Li Z L . 2013 . Preliminary applications of a land surface temperature retrieval method to IASI and AIRS data . International Journal of Remote Sensing , 34 ( 9/10 ): 3128 - 3139 [ DOI: 10.1080/01431161.2012.716916 http://dx.doi.org/10.1080/01431161.2012.716916 ]
Ouyang X Y , Wang N , Wu H and Li Z L . 2010 . Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data . Optics Express , 18 ( 2 ): 544 - 550 [ DOI: 10.1364/OE.18.000544 http://dx.doi.org/10.1364/OE.18.000544 ]
Sabol D E , Gillespie A R , Abbott E and Yamada G . 2009 . Field validation of the ASTER temperature–emissivity separation algorithm . Remote Sensing of Environment , 113 ( 11 ): 2328 - 2344 [ DOI: 10.1016/j.rse.2009.06.008 http://dx.doi.org/10.1016/j.rse.2009.06.008 ]
Verhoef W and Bach H . 2012 . Simulation of Sentinel-3 images by four-stream surface–atmosphere radiative transfer modeling in the optical and thermal domains . Remote Sensing of Environment , 120 : 197 - 207 [ DOI: 10.1016/j.rse.2011.10.034 http://dx.doi.org/10.1016/j.rse.2011.10.034 ]
Wang K C and Liang S L . 2009 . Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites . Remote Sensing of Environment , 113 ( 7 ): 1556 - 1565 [ DOI: 10.1016/j.rse.2009.03.009 http://dx.doi.org/10.1016/j.rse.2009.03.009 ]
Wu H , Li X J , Li Z L , Duan S B and Qian Y G . 2021 . Hyperspectral thermal infrared remote sensing:current status and perspectives . National Remote Sensing Bulletin , 25 ( 8 ): 1567 - 1590
吴骅 , 李秀娟 , 李召良 , 段四波 , 钱永刚 . 2021 . 高光谱热红外遥感: 现状与展望 . 遥感学报 , 25 ( 8 ): 1567- 1590 [ DOI: 10.11834/jrs.20211306 http://dx.doi.org/10.11834/jrs.20211306 ]
Yang Y K , Li H , Sun L , Du Y M , Cao B , Liu Q H and Zhu J S . 2019 . Land surface temperature and emissivity separation from GF-5 visual and infrared multispectral imager data . Journal of Remote Sensing , 23 ( 6 ): 1132 - 1146
杨以坤 , 历华 , 孙林 , 杜永明 , 曹彪 , 柳钦火 , 朱金山 . 2019 . 高分五号全谱段光谱成像仪地表温度与发射率反演 . 遥感学报 , 23 ( 6 ): 1132- 1146 [ DOI: 10.11834/jrs.20198053 http://dx.doi.org/10.11834/jrs.20198053 ]
Yin M , Tian S F and Li S J . 2016 . Atmospheric compensation based on combined autonomous atmospheric compensation algorithms . Journal of Remote Sensing , 20 ( 3 ): 450 - 458
尹梅 , 田淑芳 , 李士杰 . 2016 . AAC算法的大气校正复合改进算法 . 遥感学报 , 20 ( 3 ): 450 - 458
Young S J , Johnson B R and Hackwell J A . 2002 . An in-scene method for atmospheric compensation of thermal hyperspectral data. Journal of Geophysical Research: Atmospheres, 107(D24): ACH-1-ACH 14 - 20 [ DOI: 10.1029/2001JD001266 http://dx.doi.org/10.1029/2001JD001266 ]
Zhang R H . 1999 . Some thinking on quantiative thermal infrared remote sensing . Remote Sensing for Land and Resources , ( 1 ): 1 - 6
张仁华 . 1999 . 对于定量热红外遥感的一些思考. 国土资源遥感, (1): 1 - 6
Zhou X M , Wang N and Wu H . 2012 . Comparison of two methods for atmospheric correction of hyper-spectral thermal infrared data . Journal of Remote Sensing , 16 ( 4 ): 796 - 808
周孝明 , 王宁 , 吴骅 . 2012 . 两种高光谱热红外数据大气校正方法的分析与比较 . 遥感学报 , 16 ( 4 ): 796- 808 [ DOI: 10.11834/jrs.20112196 http://dx.doi.org/10.11834/jrs.20112196 ]
Zhu X L , Duan S B , Li Z L , Zhao W , Wu H , Leng P , Gao M F and Zhou X M . 2020 . Retrieval of land surface temperature with topographic effect correction from landsat 8 thermal infrared data in mountainous areas . IEEE Transactions on Geoscience and Remote Sensing , 1 - 14 [ DOI: 10.1109/TGRS.2020.3030900 http://dx.doi.org/10.1109/TGRS.2020.3030900 ]
相关作者
相关机构
京公网安备11010802024621
