Sentinel-3 SLSTR数据的组分温度反演
Component temperature inversion algorithm based on Sentinel-3 SLSTR data
- 2021年25卷第8期 页码:1671-1682
纸质出版日期: 2021-08-07
DOI: 10.11834/jrs.20211319
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-07 ,
扫 描 看 全 文
康童健,郭明珠,曹彪,任华忠,范闻捷.2021.Sentinel-3 SLSTR数据的组分温度反演.遥感学报,25(8): 1671-1682
Kang T J,Guo M Z,Cao B,Ren H Z and Fan W J. 2021. Component temperature inversion algorithm based on Sentinel-3 SLSTR data. National Remote Sensing Bulletin, 25(8):1671-1682
陆表温度是全球气候观测系统的基本变量。由于地表目标多数为具有三维结构、组成成分复杂、温度分布不均一的混合像元,因此相较于平均温度,组分温度具有更明确的物理意义和应用价值,对地—气相互作用过程和水分循环的定量分析研究具有重要意义。本研究针对Sentinel-3 SLSTR数据,基于CBT-P模型和CE-P模型构建了植被—土壤组分温度反演框架,并分析了劈窗算法和LAI对反演误差的影响。使用小汤山、漯河、塞罕坝3地实测数据进行结果验证,结果表明,5个验证点的植被组分温度反演结果的绝对偏差在0.1—1.6 K之间,平均绝对偏差为1.1 K,土壤组分温度反演结果的绝对偏差在0.5—1.4 K之间,平均绝对偏差为0.8 K,在中纬度的稀疏连续植被和垄行植被冠层中取得了较高的精度,初步证明了本研究提出的Sentinel-3 SLSTR双通道双角度地表组分温度反演算法的可行性。
Land surface temperature is the basic variable of the global climate observation system. Since most of the surface targets are mixed pixels with three-dimensional structure
complex composition
and uneven temperature distribution
compared with the average temperature
the component temperature has a clearer physical meaning and application value which is of great significance for the earth-atmosphere interaction process and quantitative analysis of water cycle. Vegetation and soil are two ground objects with completely different thermal properties in the vegetation-soil system. Obtaining accurate vegetation/soil component temperature is considered a prerequisite for improving the surface energy balance model. To develop component temperature inversion technology
this study proposes a new component temperature inversion algorithm based on Sentinel-3 SLSTR data.
Based on the CBT-P model and the CE-P model
this study constructed a vegetation-soil component temperature inversion framework
and analyzed the impact of the split window algorithm and LAI on the inversion error. 946 clear sky atmospheric profiles were selected and the split window algorithm was used to obtain the surface brightness temperature. Then
LAI retrieved from the VNIR bands is used together with the measured component emissivity to be presented into the CE-P model to calculate the emissivity matrix. Finally
build an inversion framework based on the CBT-P model
and input the surface radiant brightness temperature and emissivity matrix to invert the component temperature.
The results are verified using the measured data from Xiaotangshan
Luohe and Saihanba that show a high inversion accuracy can be achieved. The site vegetation types in these three places are mainly wheat and grassland
which belong to sparse vegetation and ridge crops respectively. At 5 sites
the vegetation component temperature retrieval error is between 0.1—1.6 K
and the average absolute error is 1.1 K. The soil component temperature retrieval error is between 0.5—1.4 K
and the average absolute error is 0.8 K. The single-factor error analysis results show that when the CWV is low
the split-window algorithm proposed in this study can bring about 1 K error to the vegetation component temperature inversion and bring no higher than 2.5 K error to the soil component temperature inversion which has a highly reliable inversion result. However
the error increases significantly in areas with high CWV
and the scope of application is limited. In the LAI single factor error analysis
when the LAI is large
the LAI error has a greater impact on the soil component temperature. When the LAI is greater than 4
20% of the LAI error will cause the soil temperature inversion error to be greater than 3 K; when the LAI is small
the LAI error has a greater impact on the vegetation temperature. When the LAI is less than 1
the vegetation temperature retrieval error caused by LAI is close to 1 K.
The result proves the feasibility of the Sentinel-3 SLSTR dual-channel dual-angle land surface component temperature inversion algorithm proposed in this study in the typical sparse vegetation and the row crops. However
this algorithm also has some shortcomings. The framework still has significant defects in areas with high CWV
and it still needs further verification in dense and continuous vegetation areas. In addition
this algorithm is based on the assumption of binary temperature and cannot handle the situation where the surface brightness temperature of the sensor 0° image is less than the 55° image
which is not uncommon in the actual inversion process. The component temperature inversion framework proposed in this study has the potential for integrated retrieval of atmospheric parameters and surface component temperature
which is worthy of further improvement.
遥感植被冠层组分温度劈窗算法CE-P模型CBT-P模型Sentinet-3 SLSTR
remote sensingvegetation canopycomponent temperaturesplit-window algorithmCE-P ModelCBT-P ModelSentinel-3 SLSTR
Bian Z, Li H, Gottsche F M, Li R, Du Y, Ren H, Cao B, Xiao Q and Liu Q. 2020. Retrieving Soil and Vegetation Temperatures From Dual-Angle and Multipixel Satellite Observations. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 13, 5536-5549. https://doi.org/10.1109/JSTARS.2020.3024190https://doi.org/10.1109/JSTARS.2020.3024190
Bian Z J, Xiao Q, Cao B, Du Y M, Li H, Wang H S, Liu Q H and Liu Q. 2016. Retrieval of Leaf, Sunlit Soil, and Shaded Soil Component Temperatures Using Airborne Thermal Infrared Multiangle Observations. IEEE Transactions on Geoscience and Remote Sensing, 54 (8): 4660-71 [DOI: 10.1109/TGRS.2016.2547961http://dx.doi.org/10.1109/TGRS.2016.2547961]
Cao B, Liu Q, Du Y, Roujean J L, Gastellu-Etchegorry J P, Trigo I F, Zhan W, Yu Y, Cheng J, Jacob F, Lagouarde J P, Bian Z, Li H, Hu T and Xiao Q. 2019. A review of earth surface thermal radiation directionality observing and modeling: Historical development, current status and perspectives. Remote Sens. Environ. 232, 111304. https://doi.org/10.1016/j.rse.2019.111304https://doi.org/10.1016/j.rse.2019.111304
Cao B, Guo M Z, Fan W J, Xu X R, Peng J J, Ren H Z, Du Y M, Li H, Bian Z J and Hu T. 2018. A New Directional Canopy Emissivity Model Based on Spectral Invariants. IEEE Transactions on Geoscience and Remote Sensing, 56 (12): 6911-6926 [DOI: 10.1109/TGRS.2018.2845678http://dx.doi.org/10.1109/TGRS.2018.2845678]
Chen L F, Zhuang J L and Xu X R. 1999. Correlation of Information Between Channels in Thermal Infrared Remote Sensing and Its Influence on Land Surface Temperature Retrieval. Chinese Science Bulletin, 1999, 44(019):2122
陈良富, 庄家礼, 徐希孺. 1999. 热红外遥感中通道间信息相关性及其对陆面温度反演的影响. 科学通报, 1999, 44(019):2122 [DOI: 10.1360/csb1999-44-19-2122http://dx.doi.org/10.1360/csb1999-44-19-2122]
Coppo P, Ricciarelli B, Brandani F, Delderfield J, Ferlet M, Mutlow C, Munro G, Nightingale T, Smith D, and Bianchi S. 2010. SLSTR: A High Accuracy Dual Scan Temperature Radiometer for Sea and Land Surface Monitoring from Space. Journal of Modern Optics 57 (18): 1815-30 [DOI: 10.1080/09500340.2010.503010http://dx.doi.org/10.1080/09500340.2010.503010]
Djepa V, Menenti M and Vaughan R. 2002. Relating Satellite Multiangular Thermal Infrared Observations to Soil and Foliage Temperature. Advances in Space Research, 30 (11): 2529-2533 [DOI: 10.1016/S0273-1177(02)80330-1http://dx.doi.org/10.1016/S0273-1177(02)80330-1]
Donlon C, Berruti B, Buongiorno A, Ferreira M H, Féménias P, Frerick J, Goryl P, Klein U, Laur H and Mavrocordatos C. 2012. The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission. Remote Sensing of Environment, 120 (120): 37-57 [DOI: 10.1016/J.RSE.2011.07.024http://dx.doi.org/10.1016/J.RSE.2011.07.024]
Duan S B, Ru C, Li Z L, Wang M M, Xu H Q, Li H, Wu P H, Zhan W F, Zhou J, Zhao W, Ren H Z, Wu H, Tang B H, Zhang X, Shang Guo F and Qin Z H. 2021. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data. National Remote Sensing Bulletin, 25(8): 1591-1617
段四波, 茹晨, 李召良, 王猛猛, 徐涵秋, 历华, 吴鹏海, 占文凤, 周纪, 赵伟, 任华忠, 吴骅, 唐伯惠, 张霞, 尚国琲, 覃志豪. 2021. Landsat卫星热红外数据地表温度遥感反演研究进展. 遥感学报, 25(8): 1591-1617 [DOI: 10.11834/jrs.20211296http://dx.doi.org/10.11834/jrs.20211296]
Fan W J, Liu Y, Xu X R, Chen G X and Zhang B T. 2014. A New FAPAR Analytical Model Based on the Law of Energy Conservation: A Case Study in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (9): 3945-3955 [DOI: 10.1109/JSTARS.2014.2325673http://dx.doi.org/10.1109/JSTARS.2014.2325673]
Fan W J, Xu X R, Wang F Q and Liu Q. 2004. Retrieval of Plant and Soil Temperature by AMTIS Data. Journal of Remote Sensing, 2004(04):295-299
范闻捷, 徐希孺, 王奋勤, 刘强. 2004. 利用AMTIS数据反演植被和土壤温度. 遥感学报, 2004(04):295-299 [DOI: 10.3321/j.issn:1007-4619.2004.04.002http://dx.doi.org/10.3321/j.issn:1007-4619.2004.04.002]
Francois C, Ottle C and Prevot L. 1997. Analytical Parameterization of Canopy Directional Emissivity and Directional Radiance in the Thermal Infrared. Application on the Retrieval of Soil and Foliage Temperatures Using Two Directional Measurements. International Journal of Remote Sensing, 18 (12): 2587-2621 [DOI: 10.1080/014311697217495http://dx.doi.org/10.1080/014311697217495]
Gan F P, Chen W T, Zhang X J, Yan B K, Liu S W and Yang S M. 2006. The progress in the study of thermal infrared remotesensing for retrieving land surface temperature. Remote Sensing for Land and Resources, 000(001):6-11
甘甫平, 陈伟涛, 张绪教, 闫柏琨, 刘圣伟, 杨苏明. 2006. 热红外遥感反演陆地表面温度研究进展. 国土资源遥感, 000(001), 6-11 [DOI: 10.6046/gtzyyg.2006.01.02http://dx.doi.org/10.6046/gtzyyg.2006.01.02]
Guo M Z, Cao B, Fan W J, Ren H Z, Cui Y K, Du Y M and Liu Q H. 2019. Scattering Effect Contributions to the Directional Canopy Emissivity and Brightness Temperature Based on CE-P and CBT-P Models. IEEE Geoscience and Remote Sensing Letters, 16 (6): 957-61 [DOI: 10.1109/LGRS.2018.2886606http://dx.doi.org/10.1109/LGRS.2018.2886606]
Jia L, Li Z L, Menenti M, Su Z, Verhoef W and Wan Z. 2003. A practical algorithm to infer soil and foliage component temperatures from bi-angular ATSR-2 data. International Journal of Remote Sensing, 24(23):4739-4760. [DOI: 10.1080/0143116031000101576http://dx.doi.org/10.1080/0143116031000101576]
Li X W and Wang J D. 1999. Definition of emissivity of non-isothermal pixels on the surface. Chinese Science Bulletin, 1999(15):46-51
李小文, 王锦地. 1999. 地表非同温象元发射率的定义问题. 科学通报, 1999(15):46-51 [DOI: 10.1360/csb1999-44-15-1612http://dx.doi.org/10.1360/csb1999-44-15-1612]
Li Z L, Stoll M P, Zhang R H, Jia L, Su Z B. 2000. Research on Decomposing Soil and Vegetation Temperature Using ATSR Data. SCIENTIA SINICA Technologica, 30(0z1):27-38 (李召良, M.P.Stoll, 张仁华,贾立,苏中波. 2000. 利用ATSR数据分解土壤和植被温度的研究. 中国科学:技术科学, 30(0z1):27-38) [DOI: 10.3321/j.issn:1006-9275.2000.z1.005http://dx.doi.org/10.3321/j.issn:1006-9275.2000.z1.005]
Li Z L, Tang B H, Wu H, Ren H Z, Yan G J, Wan Z M, Trigo I F and Sobrino J A. 2013. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sensing of Environment, 131: 14-37 [DOI: 10.1016/J.RSE.2012.12.008http://dx.doi.org/10.1016/J.RSE.2012.12.008]
Liu M, Tang R L, Li Z L, Gao M F and Yao Y J. 2021. Progress of data-driven remotely sensed retrieval methods and products on land surface evapotranspiration. National Remote Sensing Bulletin, 25(8): 1517-1537
刘萌, 唐荣林, 李召良, 高懋芳, 姚云军. 2021. 数据驱动的蒸散发遥感反演方法及产品研究进展. 遥感学报, 25(8): 1517-1537 [DOI:10.11834/jrs.20211310http://dx.doi.org/10.11834/jrs.20211310]
Liu Q, Liu Q H, Xiao Q and Tian G L. 2002. Research on Geometric Correction Method of Airborne Multi-angle Front Image. Scientia Sinica(Terrae), 32(004), 299-306
刘强, 柳钦火, 肖青, 田国良. 2002. 机载多角度遥感图像的几何校正方法研究. 中国科学 地球科学:中国科学, 32(004), 299-306 [DOI: 10.3321/j.issn:1006-9267.2002.04.005http://dx.doi.org/10.3321/j.issn:1006-9267.2002.04.005]
Liu Q, Yan C Y, Xiao Q, Yan G J and Fang L. 2012. Separating vegetation and soil temperature using airborne multiangular remote sensing image data. International Journal of Applied Earth Observation and Geoinformation, 17(1):66-75 [DOI:10.1016/j.jag.2011.10.003http://dx.doi.org/10.1016/j.jag.2011.10.003]
Liu X, Tang B-H, Li Z-L, Zhou C, Wu W and Rasmussen M O. 2020. An improved method for separating soil and vegetation component temperatures based on diurnal temperature cycle model and spatial correlation. Remote Sensing of Environment, 248, 111979
Ma B, Li J C, Fan W J, Ren H Z, Xu X R, Cui Y K and Peng J J. 2018. Application of an LAI Inversion Algorithm Based on the Unified Model of Canopy Bidirectional Reflectance Distribution Function to the Heihe River Basin. Journal of Geophysical Research, 123 (18) [DOI: 10.1029/2018JD028415]
Mõttus M. 2007. Photon recollision probability in discrete crown canopies. Remote Sensing of Environment, 2007, 110(2):176-185 [DOI: 10.1016/J.RSE.2007.02.015http://dx.doi.org/10.1016/J.RSE.2007.02.015]
Nie J, Ren H Z, Zheng Y T, Ghent D and Tansey K. 2021, Land surface temperature and emissivity retrieval from nighttime middle-infrared and thermal-infrared Sentinel-3 images, IEEE Geoscience and Remote Sensing Letters, 18(5), 915-919, doi:10.1109/lgrs.2020.2986326 [DOI:10.1109/LGRS.2020.2986326http://dx.doi.org/10.1109/LGRS.2020.2986326]
Rautiainen M and Stenberg P. 2005. Application of Photon Recollision Probability in Coniferous Canopy Reflectance Simulations. Remote Sensing of Environment, 96 (1): 98-107 [DOI: 10.1016/J.RSE.2005.02.009http://dx.doi.org/10.1016/J.RSE.2005.02.009]
Song X N and Zhao Y S. 2004. Study on Vegetation-Temperature-Water Synthesis Index Using MODIS Satellite Data. Geography and Geo-Information Science, 20(2):13-17
宋小宁, 赵英时. 应用MODIS卫星数据提取植被-温度-水分综合指数的研究. 地理与地理信息科学, 2004, 20(2):13-17 [DOI: 10.3969/j.issn.1672-0504.2004.02.003http://dx.doi.org/10.3969/j.issn.1672-0504.2004.02.003]
Stenberg P. 2007. Simple Analytical Formula for Calculating Average Photon Recollision Probability in Vegetation Canopies. Remote Sensing of Environment, 109 (2): 221-24 [DOI: 10.1016/J.RSE.2006.12.014http://dx.doi.org/10.1016/J.RSE.2006.12.014]
Stenberg P, Lukeš P, Rautiainen M and Manninen T. 2013. A New Approach for Simulating Forest Albedo Based on Spectral Invariants. Remote Sensing of Environment, 137: 12-16 [DOI: 10.1016/J.RSE.2013.05.030http://dx.doi.org/10.1016/J.RSE.2013.05.030]
Timmermans J, Verhoef W, Tol C and Su Z B. 2009. Retrieval of Canopy Component Temperatures through Bayesian Inversion of Directional Thermal Measurements. Hydrology and Earth System Sciences 13 (7): 1249-60 [DOI: 10.5194/HESS-13-1249-2009http://dx.doi.org/10.5194/HESS-13-1249-2009]
Wan Z M. 2013. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140: 36-45 [DOI: 10.1016/j.rse.2013.08.027http://dx.doi.org/10.1016/j.rse.2013.08.027]
Xu X R, Fan W J and Chen L F. 2001. The Matrix Expression of Heat Radiation Characteristics of Open Complex Targets. SCIENTIA SINICA Terrae, 31(012):1046-1051
徐希孺, 范闻捷, 陈良富. 2001. 开放的复杂目标热辐射特性的矩阵表达式. 中国科学:地球科学, 2001, 31(012):1046-1051 [DOI: 10.3321/j.issn:1006-9267.2001.12.011http://dx.doi.org/10.3321/j.issn:1006-9267.2001.12.011]
Xu X R, Fan W J, Li J C, Zhao P and Chen G X. 2017. A Unified Model of Bidirectional Reflectance Distribution Function for the Vegetation Canopy. Science China-Earth Sciences, 60 (3): 463-77 [DOI: 10.1007/S11430-016-5082-6http://dx.doi.org/10.1007/S11430-016-5082-6]
Yang J X and Jia L. 2014. Retrieval of soil and vegetation component temperatures based on dual-anglular AATSR remote sensing data. Remote Sensing Technology and Application, 29(002), 247-257.
杨锦鑫, 贾立, 2014, 基于双角度AATSR遥感数据的组分温度反演. 遥感技术与应用, 29(002):247-257 [DOI: 10.11873j.issn.1004-0323.2014.2.0247http://dx.doi.org/10.11873j.issn.1004-0323.2014.2.0247]
Yang Y K, Li H, Sun L, Du Y M, Cao B, Liu Q H and Zhu J S. 2019. Land surface temperature and emissivity separation from GF-5 visual and infrared multispectral imager data. Journal of Remote Sensing, 23(6): 1132-1146
杨以坤, 历华, 孙林, 杜永明, 曹彪, 柳钦火, 朱金山. 2019. 高分五号全谱段光谱成像仪地表温度与发射率反演. 遥感学报, 23(6): 1132-1146 [DOI: 10.11834/jrs.20198053http://dx.doi.org/10.11834/jrs.20198053]
Zhan W F, Chen Y H, Zhou J and Li J. 2011. An algorithm for separating soil and vegetation temperatures with sensors featuring a single thermal channel. IEEE Transactions on Geoscience and Remote Sensing, 49(5): 1796-1809.[DOI: 10.1109/TGRS.2010.2082555http://dx.doi.org/10.1109/TGRS.2010.2082555]
Zhan W F, Chen Y H, Zhou J, Wang J F, Liu W Y, Voogt J, Zhu X L, Quan J L and Li J. 2013. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sensing of Environment, 131: 119-139.[DOI: 10.1016/J.RSE.2012.12.014http://dx.doi.org/10.1016/J.RSE.2012.12.014]
Zhang S T, Duan S B, Li Z L, Huang C, Wu H, Han X J, Leng P and Gao M F. 2019. Improvement of Split-Window Algorithm for Land Surface Temperature Retrieval from Sentinel-3A SLSTR Data Over Barren Surfaces Using ASTER GED Product. Remote Sensing 11 (24): 3025 [DOI: 10.3390/RS11243025http://dx.doi.org/10.3390/RS11243025]
Zhao E Y, Qian Y G, Wang N, Ma L L and Tang L L. 2014. Retrieval of night-time land surface temperature from two mid-infrared channels data. Journal of Infrared and Millimeter Waves, 33(3):303-310
赵恩宇, 钱永刚, 王宁, 马灵玲, 唐伶俐. 2014. 中红外双通道夜间数据地表温度反演方法. 红外与毫米波学报, 2014, 33(3):303-310 [DOI: 10.3724/SP.J.1010.2014.00303http://dx.doi.org/10.3724/SP.J.1010.2014.00303]
Zhao W, Li A, Bian J H, Jin H A and Zhang Z J. 2014. A synergetic algorithm for mid-morning land surface soil and vegetation temperatures estimation using MSG-SEVIRI products and TERRA-MODIS products. Remote Sensing, 6(3): 2213-2238 [DOI: 10.3390/RS6032213http://dx.doi.org/10.3390/RS6032213]
Zheng Y T, Ren H Z, Guo J X, Ghent D, Tansey K, Hu X B, Nie J, and Chen S S. 2019. Land Surface Temperature Retrieval from Sentinel-3A Sea and Land Surface Temperature Radiometer, Using a Split-Window Algorithm. Remote Sensing, 11 (6): 650 [DOI: 10.3390/RS11060650http://dx.doi.org/10.3390/RS11060650]
Zhu J S, Ren H Z, Ye X, Zeng H, Nie J, Jiang C C and Guo J X. 2021. Ground validation of land surface temperature and surface emissivity from thermal infrared remote sensing data:A review. National Remote Sensing Bulletin, 25(8): 1538-1566
朱金顺, 任华忠, 叶昕, 曾晖, 聂婧, 蒋晨琛, 郭金鑫. 2021. 热红外遥感地表温度与发射率地面验证进展. 遥感学报, 25(8): 1538-1566 [DOI: 10.11834/jrs.20211299http://dx.doi.org/10.11834/jrs.20211299]
相关作者
相关机构