Google Earth Engine云平台对遥感发展的改变
Benefits of Google Earth Engine in remote sensing
- 2022年26卷第2期 页码:299-309
纸质出版日期: 2022-02-07
DOI: 10.11834/jrs.20211317
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-02-07 ,
扫 描 看 全 文
王小娜,田金炎,李小娟,王乐,宫辉力,陈蓓蓓,李向彩,郭婧涵.2022.Google Earth Engine云平台对遥感发展的改变.遥感学报,26(2): 299-309
Wang X N, Tian J Y,Li X J, Wang L, Gong H L, Chen B B, Li X C and Guo J H. 2022. Benefits of Google Earth Engine in remote sensing. National Remote Sensing Bulletin, 26(2):299-309
近年来,随着遥感技术的快速发展,积累了海量的对地观测遥感数据。传统桌面端遥感处理平台(例如ERDAS和ENVI等)无法满足当前遥感大数据的应用需求。作为领先的遥感云计算平台,GEE(Google Earth Engine)的出现改变了传统遥感数据处理和分析模式,为海量数据快速处理与信息挖掘带来了新的契机。截止目前,科研人员已利用GEE成功开展了大量研究工作,发表多篇学术论文与综述。然而,还没有一项研究系统地分析GEE是如何推动遥感科学发展的。因此,本文旨在探讨GEE云平台相比于传统桌面端遥感处理平台分别在资源、方法和应用3个方面的创新性变革:(1)在资源方面,GEE以其集大数据/云计算为一体的特点,打破了传统数据、模型算法、算力分离的局面,实现上述3者的云端部署,在大规模数据快速处理与分析方面展现出巨大潜力;(2)在方法方面,GEE提供的遥感分析新方法,突破了传统遥感技术瓶颈,促进了遥感数据处理与分析的技术革新,极大提高了海量数据处理与信息挖掘效率;(3)在应用方面,GEE不仅为全球尺度的长时间序列快速分析带来发展机遇,而且推动了数据、算法和产品的快速共享,进一步迎来了开放、共享的遥感时代。通过系统归纳总结GEE平台的优势,不仅可以帮助潜在新用户了解GEE,同时加深现有用户的理解,还能促使谷歌开发人员完善和改进GEE,并且催生地球系统科学研究的新发现。
The rapid development of remote sensing technology has enabled accumulation of massive earth observation data in recent years. Traditional desktop-based remote sensing platforms (e.g.
ERDAS and ENVI) cannot satisfy the current application requirements of remote sensing big data. Google Earth Engine (GEE)
as a leading cloud-based remote sensing platform
has not only changed the traditional processing and analysis means of data but also brought new opportunities for the rapid processing and information mining of massive data. To date
many researchers have successfully conducted a large number of works and published many academic papers and reviews based on GEE. However
no one has systematically analyzed how GEE promotes the development of remote sensing science. Therefore
this study aims to explore the innovative changes caused by GEE in the aspect of resources
methods
and applications
compared with the traditional desktop-based platform. (1) In terms of resources
GEE breaks the separation of traditional data
model algorithms
and computing power
realizes cloud deployment of the three
and shows great potential in the rapid processing and analysis of massive data through combining big data and cloud computing together. (2) With regard of methods
innovative remote sensing analysis methods provided by GEE break through the bottleneck of traditional remote sensing technology and promote the technological innovation of data processing and analysis. Thus
the efficiency of massive data processing and information mining greatly improves. (3) In the perspective of applications
GEE not only brings development opportunities for the rapid global-scale long-time analysis but also promotes the rapid sharing of data
algorithms
and products
which further ushers in the era of opening and sharing remote sensing. Systematically summarizing the advantages of GEE will not only help the potential new users understand GEE as well as deepen the existing users’ understanding but also encourage Google developers to perfect and improve GEE while catalyzing new discoveries in the scientific research of the earth system.
Google Earth Engine遥感云计算平台桌面端遥感处理平台遥感大数据像元级分析方法
Google Earth Enginecloud-based remote sensing platformdesktop-based remote sensing platformremote sensing big datapixel-based analysis method
Alonso A, Muñoz-Carpena R, Kennedy R E and Murcia C. 2016. Wetland landscape spatio-temporal degradation dynamics using the new Google earth engine cloud-based platform: opportunities for non-specialists in remote sensing. Transactions of the ASABE, 59(5): 1331-1342 [DOI: 10.13031/trans.59.11608http://dx.doi.org/10.13031/trans.59.11608]
Amani M, Ghorbanian A, Ahmadi S A, Kakooei M, Moghimi A, Mirmazloumi S M, Moghaddam S H A, Mahdavi S, Ghahremanloo M, Parsian S, Wu Q S and Brisco B. 2020. Google earth engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5326-5350 [DOI: 10.1109/JSTARS.2020.3021052http://dx.doi.org/10.1109/JSTARS.2020.3021052]
Badgley G, Field C B and Berry J A. 2017. Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 3(3): e1602244 [DOI: 10.1126/sciadv.1602244http://dx.doi.org/10.1126/sciadv.1602244]
Baumann P, Mazzetti P, Ungar J, Barbera R, Barboni D, Beccati A, Bigagli L, Boldrini E, Bruno R, Calanducci A, Campalani P, Clements O, Dumitru A, Grant M, Herzig P, Kakaletris G, Laxton J, Koltsida P, Lipskoch K, Mahdiraji A R, Mantovani S, Merticariu V, Messina A, Misev D, Natali S, Nativi S, Oosthoek J, Pappalardo M, Passmore J, Rossi A P, Rundo F, Sen M, Sorbera V, Sullivan D, Torrisi M, Trovato L, Veratelli M G and Wagner S. 2016. Big Data Analytics for Earth Sciences: the EarthServer approach. International Journal of Digital Earth, 9(1): 3-29 [DOI: 10.1080/17538947.2014.1003106http://dx.doi.org/10.1080/17538947.2014.1003106]
Bey A, Jetimane J, Lisboa S N, Ribeiro N, Sitoe A and Meyfroidt P. 2020. Mapping smallholder and large-scale cropland dynamics with a flexible classification system and pixel-based composites in an emerging frontier of Mozambique. Remote Sensing of Environment, 239: 111611 [DOI: 10.1016/j.rse.2019.111611http://dx.doi.org/10.1016/j.rse.2019.111611]
DeLancey E R, Simms J F, Mahdianpari M, Brisco B, Mahoney C and Kariyeva J. 2019. Comparing deep learning and shallow learning for large-scale wetland classification in Alberta, Canada. Remote Sensing, 12(1): 2 [DOI: 10.3390/rs12010002http://dx.doi.org/10.3390/rs12010002]
Dong J W, Li S W, Zeng Y L, Yan K and Fu D J. 2020. Cloud Computing in Remote Sensing and Science Analysis—Application and Practice. Beijing: Science Press
董金玮, 李世卫, 曾也鲁, 闫凯, 付东杰. 2020. 遥感云计算与科学分析——应用与实践. 北京: 科学出版社
Dong J W, Xiao X M, Menarguez M A, Zhang G L, Qin Y W, Thau D, Biradar C and Moore B. 2016. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 185: 142-154 [DOI: 10.1016/j.rse.2016.02.016http://dx.doi.org/10.1016/j.rse.2016.02.016]
Fu D J, Xiao H, Su F Z, Zhou C H, Dong J W, Zeng Y L, Yan K, Li S W, Wu J, Wu W Z and Yan F Q. 2021. Remote sensing cloud computing platform development and Earth science application. National Remote Sensing Bulletin, 25(1): 220-230
付东杰, 肖寒, 苏奋振, 周成虎, 董金玮, 曾也鲁, 闫凯, 李世卫, 吴进, 吴文周, 颜凤芹. 2021. 遥感云计算平台发展及地球科学应用. 遥感学报, 25(01): 220-230 [DOI: 10.11834/jrs.20210447http://dx.doi.org/10.11834/jrs.20210447]
Gong P, Li X C, Wang J, Bai Y Q, Chen B, Hu T Y, Liu X P, Xu B, Yang J, Zhang W and Zhou Y Y. 2020. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment, 236: 111510 [DOI: 10.1016/j.rse.2019.111510http://dx.doi.org/10.1016/j.rse.2019.111510]
Goodchild M F, Guo H D, Annoni A, Bian L, De Bie K, Campbell F, Craglia M, Ehlers M, Van Genderen J, Jackson D, Lewis A J, Pesaresi M, Remetey-Fülöpp G, Simpson R, Skidmore A, Wang C L and Woodgate P. 2012. Next-generation digital earth. Proceedings of the National Academy of Sciences of the United States of America, 109(28): 11088-11094 [DOI: 10.1073/pnas.1202383109http://dx.doi.org/10.1073/pnas.1202383109]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Guo H D. 2014. Big data, big science, big discovery—review of Codata workshop on big data for international scientific programmes. Bulletin of Chinese Academy of Sciences, 29(4): 500-506
郭华东. 2014. 大数据 大科学 大发现——大数据与科学发现国际研讨会综述. 中国科学院院刊, 29(4): 500-506 [DOI: 10.3969/j.issn.1000-3045.2014.04.014http://dx.doi.org/10.3969/j.issn.1000-3045.2014.04.014]
Hansen M C, Potapov P V, Moore R, Hancher M, Turubanova S A, Tyukavina A, Thau D, Stehman S V, Goetz S J, Loveland T R, Kommareddy A, Egorov A, Chini L, Justice C O and Townshend J R G. 2013. High-resolution global maps of 21st-century forest cover change. Science, 342(6160): 850-853 [DOI: 10.1126/science.1244693http://dx.doi.org/10.1126/science.1244693]
Hao B F, Han X J, Ma M G, Liu Y T and Li S W. 2018. Research Progress on the Application of Google Earth Engine in Geoscience and environmental Sciences. Remote Sensing Technology and Application, 33(4): 600-611
郝斌飞, 韩旭军, 马明国, 刘一韬, 李世卫. 2018. Google Earth Engine在地球科学与环境科学中的应用研究进展. 遥感技术与应用, 33(4): 600-611 [DOI: 10.11873/j.issn.1004-0323.2018.4.0600http://dx.doi.org/10.11873/j.issn.1004-0323.2018.4.0600]
He G J, Wang G Z, Long T F, Peng Y, Jiang W, Yin R Y, Jiao W L and Zhang Z M. 2018. Opening and sharing of big earth observation data: challenges and countermeasures. Bulletin of Chinese Academy of Sciences, 33(8): 783-790
何国金, 王桂周, 龙腾飞, 彭燕, 江威, 尹然宇, 焦伟利, 张兆明. 2018. 对地观测大数据开放共享: 挑战与思考. 中国科学院院刊, 33(8): 783-790 [DOI: 10.16418/j.issn.1000-3045.2018.08.003http://dx.doi.org/10.16418/j.issn.1000-3045.2018.08.003]
Ielpi A and Lapôtre M G A. 2020. A tenfold slowdown in river meander migration driven by plant life. Nature Geoscience, 13(1): 82-86 [DOI: 10.1038/s41561-019-0491-7http://dx.doi.org/10.1038/s41561-019-0491-7]
Jia M M, Wang Z M, Mao D H, Ren C Y, Wang C and Wang Y Q. 2021. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google earth engine. Remote Sensing of Environment, 255: 112285 [DOI: 10.1016/j.rse.2021.112285http://dx.doi.org/10.1016/j.rse.2021.112285]
Johnson D M. 2019. Using the Landsat archive to map crop cover history across the United States. Remote Sensing of Environment, 232: 111286 [DOI: 10.1016/j.rse.2019.111286http://dx.doi.org/10.1016/j.rse.2019.111286]
Joshi A R, Dinerstein E, Wikramanayake E, Anderson M L, Olson D, Jones B S, Seidensticker J, Lumpkin S, Hansen M C, Sizer N C, Davis C L, Palminteri S and Hahn N R. 2016. Tracking changes and preventing loss in critical tiger habitat. Science Advances, 2(4): e1501675 [DOI: 10.1126/sciadv.1501675http://dx.doi.org/10.1126/sciadv.1501675]
Kumar L and Mutanga O. 2018. Google earth engine applications since inception: usage, trends, and potential. Remote Sensing, 10(10): 1509 [DOI: 10.3390/rs10101509http://dx.doi.org/10.3390/rs10101509]
Laskin D N, McDermid G J, Nielsen S E, Marshall S J, Roberts D R and Montaghi A. 2019. Advances in phenology are conserved across scale in present and future climates. Nature Climate Change, 9(5): 419-425 [DOI: 10.1038/s41558-019-0454-4http://dx.doi.org/10.1038/s41558-019-0454-4]
Li D R. 2016. Towards geo-spatial information science in big data era. Acta Geodaetica et Cartographica Sinica, 45(4): 379-384
李德仁. 2016. 展望大数据时代的地球空间信息学. 测绘学报, 45(4): 379-384 [DOI: 10.11947/j.AGCS.2016.20160057http://dx.doi.org/10.11947/j.AGCS.2016.20160057]
Li D R. 2018. Brain cognition and spatial cognition: on integration of geo-spatial big data and artificial intelligence. Geomatics and information Science of Wuhan University, 43(12): 1761-1767
李德仁. 2018. 脑认知与空间认知——论空间大数据与人工智能的集成. 武汉大学学报(信息科学版), 43(12): 1761-1767 [DOI: 10.13203/j.whugis20180411http://dx.doi.org/10.13203/j.whugis20180411]
Li D R, Zhang L P and Xia G S. 2014. Automatic analysis and mining of remote sensing big data. Acta Geodaetica et Cartographica Sinica, 43(12): 1211-1216
李德仁, 张良培, 夏桂松. 2014. 遥感大数据自动分析与数据挖掘. 测绘学报, 43(12): 1211-1216 [DOI: 10.13485/jc.nki1.1-20892.0140.187http://dx.doi.org/10.13485/jc.nki1.1-20892.0140.187]
Liu X P, Huang Y H, Xu X C, Li X C, Li X, Ciais P, Lin P R, Gong K, Ziegler A D, Chen A P, Gong P, Chen J, Hu G H, Chen Y M, Wang S J, Wu Q S, Huang K N, Estes L and Zeng Z Z. 2020. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 3(7): 564-570 [DOI: 10.1038/s41893-020-0521-xhttp://dx.doi.org/10.1038/s41893-020-0521-x]
MacDonald A J and Mordecai E A. 2020. Correction for MacDonald and Mordecai, Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proceedings of the National Academy of Sciences of the United States of America, 117(33): 20335-20335 [DOI: 10.1073/pnas.2014828117http://dx.doi.org/10.1073/pnas.2014828117]
Maggiori E, Tarabalka Y, Charpiat G and Alliez P. 2017. Convolutional neural networks for large-scale remote-sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(2): 645-657 [DOI: 10.1109/tgrs.2016.2612821http://dx.doi.org/10.1109/tgrs.2016.2612821]
Mueller N, Lewis A, Roberts D, Ring S, Melrose R, Sixsmith J, Lymburner L, McIntyre A, Tan P, Curnow S and Ip A. 2016. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment, 174: 341-352 [DOI: 10.1016/j.rse.2015.11.003http://dx.doi.org/10.1016/j.rse.2015.11.003]
Murray N J, Phinn S R, DeWitt M, Ferrari R, Johnston R, Lyons M B, Clinton N, Thau D and Fuller R A. 2019. The global distribution and trajectory of tidal flats. Nature, 565(7738): 222-225 [DOI: 10.1038/s41586-018-0805-8http://dx.doi.org/10.1038/s41586-018-0805-8]
Mutanga O and Kumar L. 2019. Google earth engine applications. Remote Sensing, 11(5): 591 [DOI: 10.3390/rs11050591http://dx.doi.org/10.3390/rs11050591]
Ordway E M, Naylor R L, Nkongho R N and Lambin E F. 2019. Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills. Nature Communications, 10: 114 [DOI: 10.1038/s41467-018-07915-2http://dx.doi.org/10.1038/s41467-018-07915-2]
Pekel J F, Cottam A, Gorelick N and Belward A S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633): 418-422 [DOI: 10.1038/nature20584http://dx.doi.org/10.1038/nature20584]
Phan T N, Kuch V and Lehnert L W. 2020. Land cover classification using google earth engine and random forest classifier—the role of image composition. Remote Sensing, 12(15): 2411 [DOI: 10.3390/rs12152411http://dx.doi.org/10.3390/rs12152411]
Richards D R and Belcher R N. 2019. Global changes in urban vegetation cover. Remote Sensing, 12(1): 23 [DOI: 10.3390/rs12010023http://dx.doi.org/10.3390/rs12010023]
Tamiminia H, Salehi B, Mahdianpari M, Quackenbush L, Adeli S and Brisco B. 2020. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164: 152-170 [DOI: 10.1016/j.isprsjprs.2020.04.001http://dx.doi.org/10.1016/j.isprsjprs.2020.04.001]
Tian J Y, Wang L, Li X J, Gong H L, Shi C, Zhong R F and Liu X M. 2017. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. International Journal of Applied Earth Observation and Geoinformation, 61: 22-31 [DOI: 10.1016/j.jag.2017.05.002http://dx.doi.org/10.1016/j.jag.2017.05.002]
Tian J Y, Wang L, Yin D M, Li X J, Diao C Y, Gong H L, Shi C, Menenti M, Ge Y, Nie S, Ou Y, Song X N and Liu X M. 2020. Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion. Remote Sensing of Environment, 242: 111745 [DOI: 10.1016/j.rse.2020.111745http://dx.doi.org/10.1016/j.rse.2020.111745]
Wang L, Diao C Y, Xian G, Yin D M, Lu Y, Zou S Y and Erickson T A. 2020a. A summary of the special issue on remote sensing of land change science with Google earth engine. Remote Sensing of Environment, 248: 112002 [DOI: 10.1016/j.rse.2020.112002http://dx.doi.org/10.1016/j.rse.2020.112002]
Wang L, Xu M, Liu Y, Liu H X, Beck R, Reif M, Emery E, Young J and Wu Q S. 2020b. Mapping freshwater chlorophyll-a concentrations at a regional scale integrating multi-sensor satellite observations with Google earth engine. Remote Sensing, 12(20): 3278 [DOI: 10.3390/rs12203278http://dx.doi.org/10.3390/rs12203278]
Wang L Z, Yan J N and Yan M. 2019. Cloud Computing in Remote Sensing. Boca Raton: Chapman and Hall/CRC [DOI: 10.1201/9780429488764http://dx.doi.org/10.1201/9780429488764]
Weiss D J, Nelson A, Gibson H S, Temperley W, Peedell S, Lieber A, Hancher M, Poyart E, Belchior S, Fullman N, Mappin B, Dalrymple U, Rozier J, Lucas T C D, Howes R E, Tusting L S, Kang S Y, Cameron E, Bisanzio D, Battle K E, Bhatt S and Gething P W. 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature, 553(7688): 333-336 [DOI: 10.1038/nature25181http://dx.doi.org/10.1038/nature25181]
Wu B F, Gao F, He G J, Zhang N and Zeng H W. 2016. Big data on global changes: Data sharing platform and recognition. Journal of Remote Sensing, 20(6): 1479-1484
吴炳方, 高峰, 何国金, 张宁, 曾红伟. 2016. 全球变化大数据的科学认知与云共享平台. 遥感学报, 20(6): 1479-1484 [DOI: 10.11834/jrs.20166365http://dx.doi.org/10.11834/jrs.20166365]
Wu Q S. 2020. Geemap: A Python package for interactive mapping with Google Earth Engine. Journal of Open Source Software, 5(51): 2305 [DOI: 10.21105/joss.02305http://dx.doi.org/10.21105/joss.02305]
Wulder M A and Coops N C. 2014. Satellites: Make Earth observations open access. Nature, 513(7516): 30-31 [DOI: 10.1038/513030ahttp://dx.doi.org/10.1038/513030a]
Xiong J, Thenkabail P S, Tilton J C, Gumma M K, Teluguntla P, Oliphant A, Congalton R G, Yadav K and Gorelick N. 2017. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using sentinel-2 and landsat-8 data on Google earth engine. Remote Sensing, 9(10): 1065 [DOI: 10.3390/rs9101065http://dx.doi.org/10.3390/rs9101065]
Yin D M, Cao X, Chen X H, Shao Y J and Chen J. 2013. Comparison of automatic thresholding methods for snow-cover mapping using Landsat TM imagery. International Journal of Remote Sensing, 34(19): 6529-6538 [DOI: 10.1080/01431161.2013.803631http://dx.doi.org/10.1080/01431161.2013.803631]
Zhao Z M, Gao L R, Chen D, Yue A Z, Chen J B, Liu D S, Yang J and Meng Y. 2019. Development of satellite remote sensing and image processing platform. Journal of Image and Graphics, 24(12): 2098-2110
赵忠明, 高连如, 陈东, 岳安志, 陈静波, 刘东升, 杨健, 孟瑜. 2019. 卫星遥感及图像处理平台发展. 中国图象图形学报, 24(12): 2098-2110 [DOI: 10.11834/jig.190450http://dx.doi.org/10.11834/jig.190450]
Zhou Y and Dong J W. 2019. Review on monitoring open surface water body using remote sensing. Journal of Geo-information Science, 21(11): 1768-1778
周岩, 董金玮. 2019. 陆表水体遥感监测研究进展. 地球信息科学学报, 21(11): 1768-1778 [DOI: 10.12082/dqxxkx.2019.190518http://dx.doi.org/10.12082/dqxxkx.2019.190518]
相关作者
相关机构