植被物候参数遥感提取与验证方法研究进展
Recent advances in remote sensing of vegetation phenology: Retrieval algorithm and validation strategy
- 2022年26卷第3期 页码:431-455
纸质出版日期: 2022-03-07
DOI: 10.11834/jrs.20211601
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-03-07 ,
扫 描 看 全 文
王敏钰,罗毅,张正阳,谢巧云,吴小丹,马轩龙.2022.植被物候参数遥感提取与验证方法研究进展.遥感学报,26(3): 431-455
Wang M Y,Luo Y,Zhang Z Y,Xie Q Y,Wu X D and Ma X L. 2022. Recent advances in remote sensing of vegetation phenology: Retrieval algorithm and validation strategy. National Remote Sensing Bulletin, 26(3):431-455
在气候变化背景下,植被物候作为生态系统对环境变化响应的直接体现方式,日益受到学界关注。获取长期、连续、多尺度的植被物候数据是物候研究的基础,而利用卫星遥感手段获取的物候参数已经成为陆地生态系统变化研究的重要指标。遥感物候参数在农业生产管理、生态系统监测、土地利用类型制图、人类健康和生态系统气候变化响应等领域发挥着重要的作用。在此背景下,有必要结合关键科学问题与重要应用领域,系统梳理近些年来遥感物候参数提取、验证和产品研发方面的进展,指出本领域目前存在的问题并对未来的发展趋势进行展望。首先,探讨了植被指数、日光诱导叶绿素荧光和植被光学厚度等传统与新兴遥感指标在物候监测方面的应用趋势。其次,分析评述了植被物候遥感方法体系中不同的时序数据预处理与物候期估算算法之间的优劣及适用性。然后,从传统物候观测、物候相机、通量观测和无人机等方面的发展,梳理出多源、多尺度验证方式的发展脉络。同时,着重从产品算法和精度方面评述了近些年国内外物候遥感产品的发展现状。最后,从数据预处理、参数提取方法和遥感数据源等不同角度对植被物候参数遥感提取结果中的不确定性和误差来源进行了系统探讨。在以上基础上,本文指出未来植被物候遥感领域的研究应重点关注:(1)从遥感数据源质量和时空一致性入手,提高不同研究结果之间的可比性;(2)发展具有更好普适性的物候参数提取算法,减少提取过程中的主观性和经验性;(3)以遥感真实性检验理论为基础,完善遥感物候地面验证方法体系;(4)积极拓展基于国产卫星的植被物候监测应用,积累国产卫星的使用经验并逐步摆脱对国外卫星数据的过度依赖。通过以上发展,最终满足实际应用中对于高分辨率、高精度、高时空一致性植被物候参数遥感产品的迫切需求。
In the context of climate change
vegetation phenology
as a direct manifestation of the ecosystem’s response to environmental changes
has attracted increasing attention from the academic community. Obtaining long-term
continuous
multi-scale vegetation phenology data is the basis of phenological research
and the phenological parameters obtained by satellite remote sensing have become an important indicator of terrestrial ecosystem change. Remote sensing phenological parameters play an important role in the fields of agricultural production management
ecosystem monitoring
land use type mapping
human health
and ecosystem climate change response. In this context
key scientific issues and application fields must be combined to systematically sort out the progress in remote sensing phenological parameter extraction
verification
and product development and to predict to future development trends. First
this article discussed the development of emerging sunlight-induced chlorophyll fluorescence and vegetation optical thickness in addition to the traditional vegetation indices in phenological monitoring. Second
this paper discusses the advantages
disadvantages
and applicability of different time series data preprocessing and phenological metrics retrieval algorithms. Then
this article sorts out the development context of multi-source and -scale verification methods from the development of traditional phenological observations
phenological cameras
flux observations
and unmanned aerial vehicles. Meanwhile
this article introduces the development status of domestic and foreign phenology remote sensing products in recent years
with emphasis on product accuracy. Finally
this article systematically discusses the propagation of errors to the retrieved phenological metrics resulting from different aspects of data preprocessing
parameter extraction methods
and remote sensing data sources. On this basis
this article points out that future research in the field of vegetation phenology remote sensing should focus on the following: (1) better comparability between different research results should be targeted by improving the quality of remote sensing data sources and spatial and temporal consistency; (2) the subjectivity in the phenological retrieval algorithms should be reduced by developing universal algorithms; (3) the complete ground validation scheme should be established by leveraging the development in theory and method of quantitative remote sensing validation field; (4) the experience of using Chinese satellite data for monitoring vegetation phenology should be accumulated by actively extending the application of different Chinese spaceborne sensors. Through the above development
the overarching aim is to meet the demand for high-quality vegetation phenology remote sensing products in various scientific and practical applications.
遥感植被物候生长季植被动态生态系统参数地面验证
remote sensingvegetation phenologygrowing seasonvegetation dynamicsecosystem parametersground validation
Ahrends H E, Etzold S, Kutsch W L, Stoeckli R, Bruegger R, Jeanneret F, Wanner H, Buchmann N and Eugster W. 2009. Tree phenology and carbon dioxide fluxes: use of digital photography for process-based interpretation at the ecosystem scale. Climate Research, 39(3): 261-274 [DOI: 10.3354/cr00811http://dx.doi.org/10.3354/cr00811]
Alemu W G and Henebry G M. 2017. Comparing passive microwave with visible-to-near-infrared phenometrics in croplands of northern Eurasia. Remote Sensing, 9(6): 613 [DOI: 10.3390/rs9060613http://dx.doi.org/10.3390/rs9060613]
Atkinson P M, Jeganathan C, Dash J and Atzberger C. 2012. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 123: 400-417 [DOI: 10.1016/j.rse.2012.04.001http://dx.doi.org/10.1016/j.rse.2012.04.001]
Badgley G, Field C B and Berry J A. 2017. Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 3(3): e1602244 [DOI: 10.1126/sciadv.1602244http://dx.doi.org/10.1126/sciadv.1602244]
Baldocchi D. 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. Global Change Biology, 20(12): 3600-3609 [DOI: 10.1111/gcb.12649http://dx.doi.org/10.1111/gcb.12649]
Beck P S A, Atzberger C, Høgda K A, Johansen B and Skidmore A K. 2006. Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sensing of Environment, 100(3): 321-334 [DOI: 10.1016/j.rse.2005.10.021http://dx.doi.org/10.1016/j.rse.2005.10.021]
Berra E F, Gaulton R and Barr S. 2017. Commercial off-the-shelf digital cameras on unmanned aerial vehicles for multitemporal monitoring of vegetation reflectance and NDVI. IEEE Transactions on Geoscience and Remote Sensing, 55(9): 4878-4886 [DOI: 10.1109/TGRS.2017.2655365http://dx.doi.org/10.1109/TGRS.2017.2655365]
Berra E F, Gaulton R and Barr S. 2019. Assessing spring phenology of a temperate woodland: a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations. Remote Sensing of Environment, 223: 229-242 [DOI: 10.1016/j.rse.2019.01.010http://dx.doi.org/10.1016/j.rse.2019.01.010]
Bhandari S, Phinn S and Gill T. 2011. Assessing viewing and illumination geometry effects on the MODIS vegetation index (MOD13Q1) time series: implications for monitoring phenology and disturbances in forest communities in Queensland, Australia. International Journal of Remote Sensing, 32(22): 7513-7538 [DOI: 10.1080/01431161.2010.524675http://dx.doi.org/10.1080/01431161.2010.524675]
Bórnez K, Richardson A D, Verger A, Descals A and Peñuelas J. 2020. Evaluation of VEGETATION and PROBA-V phenology using PhenoCam and eddy covariance data. Remote Sensing, 12(18): 3077 [DOI: 10.3390/rs12183077http://dx.doi.org/10.3390/rs12183077]
Broich M, Huete A, Paget M, Ma X L, Tulbure M, Coupe N R, Evans B, Beringer J, Devadas R, Davies K and Held A. 2015. A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications. Environmental Modelling and Software, 64: 191-204 [DOI: 10.1016/j.envsoft.2014.11.017http://dx.doi.org/10.1016/j.envsoft.2014.11.017]
Brown M E and de Beurs K M. 2008. Evaluation of multi-sensor semi-arid crop season parameters based on NDVI and rainfall. Remote Sensing of Environment, 112(5): 2261-2271 [DOI: 10.1016/j.rse.2007.10.008http://dx.doi.org/10.1016/j.rse.2007.10.008]
Brown T B, Hultine K R, Steltzer H, Denny E G, Denslow M W, Granados J, Henderson S, Moore D, Nagai S, Sanclements M, Sánchez-Azofeifa A, Sonnentag O, Tazik D and Richardson A D. 2016. Using phenocams to monitor our changing Earth: toward a global phenocam network. Frontiers in Ecology and the Environment, 14(2): 84-93 [DOI: 10.1002/fee.1222http://dx.doi.org/10.1002/fee.1222]
Cai Z Z, Jönsson P, Jin H X and Eklundh L. 2017. Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sensing, 9(12): 1271 [DOI: 10.3390/rs9121271http://dx.doi.org/10.3390/rs9121271]
Cao R Y, Chen Y, Shen M G, Chen J, Zhou J, Wang C and Yang W. 2018. A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sensing of Environment, 217: 244-257 [DOI: 10.1016/j.rse.2018.08.022http://dx.doi.org/10.1016/j.rse.2018.08.022]
Caparros-Santiago J A, Rodriguez-Galiano V and Dash J. 2021. Land surface phenology as indicator of global terrestrial ecosystem dynamics: a systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 171: 330-347 [DOI: 10.1016/j.isprsjprs.2020.11.019http://dx.doi.org/10.1016/j.isprsjprs.2020.11.019]
Chen J, Jönsson P, Tamura M, Gu Z H, Matsushita B and Eklundh L. 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote sensing of Environment, 91(3/4): 332-344 [DOI: 10.1016/j.rse.2004.03.014http://dx.doi.org/10.1016/j.rse.2004.03.014]
Chen J M, Deng F and Chen M Z. 2006. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2230-2238 [DOI: 10.1109/TGRS.2006.872089http://dx.doi.org/10.1109/TGRS.2006.872089]
Chen R, Yin G F, Liu G X, Li J and Verger A. 2020a. Evaluation and normalization of topographic effects on vegetation indices. Remote Sensing, 12(14): 2290 [DOI: 10.3390/rs12142290http://dx.doi.org/10.3390/rs12142290]
Chen X H, Wang W Q, Chen J, Zhu X L, Shen M G, Gan L Q and Cao X. 2020b. Does any phenological event defined by remote sensing deserve particular attention? An examination of spring phenology of winter wheat in Northern China. Ecological Indicators, 116: 106456 [DOI: 10.1016/j.ecolind.2020.106456http://dx.doi.org/10.1016/j.ecolind.2020.106456]
Chen X Q, Wang D W, Chen J, Wang C and Shen M G. 2018. The mixed pixel effect in land surface phenology: a simulation study. Remote Sensing of Environment, 211: 338-344 [DOI: 10.1016/j.rse.2018.04.030http://dx.doi.org/10.1016/j.rse.2018.04.030]
Chen X Q and Wang L H. 2009. Progress in remote sensing phenological research. Progress in Geography, 28(1): 33-40
陈效逑, 王林海. 2009. 遥感物候学研究进展. 地理科学进展, 28(1): 33-40 [DOI: 10.11820/dlkxjz.2009.01.005http://dx.doi.org/10.11820/dlkxjz.2009.01.005]
Chen X Q and Yu R. 2007. Spatial and temporal variations of the vegetation growing season in warm-temperate Eastern China during 1982 to 1999. Acta Geographica Sinica, 62(1): 41-51
陈效逑, 喻蓉. 2007. 1982~1999年我国东部暖温带植被生长季节的时空变化. 地理学报, 62(1): 41-51 [DOI: 10.3321/j.issn:0375-5444.2007.01.005http://dx.doi.org/10.3321/j.issn:0375-5444.2007.01.005]
Chen Y, Cao R Y, Chen J, Liu L C and Matsushita B. 2021. A practical approach to reconstruct high-quality Landsat NDVI time-series data by gap filling and the Savitzky–Golay filter. ISPRS Journal of Photogrammetry and Remote Sensing, 180: 174-190 [DOI: 10.1016/j.isprsjprs.2021.08.015http://dx.doi.org/10.1016/j.isprsjprs.2021.08.015]
Cheng Y, Vrieling A, Fava F, Meroni M, Marshall M and Gachoki S. 2020. Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sensing of Environment, 248: 112004 [DOI: 10.1016/j.rse.2020.112004http://dx.doi.org/10.1016/j.rse.2020.112004]
Cremonese E. 2009. PHENOALP: a new project on phenology in the Western Alps. EGU General Assembly
Dai J H, Wang H J and Ge Q S. 2013. Changes of spring frost risks during the flowering period of woody plants in temperate monsoon area of China over the past 50 years. Acta Geographica Sinica, 68(5): 593-601
戴君虎, 王焕炯, 葛全胜. 2013. 近50年中国温带季风区植物花期春季霜冻风险变化. 地理学报, 68(5): 593-601 [DOI: 10.11821/xb201305002http://dx.doi.org/10.11821/xb201305002]
Dannenberg M, Wang X, Yan D and Smith W. 2020. Phenological characteristics of global ecosystems based on optical, fluorescence, and microwave remote sensing. Remote Sensing, 12(4): 671 [DOI: 10.3390/rs12040671http://dx.doi.org/10.3390/rs12040671]
De Grave C, Verrelst J, Morcillo-Pallarés P, Pipia L, Rivera-Caicedo J P, Amin E, Belda S and Moreno J. 2020. Quantifying vegetation biophysical variables from the Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data sources. Remote Sensing of Environment, 251: 112101 [DOI: 10.1016/j.rse.2020.112101http://dx.doi.org/10.1016/j.rse.2020.112101]
Descals A, Verger A, Yin G F and Peñuelas J. 2020. Improved estimates of arctic land surface phenology using Sentinel-2 time series. Remote Sensing, 12(22): 3738 [DOI: 10.3390/rs12223738http://dx.doi.org/10.3390/rs12223738]
Didan K and Barreto A. 2016. Vegetation index and phenology (VIP) phenology EVI2 yearly global 0.05Deg CMG [Data set]. NASA EOSDIS Land Processes DAAC [DOI: 10.5067/MEaSUREs/VIP/VIPPHEN_EVI2.004http://dx.doi.org/10.5067/MEaSUREs/VIP/VIPPHEN_EVI2.004]
Fan D Q, Zhao X S, Zhu W Q and Zheng Z T. 2016. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data. Progress in Geography, 35(3): 304-319
范德芹, 赵学胜, 朱文泉, 郑周涛. 2016. 植物物候遥感监测精度影响因素研究综述. 地理科学进展, 35(3): 304-319 [DOI: 10.18306/dlkxjz.2016.03.005http://dx.doi.org/10.18306/dlkxjz.2016.03.005]
Fan L, Wigneron J P, Ciais P, Chave J, Brandt M, Fensholt R, Saatchi S S, Bastos A, Al-Yaari A, Hufkens K, Qin Y W, Xiao X M, Chen C, Myneni R B, Fernandez-Moran R, Mialon A, Rodriguez-Fernandez N J, Kerr Y, Tian F and Peñuelas J. 2019. Satellite-observed pantropical carbon dynamics. Nature Plants, 5(9): 944-951 [DOI: 10.1038/s41477-019-0478-9http://dx.doi.org/10.1038/s41477-019-0478-9]
Filippa G, Cremonese E, Migliavacca M, Galvagno M, Folker M, Richardson A D and Tomelleri E. 2020. phenopix: process digital images of a vegetation cover. R package version 2.4.2[EB/OL]. [2021-12-01]. https://CRAN.R-project.org/package=phenopixhttps://CRAN.R-project.org/package=phenopix
Filippa G, Cremonese E, Migliavacca M, Galvagno M, Sonnentag O, Humphreys E, Hufkens K, Ryu Y, Verfaillie J, di Cella U M and Richardson A D. 2018. NDVI derived from near-infrared-enabled digital cameras: applicability across different plant functional types. Agricultural and Forest Meteorology, 249: 275-285 [DOI: 10.1016/j.agrformet.2017.11.003http://dx.doi.org/10.1016/j.agrformet.2017.11.003]
Fischer A. 1994. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sensing of Environment, 48(2): 220-230 [DOI: 10.1016/0034-4257(94)90143-0http://dx.doi.org/10.1016/0034-4257(94)90143-0]
Friedl M. 2020. MuSLI Multi-Source Land Surface Phenology Yearly North America 30 m V001 [Data set]. NASA EOSDIS Land Processes DAAC [DOI: 10.5067/Community/MuSLI/MSLSP30NA.001http://dx.doi.org/10.5067/Community/MuSLI/MSLSP30NA.001]
Fu Y H, Zhao H F, Piao S L, Peaucelle M, Peng S S, Zhou G Y, Ciais P, Huang M T, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng Z Z and Janssens I A. 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526(7571): 104-107 [DOI: 10.1038/nature15402http://dx.doi.org/10.1038/nature15402]
Galvão L S, Breunig F M, dos Santos J R and de Moura Y M. 2013. View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest. International Journal of Applied Earth Observation and Geoinformation, 21: 291-300 [DOI: 10.1016/j.jag.2012.07.005http://dx.doi.org/10.1016/j.jag.2012.07.005]
Ganguly S, Friedl M A, Tan B, Zhang X Y and Verma M. 2010. Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics Product. Remote Sensing of Environment, 114(8): 1805-1816 [DOI: 10.1016/j.rse.2010.04.005http://dx.doi.org/10.1016/j.rse.2010.04.005]
Gao F and Zhang X Y. 2021. Mapping crop phenology in near real-time using satellite remote sensing: challenges and opportunities. Journal of Remote Sensing, 2021: 8379391 [DOI: 10.34133/2021/8379391http://dx.doi.org/10.34133/2021/8379391]
Gao X J, Gray J M and Reich B J. 2021. Long-term, medium spatial resolution annual land surface phenology with a Bayesian hierarchical model. Remote Sensing of Environment, 261: 112484 [DOI: 10.1016/j.rse.2021.112484http://dx.doi.org/10.1016/j.rse.2021.112484]
Gatis N, Anderson K, Grand-Clement E, Luscombe D J, Hartley I P, Smith D and Brazier R E. 2017. Evaluating MODIS vegetation products using digital images for quantifying local peatland CO2 gas fluxes. Remote Sensing in Ecology and Conservation, 3(4): 217-231 [DOI: 10.1002/rse2.45http://dx.doi.org/10.1002/rse2.45]
Ge M X, Zhao J, Zhong B and Yang A X. 2017. Comparison of the Vegetation Indexes between FY-3/VIRR, FY-3/MERSI and EOS/MODIS Data. Remote Sensing Technology and Application, 32(2): 262-273
葛美香, 赵军, 仲波, 杨爱霞. 2017. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析. 遥感技术与应用, 32(2): 262-273 [DOI: 10.11873/j.issn.1004-0323.2017.2.0262http://dx.doi.org/10.11873/j.issn.1004-0323.2017.2.0262]
Ge Q S, Dai J H and Zheng J Y. 2010. The progress of phenology studies and challenges to modern phenology research in China. Bulletin of the Chinese Academy of Sciences, 25(3): 310-316
葛全胜, 戴君虎, 郑景云. 2010. 物候学研究进展及中国现代物候学面临的挑战. 中国科学院院刊, 25(3): 310-316 [DOI: 10.3969/j.issn.1000-3045.2010.03.013http://dx.doi.org/10.3969/j.issn.1000-3045.2010.03.013]
Ge Q S, Wang H J and Dai J H. 2013. Shifts in spring phenophases, frost events and frost risk for woody plants in temperate China. Climate Research, 57(3): 249-258 [DOI: 10.3354/cr01182http://dx.doi.org/10.3354/cr01182]
Grabska E, Hostert P, Pflugmacher D and Ostapowicz K. 2019. Forest stand species mapping using the Sentinel-2 time series. Remote Sensing, 11(10): 1197 [DOI: 10.3390/rs11101197http://dx.doi.org/10.3390/rs11101197]
Gray J, Sulla-Menashe D and Friedl M. 2019a. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC [DOI: 10.5067/MODIS/MCD12Q2.006http://dx.doi.org/10.5067/MODIS/MCD12Q2.006]
Gray J, Sulla-Menashe D and Friedl M A. 2019b. User Guide to Collection 6 MODIS Land Cover Dynamics (MCD12Q2) Product[EB/OL]. [2021-12-01]. https://modis.ornl.gov/documentation/guides/mcd12q2_v6_user_guide.pdfhttps://modis.ornl.gov/documentation/guides/mcd12q2_v6_user_guide.pdf
Guo Q H, Hu T Y, Ma Q, Xu K X, Yang Q L, Sun Q H, Li Y M and Su Y J. 2020. Advances for the new remote sensing technology in ecosystem ecology research. Chinese Journal of Plant Ecology, 44(4): 418-435
郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 2020. 新一代遥感技术助力生态系统生态学研究. 植物生态学报, 44(4): 418-435 [DOI: 10.17521/cjpe.2019.0206http://dx.doi.org/10.17521/cjpe.2019.0206]
Guo Y S, Liu Q S, Liu G H and Huang C. 2017. Extraction of main crops in yellow river delta based on MODIS NDVI time series. Journal of Natural Resources, 32(10): 1808-1818
郭昱杉, 刘庆生, 刘高焕, 黄翀. 2017. 基于MODIS时序NDVI主要农作物种植信息提取研究. 自然资源学报, 32(10): 1808-1818 [DOI: 10.11849/zrzyxb.20160943http://dx.doi.org/10.11849/zrzyxb.20160943]
Hanes J M, Liang L and Morisette J T. 2014. Land surface phenology//Biophysical Applications of Satellite Remote Sensing. Berlin, Heidelberg: Springer: 99-125 [DOI: 10.1007/978-3-642-25047-7_4http://dx.doi.org/10.1007/978-3-642-25047-7_4]
Hänninen H. 2006. Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiology, 26(7): 889-898 [DOI: 10.1093/treephys/26.7.889http://dx.doi.org/10.1093/treephys/26.7.889]
Hao D L, Xiao Q, Wen J G, You D Q, Wu X D, Lin X W and Wu S B. 2018. Advances in upscaling methods of quantitative remote sensing. Journal of Remote Sensing, 22(3): 408-423
郝大磊, 肖青, 闻建光, 游冬琴, 吴小丹, 林兴稳, 吴胜标. 2018. 定量遥感升尺度转换方法研究进展. 遥感学报, 22(3): 408-423 [DOI: 10.11834/jrs.20187070http://dx.doi.org/10.11834/jrs.20187070]
Henebry G M and de Beurs K M. 2013. Remote sensing of land surface phenology: a prospectus//Schwartz M D. Phenology: An Integrative Environmental Science. 2nd ed. Dordrecht: Springer: 385-411 [DOI: 10.1007/978-94-007-6925-0_21http://dx.doi.org/10.1007/978-94-007-6925-0_21]
Hilker T, Gitelson A, Coops N C, Hall F G and Black T A. 2011. Tracking plant physiological properties from multi-angular tower-based remote sensing. Oecologia, 165(4): 865-876 [DOI: 10.1007/s00442-010-1901-0http://dx.doi.org/10.1007/s00442-010-1901-0]
Hill A C, Vázquez-Lule A and Vargas R. 2021. Linking vegetation spectral reflectance with ecosystem carbon phenology in a temperate salt marsh. Agricultural and Forest Meteorology, 307: 108481 [DOI: 10.1016/j.agrformet.2021.108481http://dx.doi.org/10.1016/j.agrformet.2021.108481]
Hinojo-Hinojo C and Goulden M L. 2020. Plant traits help explain the tight relationship between vegetation indices and gross primary production. Remote Sensing, 12(9): 1405 [DOI: 10.3390/rs12091405http://dx.doi.org/10.3390/rs12091405]
Hou X H, Niu Z and Gao S and Huang N. 2013. Monitoring vegetation phenology in farming-pastoral zone using SPOT-VGT NDVI data. Transactions of the Chinese Society of Agricultural Engineering, 29(01): 142-150
侯学会, 牛铮, 高帅, 黄妮. 2013. 基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测. 农业工程学报, 29(01): 142-150 [DOI: 10.3969/j.issn.1002-6819.2013.01.019http://dx.doi.org/10.3969/j.issn.1002-6819.2013.01.019]
Hou X H, Sui X Y, Liang S Z, Wang M and Dong M. 2017. Comparison of five methods for phenology extraction of winter wheat. Remote Sensing Information, 32(6): 65-70
侯学会, 隋学艳, 梁守真, 王猛, 董敏. 2017. 几种物候提取方法的小麦物候提取. 遥感信息, 32(6): 65-70 [DOI: 10.3969/j.issn.1000-3177.2017.06.011http://dx.doi.org/10.3969/j.issn.1000-3177.2017.06.011]
Huete A, Didan K, Miura T, Rodriguez E P, Gao X and Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1/2): 195-213 [DOI: 10.1016/S0034-4257(02)00096-2http://dx.doi.org/10.1016/S0034-4257(02)00096-2]
Ibrahim S, Balzter H, Tansey K, Tsutsumida N and Mathieu R. 2018. Estimating fractional cover of plant functional types in African savannah from harmonic analysis of MODIS time-series data. International Journal of Remote Sensing, 39(9): 2718-2745 [DOI: 10.1080/01431161.2018.1430914http://dx.doi.org/10.1080/01431161.2018.1430914]
Jeong S J, Schimel D, Frankenberg C, Drewry D T, Fisher J B, Verma M, Berry J A, Lee J E and Joiner J. 2017. Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sensing of Environment, 190: 178-187 [DOI: 10.1016/j.rse.2016.11.021http://dx.doi.org/10.1016/j.rse.2016.11.021]
Ji L and Brown J F. 2017. Effect of NOAA satellite orbital drift on AVHRR-derived phenological metrics. International Journal of Applied Earth Observation and Geoinformation, 62: 215-223 [DOI: 10.1016/j.jag.2017.06.013http://dx.doi.org/10.1016/j.jag.2017.06.013]
Jiang Z Y, Huete A R, Kim Y and Didan K. 2007. 2-band enhanced vegetation index without a blue band and its application to AVHRR data//Proceedings Volume 6679, Remote Sensing and Modeling of Ecosystems for Sustainability IV. San Diego, California, United States: SPIE [DOI: 10.1117/12.734933http://dx.doi.org/10.1117/12.734933]
Jin H X and Eklundh L. 2014. A physically based vegetation index for improved monitoring of plant phenology. Remote Sensing of Environment, 152: 512-525 [DOI: 10.1016/j.rse.2014.07.010http://dx.doi.org/10.1016/j.rse.2014.07.010]
Jones M O, Jones L A, Kimball J S and McDonald K C. 2011. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sensing of Environment, 115(4): 1102-1114 [DOI: 10.1016/j.rse.2010.12.015http://dx.doi.org/10.1016/j.rse.2010.12.015]
Jönsson P and Eklundh L. 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1824-1832 [DOI: 10.1109/TGRS.2002.802519http://dx.doi.org/10.1109/TGRS.2002.802519]
Justice C O, Townshend J R G, Holben B N and Tucker C J. 1985. Analysis of the phenology of global vegetation using meteorological satellite data. International Journal of Remote Sensing, 6(8): 1271-1318 [DOI: 10.1080/01431168508948281http://dx.doi.org/10.1080/01431168508948281]
Klosterman S, Melaas E, Wang J A, Martinez A, Frederick S, O’Keefe J, Orwig D A, Wang Z S, Sun Q S, Schaaf C, Friedl M and Richardson A D. 2018. Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography. Agricultural and Forest Meteorology, 248: 397-407 [DOI: 10.1016/j.agrformet.2017.10.015http://dx.doi.org/10.1016/j.agrformet.2017.10.015]
Kong D D, Zhang Q, Huang W L and Gu X H. 2017. Vegetation phenology change in Tibetan Plateau from 1982 to 2013 and its related meteorological factors. Acta Geographica Sinica, 72(1): 39-52
孔冬冬, 张强, 黄文琳, 顾西辉. 2017. 1982-2013年青藏高原植被物候变化及气象因素影响. 地理学报, 72(1): 39-52 [DOI: 10.11821/dlxb201701004http://dx.doi.org/10.11821/dlxb201701004]
Li H, Peng R C, Li W K, Zhu X L, Huang Y T and Nie Q. 2019. Filtering algorithms of HJ-1 A/B NDVI time series data and phenology of typical tree species in Xiamen. Chinese Journal of Ecology, 38(11): 3460-3471
李晖, 彭韧超, 李万凯, 朱晓铃, 黄于同, 聂芹. 2019. 厦门典型树种的HJ-1A/B NDVI时序数据滤波算法及物候特性. 生态学杂志, 38(11): 3460-3471 [DOI: 10.13292/j.1000-4890.201911.034http://dx.doi.org/10.13292/j.1000-4890.201911.034]
Li J, Xia C F, Liu Q H, Zhao J, Wang C and Peng J J. 2017. 1 km growing season length data product over China-ASEAN 2013. Journal of Global Change Data and Discovery, 1(3): 278-281
李静, 夏传福, 柳钦火, 赵静, 王聪, 彭菁菁. 2017. 中国—东盟1 km分辨率植被生长季长度数据集 (2013). 全球变化数据学报(中英文), 1(3): 278-281 [DOI: 10.3974/geodp.2017.03.04http://dx.doi.org/10.3974/geodp.2017.03.04]
Li N, Zhan P, Pan Y Z, Zhu X F, Li M Y and Zhang D J. 2020. Comparison of remote sensing time-series smoothing methods for grassland spring phenology extraction on the Qinghai-Tibetan Plateau. Remote Sensing, 12(20): 3383 [DOI: 10.3390/rs12203383http://dx.doi.org/10.3390/rs12203383]
Li Q, Shen M G, Chen X H, Wang C, Chen J, Cao X, Fei S L and Cui X H. 2021. Optimal color composition method for generating high-quality daily photographic time series from PhenoCam. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 6179-6193 [DOI: 10.1109/JSTARS.2021.3087814http://dx.doi.org/10.1109/JSTARS.2021.3087814]
Liang L and Schwartz M D. 2009. Landscape phenology: an integrative approach to seasonal vegetation dynamics. Landscape Ecology, 24(4): 465-472 [DOI: 10.1007/s10980-009-9328-xhttp://dx.doi.org/10.1007/s10980-009-9328-x]
Liang L, Schwartz M D and Fei S L. 2011. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sensing of Environment, 115(1): 143-157 [DOI: 10.1016/j.rse.2010.08.013http://dx.doi.org/10.1016/j.rse.2010.08.013]
Liang S L. 2021. Some thoughts on the development of quantitative remote sensing in China. National Remote Sensing Bulletin, 25(9):1889-1895
梁顺林. 2021. 中国定量遥感发展的一些思考. 遥感学报, 25(09): 1889-1895 [DOI: 10.11834/jrs.20211516http://dx.doi.org/10.11834/jrs.20211516]
Liu J W and Zhou Y K. 2018. Comparison and application of NDVI time-series reconstruction methods at site scale on the Tibetan Plateau. Progress in Geography, 37(3): 427-437
刘建文, 周玉科. 2018. 站点尺度的青藏高原时序NDVI重构方法比较与应用. 地理科学进展, 37(3): 427-437 [DOI: 10.18306/dlkxjz.2018.03.013http://dx.doi.org/10.18306/dlkxjz.2018.03.013]
Liu L C, Cao R Y, Shen M G, Chen J, Wang J M and Zhang X Y. 2019. How does scale effect influence spring vegetation phenology estimated from satellite-derived vegetation indexes?. Remote Sensing, 11(18): 2137 [DOI: 10.3390/rs11182137http://dx.doi.org/10.3390/rs11182137]
Liu X T, Zhou L, Shi H, Wang S Q and Chi Y G. 2018. Phenological characteristics of temperate coniferous and broad-leaved mixed forests based on multiple remote sensing vegetation indices, chlorophyII fluorescence and CO2 flux data. Acta Ecologica Sinica, 38(10): 3482-3494
刘啸添, 周蕾, 石浩, 王绍强, 迟永刚. 2018. 基于多种遥感植被指数、叶绿素荧光与CO2通量数据的温带针阔混交林物候特征对比分析. 生态学报, 38(10): 3482-3494 [DOI: 10.5846/stxb201708211508http://dx.doi.org/10.5846/stxb201708211508]
Lobell D B, Burke M B, Tebaldi C, Mastrandrea M D, Falcon W P and Naylor R L. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863): 607-610 [DOI: 10.1126/science.1152339http://dx.doi.org/10.1126/science.1152339]
Luo Y C, Zhang Z, Chen Y, Li Z Y and Tao F L. 2020. ChinaCropPhen1km: a high-resolution crop phenological dataset for three staple crops in China during 2000-2015 based on leaf area index (LAI) products. Earth System Science Data, 12(1): 197-214 [DOI: 10.5194/essd-12-197-2020http://dx.doi.org/10.5194/essd-12-197-2020]
Ma X F, Chen S Y, Deng J, Feng Q S and Huang X D. 2016. Vegetation phenology dynamics and its response to climate change on the Tibetan Plateau. Acta Prataculturae Sinica, 25(1): 13-21
马晓芳, 陈思宇, 邓婕, 冯琦胜, 黄晓东. 2016. 青藏高原植被物候监测及其对气候变化的响应. 草业学报, 25(1): 13-21 [DOI: 10.11686/cyxb2015089http://dx.doi.org/10.11686/cyxb2015089]
Ma X L, Huete A, Moore C E, Cleverly J, Hutley L B, Beringer J, Leng S, Xie Z Y, Yu Q and Eamus D. 2020. Spatiotemporal partitioning of savanna plant functional type productivity along NATT. Remote Sensing of Environment,246: 111855. [DOI 10.1016/j.rse.2020.111855http://dx.doi.org/10.1016/j.rse.2020.111855]
Ma X L, Huete A and Tran N N. 2019. Interaction of seasonal sun-angle and savanna phenology observed and modelled using MODIS. Remote Sensing, 11(12): 1398 [DOI: 10.3390/rs11121398http://dx.doi.org/10.3390/rs11121398]
Ma X L, Huete A, Yu Q, Coupe N R, Davies K, Broich M, Ratana P, Beringer J, Hutley L B, Cleverly J, Boulain N and Eamus D. 2013. Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect. Remote Sensing of Environment, 139: 97-115 [DOI: 10.1016/j.rse.2013.07.030http://dx.doi.org/10.1016/j.rse.2013.07.030]
Macfarlane C, Ryu Y, Ogden G N and Sonnentag O. 2014. Digital canopy photography: exposed and in the raw. Agricultural and Forest Meteorology, 197: 244-253 [DOI: 10.1016/j.agrformet.2014.05.014http://dx.doi.org/10.1016/j.agrformet.2014.05.014]
Maeda E E and Galvão L S. 2015. Sun-sensor geometry effects on vegetation index anomalies in the Amazon rainforest. GIScience and Remote Sensing, 52(3): 332-343 [DOI: 10.1080/15481603.2015.1038428http://dx.doi.org/10.1080/15481603.2015.1038428]
Meng J H and Wu B F. 2013. The feasibility analysis on satellite data based crop mature date prediction. Remote Sensing Technology and Application, 28(2): 165-173
蒙继华, 吴炳方. 2013. 基于卫星遥感预测作物成熟期的可行性分析. 遥感技术与应用, 28(2): 165-173 [DOI: 10.11873/j.issn.1004-0323.2013.2.165http://dx.doi.org/10.11873/j.issn.1004-0323.2013.2.165]
Miura T, Nagai S, Takeuchi M, Ichii K and Yoshioka H. 2019. Improved characterisation of vegetation and land surface seasonal dynamics in central Japan with Himawari-8 hypertemporal data. Scientific Reports, 9(1): 15692 [DOI: 10.1038/s41598-019-52076-xhttp://dx.doi.org/10.1038/s41598-019-52076-x]
Moon M, Richardson A D and Friedl M A. 2021. Multiscale assessment of land surface phenology from harmonized Landsat 8 and Sentinel-2, PlanetScope, and PhenoCam imagery. Remote Sensing of Environment, 266: 112716 [DOI: 10.1016/j.rse.2021.112716http://dx.doi.org/10.1016/j.rse.2021.112716]
Moon M, Zhang X Y, Henebry G M, Liu L L, Gray J M, Melaas E K and Friedl M A. 2019. Long-term continuity in land surface phenology measurements: a comparative assessment of the MODIS land cover dynamics and VIIRS land surface phenology products. Remote Sensing of Environment, 226: 74-92 [DOI: 10.1016/j.rse.2019.03.034http://dx.doi.org/10.1016/j.rse.2019.03.034]
Mou C X, Sun G, Luo P, Wang Z Y and Luo G R. 2013. Flowering responses of alpine meadow plant in the Qinghai-Tibetan Plateau to extreme drought imposed in different periods. Chinese Journal of Applied and Environmental Biology, 19(2): 272-279
牟成香, 孙庚, 罗鹏, 王志远, 罗光荣. 2013. 青藏高原高寒草甸植物开花物候对极端干旱的响应. 应用与环境生物学报, 19(2): 272-279 [DOI: 10.3724/SP.J.1145.2013.00272http://dx.doi.org/10.3724/SP.J.1145.2013.00272]
Moulin S, Kergoat L, Viovy N and Dedieu G. 1997. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate, 10(6): 1154-1170 [DOI: 10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2http://dx.doi.org/10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2]
Nagai S, Nasahara K N, Inoue T, Saitoh T M and Suzuki R. 2016. Review: advances in in situ and satellite phenological observations in Japan. International Journal of Biometeorology, 60(4): 615-627 [DOI: 10.1007/s00484-015-1053-3http://dx.doi.org/10.1007/s00484-015-1053-3]
Nasahara K N and Nagai S. 2015. Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN). Ecological Research, 30(2): 211-223 [DOI: 10.1007/s11284-014-1239-xhttp://dx.doi.org/10.1007/s11284-014-1239-x]
Ni L, Wu J, Li C B, Qin G X, Li Z and Kong J. 2020. Temporal and spatial variations in natural grassland phenology in China over the last 30 years. Acta Prataculturae Sinica, 29(1): 1-12
倪璐, 吴静, 李纯斌, 秦格霞, 李政, 孔婕. 2020. 近30年中国天然草地物候时空变化特征分析. 草业学报, 29(1): 1-12 [DOI: 10.11686/cyxb2019003http://dx.doi.org/10.11686/cyxb2019003]
Norris J R and Walker J J. 2020. Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States. Remote Sensing of Environment, 249: 112013 [DOI: 10.1016/j.rse.2020.112013http://dx.doi.org/10.1016/j.rse.2020.112013]
Peng D L, Zhang X Y, Wu C Y, Huang W J, Gonsamo A, Huete A R, Didan K, Tan B, Liu X J and Zhang B. 2017a. Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States. Agricultural and Forest Meteorology, 242: 33-46 [DOI: 10.1016/j.agrformet.2017.04.009http://dx.doi.org/10.1016/j.agrformet.2017.04.009]
Peng D L, Zhang X Y, Zhang B, Liu L Y, Liu X J, Huete A R, Huang W J, Wang S Y, Luo S Z, Zhang X and Zhang H L. 2017b. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States. ISPRS Journal of Photogrammetry and Remote Sensing, 132: 185-198 [DOI: 10.1016/j.isprsjprs.2017.09.002http://dx.doi.org/10.1016/j.isprsjprs.2017.09.002]
Petri C A and Galvão L S. 2019. Sensitivity of seven MODIS vegetation indices to BRDF effects during the Amazonian dry season. Remote Sensing, 11(14): 1650 [DOI: 10.3390/rs11141650http://dx.doi.org/10.3390/rs11141650]
Piao S L, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J Y, Barr A, Chen A P, Grelle A, Hollinger D Y, Laurila T, Lindroth A, Richardson A D and Vesala T. 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451(7174): 49-52 [DOI: 10.1038/nature06444http://dx.doi.org/10.1038/nature06444]
Piao S L, Fang J Y, Zhou L M, Ciais P and Zhu B. 2006. Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12(4): 672-685 [DOI: 10.1111/j.1365-2486.2006.01123.xhttp://dx.doi.org/10.1111/j.1365-2486.2006.01123.x]
Piao S L, Liu Q, Chen A P, Janssens I A, Fu Y S, Dai J H, Liu L L, Lian X, Shen M G and Zhu X L. 2019. Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25(6): 1922-1940 [DOI: 10.1111/gcb.14619http://dx.doi.org/10.1111/gcb.14619]
Qi W L and Dubayah R O. 2016. Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping. Remote Sensing of Environment, 187: 253-266 [DOI: 10.1016/j.rse.2016.10.018http://dx.doi.org/10.1016/j.rse.2016.10.018]
Qi W L, Lee S K, Hancock S, Luthcke S, Tang H, Armston J and Dubayah R. 2019. Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data. Remote Sensing of Environment, 221: 621-634 [DOI: 10.1016/j.rse.2018.11.035http://dx.doi.org/10.1016/j.rse.2018.11.035]
Reed B C, Brown J F, Vanderzee D, Loveland T R, Merchant J W and Ohlen D O. 1994. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5(5): 703-714 [DOI: 10.2307/3235884http://dx.doi.org/10.2307/3235884]
Reed B C, Schwartz M D and Xiao X M. 2009. Remote sensing phenology//Noormets A. Phenology of Ecosystem Processes: Applications in Global Change Research. New York, NY: Springer: 231-246 [DOI: 10.1007/978-1-4419-0026-5_10http://dx.doi.org/10.1007/978-1-4419-0026-5_10]
Restrepo-Coupe N, Huete A, Davies K, Cleverly J, Beringer J, Eamus D, Van Gorsel E, Hutley L B and Meyer W S. 2016. MODIS vegetation products as proxies of photosynthetic potential along a gradient of meteorologically and biologically driven ecosystem productivity. Biogeosciences, 13(19): 5587-5608 [DOI: 10.5194/bg-13-5587-2016http://dx.doi.org/10.5194/bg-13-5587-2016]
Richardson A D, Anderson R S, Arain M A, Barr A G, Bohrer G, Chen G S, Chen J M, Ciais P, Davis K J, Desai A R, Dietze M C, Dragoni D, Garrity S R, Gough C M, Grant R, Hollinger D Y, Margolis H A, McCaughey H, Migliavacca M, Monson R K, Munger J W, Poulter B, Raczka B M, Ricciuto D M, Sahoo A K, Schaefer K, Tian H Q, Vargas R, Verbeeck H, Xiao J F and Xue Y K. 2012. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Global Change Biology, 18(2): 566-584 [DOI: 10.1111/j.1365-2486.2011.02562.xhttp://dx.doi.org/10.1111/j.1365-2486.2011.02562.x]
Richardson A D, Hufkens K, Li X L and Ault T R. 2019. Testing Hopkins’ Bioclimatic Law with PhenoCam data. Applications in Plant Sciences, 7(3): e01228 [DOI: 10.1002/aps3.1228http://dx.doi.org/10.1002/aps3.1228]
Richardson A D, Hufkens K, Milliman T, Aubrecht D M, Chen M, Gray J M, Johnston M R, Keenan T F, Klosterman S T, Kosmala M, Melaas E K, Friedl M A and Frolking S. 2018. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Scientific Data, 5(1): 180028 [DOI: 10.1038/sdata.2018.28http://dx.doi.org/10.1038/sdata.2018.28]
Rouse J W, Haas R H, Schell J A and Deering D W. 1973. Monitoring vegetation systems in the Great Plains with ERTS//3rd ERTS-1 Symposium. Washington: NASA: 309-317
Running S W and Hunt E R. 1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models//Scaling Physiological Processes: Leaf to Globe. San Diego, USA: Academic Press: 141-158 [DOI: 10.1016/B978-0-12-233440-5.50014-2http://dx.doi.org/10.1016/B978-0-12-233440-5.50014-2]
Sakamoto T, Van Nguyen N, Ohno H, Ishitsuka N and Yokozawa M. 2006. Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sensing of Environment, 100(1): 1-16 [DOI: 10.1016/j.rse.2005.09.007http://dx.doi.org/10.1016/j.rse.2005.09.007]
Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N and Ohno H. 2005. A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment, 96(3/4): 366-374 [DOI: 10.1016/j.rse.2005.03.008http://dx.doi.org/10.1016/j.rse.2005.03.008]
Salas E A L. 2021. Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling: a comprehensive review. Geo-spatial Information Science, 24(2): 179-200 [DOI: 10.1080/10095020.2020.1761763http://dx.doi.org/10.1080/10095020.2020.1761763]
Sellers P J, Tucker C J, Collatz G J, Los S O, Justice C O, Dazlich D A and Randall D A. 1994. A global 1° by 1° NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI. International Journal of Remote Sensing, 15(7): 3519-3545 [DOI: 10.1080/01431169408954343http://dx.doi.org/10.1080/01431169408954343]
Shen M G, Piao S L, Dorji T, Liu Q, Cong N, Chen X Q, An S, Wang S P, Wang T and Zhang G X. 2015. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2(4): 454-467 [DOI: 10.1093/nsr/nwv058http://dx.doi.org/10.1093/nsr/nwv058]
Shen M G, Tang Y H, Chen J and Yang W. 2012. Specification of thermal growing season in temperate China from 1960 to 2009. Climatic Change, 114(3/4): 783-798 [DOI: 10.1007/s10584-012-0434-4http://dx.doi.org/10.1007/s10584-012-0434-4]
Song D Y, Wang Z Y, Li Y and Hu Y. 2018. Cropland phenology detection based on HJ-1A/B CCD data in Jianghan plain. Geomatics and Spatial Information Technology, 41(3): 128-131, 134
宋丹阳, 王征禹, 李跃, 胡勇. 2018. 基于HJ-1 A/B卫星CCD数据的江汉平原农田物候探测. 测绘与空间地理信息, 41(3): 128-131, 134 [DOI: 10.3969/j.issn.1672-5867.2018.03.040http://dx.doi.org/10.3969/j.issn.1672-5867.2018.03.040]
Sun H S, Xu A G, Lin H and Zhang L P. 2012. Analysis of denoising effect of time series vegetation index based on different algorithms. Jiangsu Agricultural Sciences, 40(5): 375-379
孙华生, 徐爱功, 林卉, 张连蓬. 2012. 基于不同算法的时间序列植被指数去噪效果分析. 江苏农业科学, 40(5): 375-379 [DOI: 10.3969/j.issn.1002-1302.2012.05.139http://dx.doi.org/10.3969/j.issn.1002-1302.2012.05.139]
Taylor S D, Browning D M, Baca R A and Gao F. 2021. Constraints and opportunities for detecting land surface phenology in drylands. Journal of Remote Sensing, 2021: 9859103 [DOI: 10.34133/2021/9859103http://dx.doi.org/10.34133/2021/9859103]
Tian F, Cai Z Z, Jin H X, Hufkens K, Scheifinger H, Tagesson T, Smets B, Van Hoolst R, Bonte K, Ivits E, Tong X Y, Ardö J and Eklundh L. 2021a. Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sensing of Environment, 260: 112456 [DOI: 10.1016/j.rse.2021.112456http://dx.doi.org/10.1016/j.rse.2021.112456]
Tian F, Wigneron J P, Ciais P, Chave J, Ogée J, Peñuelas J, Ræbild A, Domec J C, Tong X Y, Brandt M, Mialon A, Rodriguez-Fernandez N, Tagesson T, Al-Yaari A, Kerr Y, Chen C, Myneni R B, Zhang W M, Ardö J and Fensholt R. 2018. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nature Ecology and Evolution, 2(9): 1428-1435 [DOI: 10.1038/s41559-018-0630-3http://dx.doi.org/10.1038/s41559-018-0630-3]
Tian J Q, Zhu X L, Chen J, Wang C, Shen M G, Yang W, Tan X Y, Xu S and Li Z L. 2021b. Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency. ISPRS Journal of Photogrammetry and Remote Sensing, 180: 29-44 [DOI: 10.1016/j.isprsjprs.2021.08.003http://dx.doi.org/10.1016/j.isprsjprs.2021.08.003]
Tong X Y, Tian F, Brandt M, Liu Y, Zhang W M and Fensholt R. 2019. Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992-2012. Remote Sensing of Environment, 232: 111307 [DOI: 10.1016/j.rse.2019.111307http://dx.doi.org/10.1016/j.rse.2019.111307]
Verbesselt J, Hyndman R, Newnham G and Culvenor D. 2010. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1): 106-115 [DOI: 10.1016/j.rse.2009.08.014http://dx.doi.org/10.1016/j.rse.2009.08.014]
Verhegghen A, Bontemps S and Defourny P. 2014. A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily SPOT-VEGETATION observations. International Journal of Remote Sensing, 35(7): 2440-2471 [DOI: 10.1080/01431161.2014.883105http://dx.doi.org/10.1080/01431161.2014.883105]
Wan C J, Wu X D and Lin X W. 2019. Impact of spatial and temporal scales of remote sensing data on the spatiotemporal change in geographic elements. Journal of Remote Sensing, 23(6): 1064-1077
万昌君, 吴小丹, 林兴稳. 2019. 遥感数据时空尺度对地理要素时空变化分析的影响. 遥感学报, 23(6): 1064-1077 [DOI: 10.11834/jrs.20198327http://dx.doi.org/10.11834/jrs.20198327]
Wang C, Beringer J, Hutley L B, Cleverly J, Li J, Liu Q H and Sun Y. 2019. Phenology dynamics of dryland ecosystems along the North Australian tropical transect revealed by satellite solar-induced chlorophyll fluorescence. Geophysical Research Letters, 46(10): 5294-5302 [DOI: 10.1029/2019GL082716http://dx.doi.org/10.1029/2019GL082716]
Wang C, Chen J, Wu J, Tang Y H, Shi P J, Black T A and Zhu K. 2017a. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sensing of Environment, 196: 1-12 [DOI: 10.1016/j.rse.2017.04.031http://dx.doi.org/10.1016/j.rse.2017.04.031]
Wang C, Li J, Liu Q H, Zhong B, Wu S L and Xia C F. 2017b. Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index. Sensors, 17(9): 1982 [DOI: 10.3390/s17091982http://dx.doi.org/10.3390/s17091982]
Wang S H and Zhang Y G. 2020. Long-term (1982-2018) global gross primary production dataset based on NIRv. National Tibetan Plateau Data Center
王松寒, 张永光. 2020. 基于遥感NIRv的全球生态系统总初级生产力(GPP)长时间序列数据(1982-2018). 国家青藏高原科学数据中心) [DOI: 10.6084/m9.figshare.12981977.v2http://dx.doi.org/10.6084/m9.figshare.12981977.v2]
Wang X F, Xiao J F, Li X, Cheng G D, Ma M G, Che T, Dai L Y, Wang S Y and Wu J K. 2017c. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 122(12): 3288-3305 [DOI: 10.1002/2017JG003949http://dx.doi.org/10.1002/2017JG003949]
Wang Y W, Xu W F, Yuan W P, Chen X Z, Zhang B W, Fan L, He B, Hu Z M, Liu S G, Liu W and Piao S L. 2021. Higher plant photosynthetic capability in autumn responding to low atmospheric vapor pressure deficit. The Innovation, 2(4): 100163 [DOI: 10.1016/j.xinn.2021.100163http://dx.doi.org/10.1016/j.xinn.2021.100163]
Wei J, Li Z Q, Peng Y R and Sun L. 2019. MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison. Atmospheric Environment, 201: 428-440 [DOI: 10.1016/j.atmosenv.2018.12.004http://dx.doi.org/10.1016/j.atmosenv.2018.12.004]
Wen G and Fu C B. 2000. Large scale features of the seasonal phenological responses to the monsoon climate in East China: Multi-year average results. Chinese Journal of Atmospheric Sciences, 24(5): 676-682
温刚, 符淙斌. 2000. 中国东部季风区植被物候季节变化对气候响应的大尺度特征: 多年平均结果. 大气科学, 24(5): 676-682 [DOI: 10.3878/j.issn.1006-9895.2000.05.12http://dx.doi.org/10.3878/j.issn.1006-9895.2000.05.12]
Westerling A L, Hidalgo H G, Cayan D R and Swetnam T W. 2006. Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313(5789): 940-943 [DOI: 10.1126/science.1128834http://dx.doi.org/10.1126/science.1128834]
White M A, de Beurs K M, Didan K, Inouye D W, Richardson A D, Jensen O P, O’Keefe J, Zhang G, Nemani R R, Van Leeuwen W J D, Brown J F, De Wit A, Schaepman M, Lin X M, Dettinger M, Bailey A S, Kimball J, Schwartz M D, Baldocchi D D, Lee J T and Lauenroth W K. 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 15(10): 2335-2359 [DOI: 10.1111/j.1365-2486.2009.01910.xhttp://dx.doi.org/10.1111/j.1365-2486.2009.01910.x]
White M A and Nemani R R. 2006. Real-time monitoring and short-term forecasting of land surface phenology. Remote Sensing of Environment, 104(1): 43-49 [DOI: 10.1016/j.rse.2006.04.014http://dx.doi.org/10.1016/j.rse.2006.04.014]
Wingate L, Ogée J, Cremonese E, Filippa G, Mizunuma T, Migliavacca M, Moisy C, Wilkinson M, Moureaux C, Wohlfahrt G, Hammerle A, Hörtnagl L, Gimeno C, Porcar-Castell A, Galvagno M, Nakaji T, Morison J, Kolle O, Knohl A, Kutsch W, Kolari P, Nikinmaa E, Ibrom A, Gielen B, Eugster W, Balzarolo M, Papale D, Klumpp K, Köstner B, Grünwald T, Joffre R, Ourcival J M, Hellstrom M, Lindroth A, George C, Longdoz B, Genty B, Levula J, Heinesch B, Sprintsin M, Yakir D, Manise T, Guyon D, Ahrends H, Plaza-Aguilar A, Guan J H and Grace J. 2015. Interpreting canopy development and physiology using a European phenology camera network at flux sites. Biogeosciences, 12(20): 5995-6015 [DOI: 10.5194/bg-12-5995-2015http://dx.doi.org/10.5194/bg-12-5995-2015]
Wong C Y S, D’Odorico P, Bhathena Y, Arain M A and Ensminger I. 2019. Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf-scale in deciduous and evergreen trees. Remote Sensing of Environment, 233: 111407 [DOI: 10.1016/j.rse.2019.111407http://dx.doi.org/10.1016/j.rse.2019.111407]
Wu S B, Wang J, Yan Z B, Song G Q, Chen Y, Ma Q, Deng M F, Wu Y T, Zhao Y Y, Guo Z F, Yuan Z Q, Dai G H, Xu X T, Yang X, Su Y J, Liu L L and Wu J. 2021. Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations. ISPRS Journal of Photogrammetry and Remote Sensing, 171: 36-48 [DOI: 10.1016/j.isprsjprs.2020.10.017http://dx.doi.org/10.1016/j.isprsjprs.2020.10.017]
Wu X D, Wen J G, Xiao Q, Li X, Liu Q, Tang Y, Dou B C, Peng J J, You D Q and Li X W. 2015. Advances in validation methods for remote sensing products of land surface parameters. Journal of Remote Sensing, 19(1): 75-92
吴小丹, 闻建光, 肖青, 李新, 刘强, 唐勇, 窦宝成, 彭菁菁, 游冬琴, 李小文. 2015. 关键陆表参数遥感产品真实性检验方法研究进展. 遥感学报, 19(1): 75-92 [DOI: 10.11834/jrs.20154009http://dx.doi.org/10.11834/jrs.20154009]
Wu Y F, Li M S and Song J Q. 2008. Advance in vegetation phenology monitoring based on remote sensing. Journal of Meteorology and Environment, 24(3): 51-58
武永峰, 李茂松, 宋吉青. 2008. 植物物候遥感监测研究进展. 气象与环境学报, 24(3): 51-58 [DOI: 10.3969/j.issn.1673-503X.2008.03.011http://dx.doi.org/10.3969/j.issn.1673-503X.2008.03.011]
Wu Y Q and Huang L R. 2004. A new interpolation method in time series analyzing. Journal of Geodesy and Geodynamics, 24(4): 43-47
武艳强, 黄立人. 2004. 时间序列处理的新插值方法. 大地测量与地球动力学, 24(4): 43-47 [DOI: 10.3969/j.issn.1671-5942.2004.04.009http://dx.doi.org/10.3969/j.issn.1671-5942.2004.04.009]
Wulder M A, Hilker T, White J C, Coops N C, Masek J G, Pflugmacher D and Crevier Y. 2015. Virtual constellations for global terrestrial monitoring. Remote Sensing of Environment, 170(1): 62-76. ]DOI 10.1016/j.rse.2015.09.001http://dx.doi.org/10.1016/j.rse.2015.09.001]
Xi X and Zhao G X. 2020. Chlorophyll content in winter wheat: inversion and monitoring based on UAV multi-spectral remote sensing. Chinese Agricultural Science Bulletin, 36(20): 119-126
奚雪, 赵庚星. 2020. 基于无人机多光谱遥感的冬小麦叶绿素含量反演及监测. 中国农学通报, 36(20): 119-126 [DOI: 10.11924/j.issn.1000-6850.casb20190400050http://dx.doi.org/10.11924/j.issn.1000-6850.casb20190400050]
Xia C F, Li J and Liu Q H. 2013. Review of advances in vegetation phenology monitoring by remote sensing. Journal of Remote Sensing, 17(1): 1-16
夏传福, 李静, 柳钦火. 2013. 植被物候遥感监测研究进展. 遥感学报, 17(1): 1-16 [DOI: 10.11834/jrs.20131363http://dx.doi.org/10.11834/jrs.20131363]
Xiang M T, Wei W and Wu W B. 2018. Review of vegetation phenology estimation by using remote sensing. China Agricultural Information, 30(1): 55-66
项铭涛, 卫炜, 吴文斌. 2018. 植被物候参数遥感提取研究进展评述. 中国农业信息, 30(1): 55-66 [DOI: 10.12105/j.issn.1672-0423.20180106http://dx.doi.org/10.12105/j.issn.1672-0423.20180106]
Xiang Y, Xiao Z Q, Liang S L, Wang J D and Song J L. 2014. Validation of Global Land Surface Satellite (GLASS) leaf area index product. Journal of Remote Sensing, 18(3): 573-596
向阳, 肖志强, 梁顺林, 王锦地, 宋金玲. 2014. GLASS叶面积指数产品验证. 遥感学报, 18(3): 573-596 [DOI: 10.11834/jrs.20143117http://dx.doi.org/10.11834/jrs.20143117]
Xiao W W, Sun Z G, Wang Q X and Yang Y H. 2013. Evaluating MODIS phenology product for rotating croplands through ground observations. Journal of Applied Remote Sensing, 7(1): 073562 [DOI: 10.1117/1.JRS.7.073562http://dx.doi.org/10.1117/1.JRS.7.073562]
Xiao X M, Zhang J H, Yan H M, Wu W X and Biradar C. 2009. Land surface phenology//Phenology of Ecosystem Processes. New York: Springer-Verlag: 247-270 [DOI: 10.1007/978-1-4419-0026-5_11http://dx.doi.org/10.1007/978-1-4419-0026-5_11]
Xie Y Y and Wilson A M. 2020. Change point estimation of deciduous forest land surface phenology. Remote Sensing of Environment, 240: 111698 [DOI: 10.1016/j.rse.2020.111698http://dx.doi.org/10.1016/j.rse.2020.111698]
Xu D W, Wang C, Chen J, Shen M G, Shen B B, Yan R R, Li Z W, Karnieli A, Chen J Q, Yan Y C, Wang X, Chen B R, Yin D M and Xin X P. 2021. The superiority of the normalized difference phenology index (NDPI) for estimating grassland aboveground fresh biomass. Remote Sensing of Environment, 264: 112578 [DOI: 10.1016/j.rse.2021.112578http://dx.doi.org/10.1016/j.rse.2021.112578]
Yan D, Zhang X Y, Nagai S, Yu Y Y, Akitsu T, Nasahara K N, Ide R and Maeda T. 2019. Evaluating land surface phenology from the Advanced Himawari Imager using observations from MODIS and the Phenological Eyes Network. International Journal of Applied Earth Observation and Geoinformation, 79: 71-83 [DOI: 10.1016/j.jag.2019.02.011http://dx.doi.org/10.1016/j.jag.2019.02.011]
Yan Y and Zhang C J. 2020. Preliminary study on remote sensing monitoring of grassland returning green period in the north slope of Tianshan Mountain based on different vegetation indexes. Grass-Feeding Livestock, (2): 40-45
闫洋, 张楚婕. 2020. 基于不同植被指数的天山北坡草地返青期遥感监测初探. 草食家畜, (2): 40-45 [DOI: 10.16863/j.cnki.1003-6377.2020.02.008]
Yin G F, Verger A, Filella I, Descals A and Peñuelas J. 2020. Divergent estimates of forest photosynthetic phenology using structural and physiological vegetation indices. Geophysical Research Letters, 47(18): e2020GL089167 [DOI: 10.1029/2020gl089167http://dx.doi.org/10.1029/2020gl089167]
Yu L, Wen J, Chang C Y, Frankenberg C and Sun Y. 2019. High-resolution global contiguous SIF of OCO-2. Geophysical Research Letters, 46(3): 1449-1458 [DOI: 10.1029/2018gl081109http://dx.doi.org/10.1029/2018gl081109]
Yu W T, Li J, Liu Q H, Zhao J, Dong Y D, Zhu X R, Lin S R, Zhang H and Zhang Z X. 2021. Gap filling for historical Landsat NDVI time series by integrating climate data. Remote Sensing, 13(3): 484 [DOI: 10.3390/rs13030484http://dx.doi.org/10.3390/rs13030484]
Yu X F and Zhuang D F. 2006. Monitoring forest phenophases of northeast China based on MODIS NDVI data. Resources Science, 28(4): 111-117
于信芳, 庄大方. 2006. 基于MODIS NDVI数据的东北森林物候期监测. 资源科学, 28(4): 111-117 [DOI: 10.3321/j.issn:1007-7588.2006.04.023http://dx.doi.org/10.3321/j.issn:1007-7588.2006.04.023]
Yuan J W and Ni J. 2007. Plant signals and ecological evidences of climate change in China. Arid Land Geography, 30(4): 465-473
袁婧薇, 倪健. 2007. 中国气候变化的植物信号和生态证据. 干旱区地理, 30(4): 465-473
Zahawi R A, Dandois J P, Holl K D, Nadwodny D, Reid J L and Ellis E C. 2015. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological Conservation, 186: 287-295 [DOI: 10.1016/j.biocon.2015.03.031http://dx.doi.org/10.1016/j.biocon.2015.03.031]
Zeng L L, Wardlow B D, Xiang D X, Hu S and Li D R. 2020. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sensing of Environment, 237: 111511 [DOI: 10.1016/j.rse.2019.111511http://dx.doi.org/10.1016/j.rse.2019.111511]
Zhang L, Wang C Z, Yang H X, Zhang B H and Zheng Y. 2017. Phenological metrics dataset, land cover types map for the Tibetan Plateau and grassland biomass dataset for Qinghai Lake Basin. China Scientific Data, 2(2): 79-94
张丽, 王翠珍, 杨昊翔, 张炳华, 郑艺. 2017. 青藏高原地区物候数据集、地表覆盖种类图和青海湖环湖地区草地生物量数据集. 中国科学数据, 2(2): 79-94 [DOI: 10.11922/csdata.170.2017.0132http://dx.doi.org/10.11922/csdata.170.2017.0132]
Zhang X Y, Friedl M A and Schaaf C B. 2006. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. Journal of Geophysical Research: Biogeosciences, 111(G4): G04017 [DOI: 10.1029/2006JG000217http://dx.doi.org/10.1029/2006JG000217]
Zhang X Y, Friedl M A and Schaaf C B. 2009. Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. International Journal of Remote Sensing, 30(8): 2061-2074 [DOI: 10.1080/01431160802549237http://dx.doi.org/10.1080/01431160802549237]
Zhang X Y, Friedl M A, Schaaf C B and Strahler A H. 2004. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology, 10(7): 1133-1145 [DOI: 10.1111/j.1529-8817.2003.00784.xhttp://dx.doi.org/10.1111/j.1529-8817.2003.00784.x]
Zhang X Y, Friedl M A, Schaaf C B, Strahler A H, Hodges J C F, Gao F, Reed B C and Huete A. 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3): 471-475 [DOI: 10.1016/S0034-4257(02)00135-9http://dx.doi.org/10.1016/S0034-4257(02)00135-9]
Zhang X X, Ge Q S and Zheng J Y. 2004. Relationships between climate change and vegetation in Beijing using remote sensed data and phenological data. Acta Phytoecologica Sinica, 28(4): 499-506
张学霞, 葛全胜, 郑景云. 2004. 北京地区气候变化和植被的关系——基于遥感数据和物候资料的分析. 植物生态学报, 28(4): 499-506 [DOI: 10.17521/cjpe.2004.0068http://dx.doi.org/10.17521/cjpe.2004.0068]
Zhang X Y, Jayavelu S, Liu L L, Friedl M A, Henebry G M, Liu Y, Schaaf C B, Richardson A D and Gray J. 2018b. Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery. Agricultural and Forest Meteorology, 256-257: 137-149 [DOI: 10.1016/j.agrformet.2018.03.003http://dx.doi.org/10.1016/j.agrformet.2018.03.003]
Zhang X Y, Liu L L, Liu Y, Jayavelu S, Wang J M, Moon M, Henebry G M, Friedl M A and Schaaf C B. 2018a. Generation and evaluation of the VIIRS land surface phenology product. Remote Sensing of Environment, 216: 212-229 [DOI: 10.1016/j.rse.2018.06.047http://dx.doi.org/10.1016/j.rse.2018.06.047]
Zhang X Y, Wang J M, Henebry G M and Gao F. 2020. Development and evaluation of a new algorithm for detecting 30 m land surface phenology from VIIRS and HLS time series. ISPRS Journal of Photogrammetry and Remote Sensing, 161: 37-51 [DOI: 10.1016/j.isprsjprs.2020.01.012http://dx.doi.org/10.1016/j.isprsjprs.2020.01.012]
Zhang Y, Joiner J, Alemohammad S H, Zhou S and Gentine P. 2018c. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences, 15(19): 5779-5800 [DOI: 10.5194/bg-15-5779-2018http://dx.doi.org/10.5194/bg-15-5779-2018]
Zhang Y G, Zhang Q, Liu L Y, Zhang Y J, Wang S Q, Ju W M, Zhou G S, Zhou L, Tang J W, Zhu X D, Wang F, Huang Y, Zhang Z Y, Qiu B, Zhang X K, Wang S H, Huang C P, Tang X G and Zhang J S. 2021. ChinaSpec: a network for long-term ground-based measurements of solar-induced fluorescence in China. Journal of Geophysical Research: Biogeosciences, 126(3): e2020JG006042 [DOI: 10.1029/2020jg006042http://dx.doi.org/10.1029/2020jg006042]
Zheng Z T and Zhu W Q. 2017. Uncertainty of Remote Sensing Data in Monitoring Vegetation Phenology: A Comparison of MODIS C5 and C6 Vegetation Index Products on the Tibetan Plateau. Remote Sensing, 9(12): 1288. [DOI 10.3390/rs9121288http://dx.doi.org/10.3390/rs9121288]
Zhou H H, Fu D J, Zhang L F, Wang W S, Cen Y and Wang J N. 2016. Modeling grassland phenology and analyzing relationship with corresponding meteorological factors based on digital camera. Remote Sensing Technology and Application, 31(5): 966-974
周惠慧, 付东杰, 张立福, 王文生, 岑奕, 王晋年. 2016. 基于数字相机的草地物候模拟及其与气象因子关系的研究. 遥感技术与应用, 31(5): 966-974 [DOI: 10.11873/j.issn.1004-0323.2016.5.0966http://dx.doi.org/10.11873/j.issn.1004-0323.2016.5.0966]
Zhou K M, Lin H, Song R F, Jiang Q, Chen Z M and Du K. 2020. Comparison of two fitting methods for NDVI of the deciduous period of Ginkgo leaves. Journal of Central South University of Forestry and Technology, 40(2): 95-101
周柯妙, 林辉, 宋仁飞, 蒋仟, 陈忠明, 杜凯. 2020. 银杏落叶期叶片NDVI值2种拟合方法比较. 中南林业科技大学学报, 40(2): 95-101 [DOI: 10.14067/j.cnki.1673-923x.2020.02.012http://dx.doi.org/10.14067/j.cnki.1673-923x.2020.02.012]
Zhou L, Chi Y G, Liu X T, Dai X Q and Yang F T. 2020. Land surface phenology tracked by remotely sensed sun-induced chlorophyll fluorescence in subtropical evergreen coniferous forests. Acta Ecologica Sinica, 40(12): 4114-4125
周蕾, 迟永刚, 刘啸添, 戴晓琴, 杨风亭. 2020. 日光诱导叶绿素荧光对亚热带常绿针叶林物候的追踪. 生态学报, 40(12): 4114-4125 [DOI: 10.5846/stxb201901010004http://dx.doi.org/10.5846/stxb201901010004]
Zhou Y K. 2018. Comparative study of vegetation phenology extraction methods based on digital images. Progress in Geography, 37(8): 1031-1044
周玉科. 2018. 基于数码照片的植被物候提取多方法比较研究. 地理科学进展, 37(8): 1031-1044 [DOI: 10.18306/dlkxjzhttp://dx.doi.org/10.18306/dlkxjz]
Zhou Y K. 2019. Asymmetric behavior of vegetation seasonal growth and the climatic cause: evidence from long-term NDVI dataset in northeast China. Remote Sensing, 11(18): 2107 [DOI: 10.3390/rs11182107http://dx.doi.org/10.3390/rs11182107]
Zhou Y K. 2019. Depicting the asymmetries of vegetation phenology over Northeast China using remote sensing NDVI dataset. Remote Sensing Technology and Application, 34(2): 345-354
周玉科. 2019. 基于遥感的中国东北植被物候不对称特征分析. 遥感技术与应用, 34(2): 345-354 [DOI: 10.11873/j.issn.1004-0323.2019.2.0345http://dx.doi.org/10.11873/j.issn.1004-0323.2019.2.0345]
Zhou Y K and Liu J W. 2017. Vegetation phenological dataset of main ecological observation stations in China based on MODIS EVI. V1. [Science Data Bank]. (周玉科, 刘建文. 2017. 基于MODIS EVI的中国主要生态观测站植被物候数据集. V1.) [DOI: 10.11922/sciencedb.451http://dx.doi.org/10.11922/sciencedb.451]
Zhu K Z and Wan M W. 1973. Phenology. Beijing: Science Publishing Press: 1-131
竺可桢, 宛敏渭. 1973. 物候学. 北京: 科学出版社: 1-131
Zhu W Q, Mou M J, Wang L L and Jiang N. 2012. Evaluation of phenology extracting methods from vegetation index time series//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany: IEEE: 1158-1161 [DOI: 10.1109/IGARSS.2012.6351342http://dx.doi.org/10.1109/IGARSS.2012.6351342]
Zhu X G, Zhang G L, Tholen D, Wang Y, Xin C P and Song Q F. 2011. The next generation models for crops and agro-ecosystems. Science China Information Sciences, 54(3): 589-597 [DOI: 10.1007/s11432-011-4197-8http://dx.doi.org/10.1007/s11432-011-4197-8]
相关作者
相关机构