城市地表温度空间降尺度研究—以北京市为例
Land surface temperature downscaling in urban area:A case study of Beijing
- 2021年25卷第8期 页码:1808-1820
纸质出版日期: 2021-08-07
DOI: 10.11834/jrs.20211309
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-07 ,
扫 描 看 全 文
李娜娜,吴骅,栾庆祖.2021.城市地表温度空间降尺度研究—以北京市为例.遥感学报,25(8): 1808-1820
Li N N,Wu H and Luan Q Z. 2021. Land surface temperature downscaling in urban area: A case study of Beijing. National Remote Sensing Bulletin, 25(8):1808-1820
地表温度LST(Land Surface Temperature)是城市热环境研究的重要参数之一,城市下垫面极为复杂,LST空间差异性较高。高空间分辨率LST对精细化城市热环境监测和缓解具有重要意义。目前大部分城市遥感LST降尺度研究仍以二维角度为主,缺乏建筑三维结构的考虑。本研究同时考虑地表二维和三维指标,构建基于随机森林方法的降尺度模型,开展MODIS 1 km LST降尺度研究(100 m),并探讨二维和三维建筑形态对LST影响的空间尺度效应。另外,为了弥补随机森林模型缺乏物理基础的不足,参考热辐射传输方程,将方程中传感器接收的辐亮度和与大气透过率相关的大气可降水量,加入降尺度模型构建中。为了更好利用真实观测的MODIS 1 km LST验证降尺度结果,故将MODIS LST和所有指标因子升尺度至5 km,开展5 km LST降尺度至1 km研究,进一步研究探讨大气顶层辐亮度和大气可降水量对LST降尺度的影响。研究结果表明:(1)随机森林模型中增加辐亮度和大气可降水量前后,通过将5 km LST降尺度后1 km LST与原始MODIS 1 km LST相比,RMSE和
R
2
分别由3.1 K和0.5提高至0.38 K和0.94。(2)当随机森林模型中增加建筑形态指标后,模型的袋外分数OOB_score由0.46提高至0.49,模拟的100 m LST与ASTER LST产品比较,
R
2
有所降低,可能的原因是ASTER 和MODIS LST的反演方法和传感器不同,造成两者在100 m尺度下的对比性差一些。但是当驱动因子中增加MOD02和MOD05后,RMSE和
R
2
由2.4 K和0.29提高至1.2 K和0.68,进一步说明MOD02和MOD05在1 km LST降至100 m过程中,起到至关重要作用。(3)在1 km和100 m尺度下,增加建筑形态后,模型OOB_score均有提高,并且建筑形态指标的重要性有所不同,在100 m尺度下独立建筑形态的影响程度有所增加。综上,MODIS LST在城市地区降尺度研究中需要考虑大气顶层辐亮度、大气可降水量和建筑形态的影响,并且不同的建筑形态对LST的重要性存在空间尺度效应。
Land Surface Temperature (LST) is one of important variables for urban thermal environment studies. Urban surface is extremely complex and LST is heterogenous. High spatial resolution of LST is helpful for fine urban thermal environment monitoring and mitigation. However
so far
as we know
mostly LST downscaling studies focus on two-dimensional scope
and lack of building three-dimensional (3D) structure impact on LST. This study will use random forest model (RF) with both 2D and 3D land surface indices for downscaling of MODISF 1 km LST to 100m. Meanwhile
the spatial scale issues of building 3D morphology on LST is also discussed. In addition
in order to make up for the lack of theoretical basis of RF model
this study added more parameters during RF downscaling model generation based on the thermal radiation transmission equation
e.g. land surface radiance (MOD02) and precipitable water vapor (PWV
MOD05).The results show: (1) When MOD02 and MOD05 are included in RF model
RMSE and
R
2
between simulated 1 km LST and MODIS LST product are improved from 3.1 K and 0.5 to 0.38 K and 0.94. (2) When building 3D morphology is included in RF model
the OOB_score improves from 0.46 to 0.49. The
R
2
between simulated 100m LST and ASTER LST product is slightly decreased
one of the reasons is that LST retrieval methods of MODIS and ASTER are different and the two sensors are also different. However
when MOD02 and MOD05 are included
RMSE and
R
2
improve from 2.4 K and 0.29 to 1.2 K and 0.68. (3) The OOB_scores with building morphologies improve at both 1 km and 100 m scale
and the importance of building morphologies are different. Above all
downscaling MODIS LST in urban area should consider land surface radiance
PWV and building 3D structure indices
and impact of building morphologies on LST are different at different spatial scale.
遥感地表温度空间降尺度随机森林建筑形态空间尺度效应
remote sensingland surface temperaturedownscalingrandom forest modelbuilding morphologyspatial scale effect
Agam N, Kustas W P, Anderson M C, Li F Q and Neale C M U. 2007. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sensing of Environment, 107(4): 545-558 [DOI: 10.1016/j.rse.2006.10.006http://dx.doi.org/10.1016/j.rse.2006.10.006]
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5-32 [DOI: 10.1023/A:1010933404324http://dx.doi.org/10.1023/A:1010933404324]
Cai Z, Han G and Chen M. 2018. Do water bodies play an important role in the relationship between urban form and land surface temperature? Sustainable Cities and Society, 39, 487-498. [DOI: 10.1016/j.scs.2018.02.033http://dx.doi.org/10.1016/j.scs.2018.02.033]
Dominguez A, Kleissl J, Luvall J C and Rickman D L. 2011. High-resolution urban thermal sharpener (HUTS). Remote Sensing of Environment, 115(7): 1772-1780 [DOI: 10.1016/j.rse.2011.03.008http://dx.doi.org/10.1016/j.rse.2011.03.008]
Duan S B and Li Z L. 2016. Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: case study in northern China. IEEE Transactions on Geoscience and Remote Sensing, 54(11): 6458-6469 [DOI: 10.1109/TGRS.2016.2585198http://dx.doi.org/10.1109/TGRS.2016.2585198]
Duan S B, Ru C, Li Z L, Wang M M, Xu H Q, Li H, Wu P H, Zhan W F, Zhou J, Zhao W, Ren H Z, Wu H, Tang B H, Zhang X, Shang Guo F and Qin Z H. 2021. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data. National Remote Sensing Bulletin, 25(8): 1591-1617
段四波, 茹晨, 李召良, 王猛猛, 徐涵秋, 历华, 吴鹏海, 占文凤, 周纪, 赵伟, 任华忠, 吴骅, 唐伯惠, 张霞, 尚国琲, 覃志豪. 2021. Landsat卫星热红外数据地表温度遥感反演研究进展. 遥感学报, 25(8): 1591-1617 [DOI:10.11834/jrs.20211296http://dx.doi.org/10.11834/jrs.20211296]
Ermida S L, DaCamara C C, Trigo I F, Pires A C, Ghent D and Remedios J. 2017. Modelling directional effects on remotely sensed land surface temperature. Remote Sensing of Environment, 190: 56-69 [DOI: 10.1016/j.rse.2016.12.008http://dx.doi.org/10.1016/j.rse.2016.12.008]
He X, Li Y, Wang X, Chen L, Yu B, Zhang Y and Miao S. 2019. High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modelling system. Journal of Cleaner Production, 208, 373-383. [DOI: 10.1016/j.jclepro.2018.10.086http://dx.doi.org/10.1016/j.jclepro.2018.10.086]
Hu L, Monaghan A, Voogt J A and Barlage M. 2016. A first satellite-based observation assessment of urban thermal anisotropy. Remote Sensing of Environment, 181, 111-121. [DOI: 10.1016/j.rse.2016.03.043http://dx.doi.org/10.1016/j.rse.2016.03.043]
Hua J W, Zhu S Y and Zhang G X. 2018. Downscaling land surface temperature based on random forest algorithm. Remote Sensing for Land and Resources, 30(1): 78-86
华俊玮, 祝善友, 张桂欣. 2018. 基于随机森林算法的地表温度降尺度研究. 国土资源遥感, 30(1): 78-86 [DOI: 10.6046/gtzyyg.2018.01.11http://dx.doi.org/10.6046/gtzyyg.2018.01.11]
Hutengs C and Vohland M. 2016. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sensing of Environment, 178: 127-141 [DOI: 10.1016/j.rse.2016.03.006http://dx.doi.org/10.1016/j.rse.2016.03.006]
Keramitsoglou I, Kiranoudis C T and Weng Q H. 2013. Downscaling geostationary land surface temperature imagery for urban analysis. IEEE Geoscience and Remote Sensing Letters, 10(5): 1253-1257 [DOI: 10.1109/LGRS.2013.2257668http://dx.doi.org/10.1109/LGRS.2013.2257668]
Krayenhoff E S and Voogt J A. 2007. A microscale three-dimensional urban energy balance model for studying surface temperature. Boundary-Layer Meteorology, 123, 433-461. [DOI: 10.1007/s10546-006-9153-6http://dx.doi.org/10.1007/s10546-006-9153-6]
Kustas W P, Norman J M, Anderson M C and French A N. 2003. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sensing of Environment, 85(4): 429-440 [DOI: 10.1016/S0034-4257(03)00036-1http://dx.doi.org/10.1016/S0034-4257(03)00036-1]
Lai J M, Zhan W F, Huang F, Voogt J, Bechtel B, Allen M, Peng S S, Hong F L, Liu Y X and Du P J. 2018. Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sensing of Environment, 217: 203-220 [DOI: 10.1016/j.rse.2018.08.021http://dx.doi.org/10.1016/j.rse.2018.08.021]
Li N N, Yang J, Qiao Z, Wang Y W and Miao S G. 2021. Urban thermal characteristics of local climate zones and their mitigation measures across cities in different climate zones of China. Remote Sensing, 13(8): 1468 [DOI: 10.3390/rs13081468http://dx.doi.org/10.3390/rs13081468]
Li W, Ni L, Li Z L, Duan S B and Wu H. 2019. Evaluation of machine learning algorithms in spatial downscaling of MODIS land surface temperature. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7): 2299-2307 [DOI: 10.1109/JSTARS.2019.2896923http://dx.doi.org/10.1109/JSTARS.2019.2896923]
Liang C, Ng E, An X, Chao R, Lee M, Wang U and He Z. 2012. Sky view factor analysis of street canyons and its implications for daytime intra‐urban air temperature differentials in high‐rise, high‐density urban areas of Hong Kong: a GIS‐based simulation approach. International Journal of Climatology, 32, 121-136. [DOI: 10.1002/joc.2243http://dx.doi.org/10.1002/joc.2243]
Miller R B and Small C. 2003. Cities from space: potential applications of remote sensing in urban environmental research and policy. Environmental Science and Policy, 6(2): 129-137 [DOI: 10.1016/S1462-9011(03)00002-9http://dx.doi.org/10.1016/S1462-9011(03)00002-9]
Quan J L, Zhan W F, Chen Y H and Liu W Y. 2013. Downscaling remotely sensed land surface temperatures: a comparison of typical methods. Journal of Remote Sensing, 17(2): 361-387
全金玲, 占文凤, 陈云浩, 刘闻雨. 2013. 遥感地表温度降尺度方法比较——性能对比及适应性评价. 遥感学报, 17(2): 361-387 [DOI: 10.11834/jrs.20132007http://dx.doi.org/10.11834/jrs.20132007]
Sismanidis P, Keramitsoglou I, Kiranoudis C T and Bechtel B. 2016. Assessing the capability of a downscaled urban land surface temperature time series to reproduce the spatiotemporal features of the original data. Remote Sensing, 8(4): 274 [DOI: 10.3390/rs8040274http://dx.doi.org/10.3390/rs8040274]
Wang W T, Xie D H and Li Y H. 2014. Downscaling remotely sensed land surface temperature over urban areas using trend surface of spectral index. Journal of Remote Sensing, 18(6): 1169-1181
王祎婷, 谢东辉, 李亚惠. 2014. 光谱指数趋势面的城市地表温度降尺度转换. 遥感学报, 18(6): 1169-1181 [DOI: 10.11834/jrs.20144115http://dx.doi.org/10.11834/jrs.20144115]
Weng Q H, Fu P and Gao F. 2014. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sensing of Environment, 145: 55-67 [DOI: 10.1016/j.rse.2014.02.003http://dx.doi.org/10.1016/j.rse.2014.02.003]
Wu H, Li X J, Li Z L, Duan S B and Qian Y G. 2021. Hyperspectral thermal infrared remote sensing: current status and perspectives. National Remote Sensing Bulletin, 25(8): 1567-1590
吴骅, 李秀娟, 李召良, 段四波, 钱永刚. 2021. 高光谱热红外遥感: 现状与展望. 遥感学报, 25(8): 1567-1590 [DOI: 10.11834/jrs.20211306http://dx.doi.org/10.11834/jrs.20211306]
Wu J H, Zhong B, Tian S F, Yang A X and Wu J J. 2019. Downscaling of urban land surface temperature based on multi-factor geographically weighted regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(8): 2897-2911 [DOI: 10.1109/JSTARS.2019.2919936http://dx.doi.org/10.1109/JSTARS.2019.2919936]
Wu P H, Shen H F, Zhang L P and Göttsche F M. 2015. Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature. Remote Sensing of Environment, 156: 169-181 [DOI: 10.1016/j.rse.2014.09.013http://dx.doi.org/10.1016/j.rse.2014.09.013]
Yang G J, Pu R L, Huang W J, Wang J H and Zhao C J. 2010. A novel method to estimate subpixel temperature by fusing solar-reflective and thermal-infrared remote-sensing data with an artificial neural network. IEEE Transactions on Geoscience and Remote Sensing, 48(4): 2170-2178 [DOI: 10.1109/TGRS.2009.2033180http://dx.doi.org/10.1109/TGRS.2009.2033180]
Yang Y K, Li H, Sun L, Du Y M, Cao B, Liu Q H and Zhu J S. 2019. Land surface temperature and emissivity separation from GF-5 visual and infrared multispectral imager data. Journal of Remote Sensing, 23(6): 1132-1146
杨以坤, 历华, 孙林, 杜永明, 曹彪, 柳钦火, 朱金山. 2019. 高分五号全谱段光谱成像仪地表温度与发射率反演.遥感学报, 23(6): 1132-1146 [DOI: 10.11834/jrs.20198053http://dx.doi.org/10.11834/jrs.20198053]
Zheng Z. 2019. Effects of the vertical structure of urban landscape on land surface temperature. PhD thesis. Research center for eco-environmental sciences, Chinese Academy of Science. (郑重. 2019. 城市三维景观格局对地表热环境影响研究. 北京:中国科学院生态环境研究中心)
Zhu J S, Ren H Z, Ye X, Zeng H, Nie J, Jiang C C and Guo J X. 2021. Ground validation of land surface temperature and surface emissivity from thermal infrared remote sensing data:A review. National Remote Sensing Bulletin, 25(8): 1538-1566
朱金顺, 任华忠, 叶昕, 曾晖, 聂婧, 蒋晨琛, 郭金鑫. 2021. 热红外遥感地表温度与发射率地面验证进展. 遥感学报, 25(8): 1538-1566 [DOI:10.11834/jrs.20211299http://dx.doi.org/10.11834/jrs.20211299]
相关作者
相关机构