全球遥感实时监测与定点更新云平台设计与实现
Design and implementation of global remote sensing real-time monitoring and fixed-point update cloud platform
- 2022年26卷第2期 页码:324-334
纸质出版日期: 2022-02-07
DOI: 10.11834/jrs.20211326
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-02-07 ,
扫 描 看 全 文
钟若飞,李清扬,周春平,李小娟,杨灿坤,张思,赵可,杜雨.2022.全球遥感实时监测与定点更新云平台设计与实现.遥感学报,26(2): 324-334
Zhong R F,Li Q Y,Zhou C P,Li X J,Yang C K,Zhang S,Zhao K and Du Y. 2022. Design and implementation of global remote sensing real-time monitoring and fixed-point update cloud platform. National Remote Sensing Bulletin, 26(2):324-334
卫星遥感是人类观测地球的主要途径,随着遥感技术商业化,全球商业遥感卫星数量快速增长,涌现出许多高分辨率遥感卫星和全球遥感星座,使用卫星对地球进行更全面、更精确、更实时的监测成为可能,但目前卫星遥感数据获取存在重复、盲目、不及时,与用户需求脱节、大量数据闲置等一系列问题,缺乏一个有效的平台和应用模式,搭起卫星数据提供商和用户之间的桥梁。本文基于只需对变化信息进行定向监测和更新即可实现对地表实时监测这一前提出发,提出了一套卫星遥感和互联网结合的地球实时变化监测在线服务云平台,平台通过以用户感兴趣区域的自动变化检测技术为核心,汇聚用户对地表变化信息的需求,形成更高清的卫星拍摄条件,按轨道预测模型优先向最邻近拍摄点的卫星数据服务商快速推送卫星拍摄指令,实现定点定向数据更新,以保证用户随时可以查看感兴趣区域的地表最新影像。其核心思想主要是基于互联网在线抓取技术、云平台的自动变化检测技术与卫星在轨处理实时感知技术来分析、挖掘、提取地理实体变化情报,通过实时推送卫星拍摄指令来实现基于变化信息的定向、定点地理实体数据的采集和更新,保持对感兴趣区域的实时监测服务。本文阐述了云平台建设过程中的实现方法,构建了云平台的基本原型并对其进行验证,讨论了云平台中新的总体架构设计思想和应用领域等问题,展示了该平台对目前商业遥感服务中存在的被动性、单一性、延迟性、重复性等问题的解决方案,提供了一种以传统数据查询订购的云平台向基于变化信息实时监测与定点更新服务云平台跨越的设计思路。
Satellite remote sensing is the main way for humans to observe the Earth. The commercialization of remote sensing technology has facilitated the rapid growth of the number of global commercial remote sensing satellites. Real-time monitoring is possible. However
the current satellite remote sensing data acquisition has various problems
such as duplication
blindness
untimely
disconnection from user needs
and a large amount of data idle. An effective platform and application model is also lacking to build a bridge between satellite data providers and users. Real-time monitoring of the Earth’s surface can be realized by only directional monitoring and updating of change information. Thus
this study proposes a set of online service cloud platforms for real-time earth change monitoring by combining satellite remote sensing and the Internet. The automatic change detection is the core
which gathers user needs for surface change information to form more high-definition satellite shooting conditions. According to the orbit prediction model
it will quickly push satellite shooting instructions to the nearest satellite data service provider to achieve fixed-point directional data update and ensure that users can view the latest images of the surface of the area of interest at any time. Its core ideas are mainly based on Internet online capture technology
cloud platform automatic change detection technology
and satellite on-orbit real-time processing technology. It aims to analyze
mine
and extract geographic entity change information
realize the collection and update of directional and fixed-point geographic entity data based on change information by pushing satellite shooting instructions in real time
and maintain real-time monitoring services for areas of interest. This study describes the implementation methods in the process of cloud platform construction
builds and validates the basic prototype of the cloud platform
and discusses the new overall architecture design ideas and application areas in the cloud platform. Results show that the platform is useful for the current business The solution to the problems of passivity
singularity
delay
and repetition in remote sensing services provides a design idea from the current cloud platform based on traditional data query and ordering to the fixed-point update service cloud platform based on changing information.
遥感星地协同变化检测星上处理云平台定点更新
remote sensingsatellite-earth integrationchange detectionon-board processingcloud platformfixed-point update
Diao N H, Liu J Q, Sun C R and Meng P. 2012. Satellite orbit calculation based on SGP4 model. Remote Sensing Information, 27(4): 64-70
刁宁辉, 刘建强, 孙从容, 孟鹏. 2012. 基于SGP4模型的卫星轨道计算. 遥感信息, 27(4): 64-70 [DOI: 10.3969/j.issn.1000-3177.2012.04.011http://dx.doi.org/10.3969/j.issn.1000-3177.2012.04.011]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Li D R. 2016. The “Internet Plus” space-based information services. Journal of Remote Sensing, 20(5): 708-715
李德仁. 2016. 论“互联网+”天基信息服务. 遥感学报, 20(5): 708-715
Li D R, Wang M, Shen X and Dong Z P. 2017. From earth observation satellite to earth observation brain. Geomatics and Information Science of Wuhan University, 42(2): 143-149
李德仁, 王密, 沈欣, 董志鹏. 2017. 从对地观测卫星到对地观测脑. 武汉大学学报(信息科学版), 42(2): 143-149 [DOI: 10.13203/j.whugis20160526http://dx.doi.org/10.13203/j.whugis20160526]
Li Q Y, Zhong R F and Wang Y. 2019. A method for the destriping of an orbita hyperspectral image with adaptive moment matching and unidirectional total variation. Remote Sensing, 11(18): 2098 [DOI: 10.3390/rs11182098http://dx.doi.org/10.3390/rs11182098]
Liu D H. 2020. PIE 6.0 remote sensing product system and application services. Satellite Application, (5): 15-21
刘东升. 2020. PIE 6.0遥感产品体系及应用服务. 卫星应用, (5): 15-21 [DOI: 10.3969/j.issn.1674-9030.2020.05.007]
Liu H Q. 2021. Remote Sensing Image “One Map” Production Method based on Multi-Temporal Cloud Reconstruction. Beijing: Capital Normal University
刘慧倩. 2021. 基于多时相云重构的遥感影像“一张图”制作方法. 北京: 首都师范大学
Peng X L, Zhong R F, Li Z and Li Q Y. 2021. Optical remote sensing image change detection based on attention mechanism and image difference. IEEE Transactions on Geoscience and Remote Sensing, 59(9): 7296-7307 [DOI: 10.1109/TGRS.2020.3033009http://dx.doi.org/10.1109/TGRS.2020.3033009]
Ren F H and Wang J N. 2012. Turning remote sensing to cloud services: technical research and experiment. Journal of Remote Sensing, 16(6): 1331-1346
任伏虎, 王晋年. 2012. 遥感云服务平台技术研究与实验. 遥感学报, 16(6): 1331-1346 [DOI: 10.11834/jrs.20121180http://dx.doi.org/10.11834/jrs.20121180]
Wu S Y, Zhong R F, Li Q Y, Qiao K and Zhu Q. 2021. An interband registration method for hyperspectral images based on adaptive iterative clustering. Remote Sensing, 13(8): 1491 [DOI: 10.3390/rs13081491http://dx.doi.org/10.3390/rs13081491]
Xu P, Li Q Y, Zhang B, Wu F, Zhao K, Du X, Yang C K and Zhong R F. 2021. On-board real-time ship detection in HISEA-1 SAR images based on CFAR and lightweight deep learning. Remote Sensing, 13(10): 1995 [DOI: 10.3390/rs13101995http://dx.doi.org/10.3390/rs13101995]
Zhang G, He D W, Guan Q, Li M T, Ding X K, Xiao J, Zhong X, Yu L H, Zheng Y Z, Wang T Y, Li X, Li N, Wang M F and Chen Z W. 2021. Remote sensing journalism in the omnimedia era. Geomatics and Information Science of Wuhan University, 46(4): 469-478
张过, 贺大为, 关晴, 李梦婷, 丁新珂, 肖珺, 钟兴, 于林海, 郑玉芝, 汪韬阳, 李雪, 李娜, 王梦飞, 陈振炜. 2021. 全媒体时代遥感新闻学. 武汉大学学报·信息科学版, 46(4): 469-478 [DOI: 10.13203/j.whugis20200697http://dx.doi.org/10.13203/j.whugis20200697]
相关作者
相关机构