多角度光学定量遥感
Review of optical multi-angle quantitative remote sensing
- 2021年25卷第1期 页码:83-108
纸质出版日期: 2021-01-07
DOI: 10.11834/jrs.20218355
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-01-07 ,
扫 描 看 全 文
阎广建,姜海兰,闫凯,程诗宇,宋婉娟,童依依,刘雅楠,漆建波,穆西晗,张吴明,谢东辉,周红敏.2021.多角度光学定量遥感.遥感学报,25(1): 83-108
Yan G J,Jiang H L,Yan K,Cheng S Y,Song W J,Tong Y Y,Liu Y N,Qi J B,Mu X H,Zhang W M,Xie D H and Zhou H M. 2021. Review of optical multi-angle quantitative remote sensing. National Remote Sensing Bulletin, 25(1):83-108
随着遥感技术的发展,出现了从两个或两个以上的方向对同一目标进行观测的方式,即多角度遥感。多角度遥感有助于提高植被生物物理参数的反演精度,可为生态环境和气候变化研究提供更好的数据支持。本文围绕多角度光学遥感,总结了多角度遥感的发展、特点与优势,回顾了相关概念,系统总结了从地面到航空、航天的多角度观测手段,以及辐射传输模型、几何光学模型、混合模型、计算机模拟模型等多角度遥感模型的发展。在此基础上,梳理了多角度遥感在反照率、植被参数、气溶胶反演及冰冻圈遥感中的应用。最后,对多角度光学定量遥感的发展趋势及研究方向进行了展望。与单一角度遥感相比,多角度遥感提供了角度维信息,提高了遥感对地球表层参数的获取能力。随着星机地不同平台的多角度遥感观测手段越来越丰富,未来多角度遥感的主要研究方向集中在发展复杂地表多角度反射/辐射模型,增强多角度遥感数据预处理能力和提高多源数据综合应用能力等方面。
With the development of remote sensing technology
two or more viewing directions become available for the same target
and thus a new research field – multi-angle remote sensing appears. Compared with the traditional remote sensing which only views the ground surface in one direction
multi-angle remote sensing provides angle-dimensional information and improves the capability of obtaining vegetation structure parameters. It helps to improve the retrieval accuracy of key biophysical parameters and provides better data support for the research of ecological environment and climate change. After a detailed analysis of the publications in multi-angle remote sensing
we summarize the basic concepts
characteristics
advantages and developments of multi-angle remote sensing. Multi-angle remote sensing platforms vary from ground-based
airborne to spaceborne observation equipment. The first ground-based observation equipment appeared in 1952. All the ground-based equipment is classified as the fixed field of view mode or the changeable field of view mode. For the airborne or spaceborne platforms
only the fixed field of view mode is acceptable due to the heterogeneity of the land surfaces. With the development of UAV technique
the airborne multi-angle remote sensing is becoming more and more popular due to its flexibility and high spatial resolution. The multi-angle models play important roles in parameters inversion. Classic multi-angle remote sensing models include radiative transfer models
geometric optical models
hybrid models
and computer simulation models. They are all physical models which are developed based on some assumptions and theoretical analysis. Semi-empirical models combine the advantages of the empirical model and the physical model
as a result
they are simple and stable in inversion. The most widely used semi-empirical model is the linear kernel driven model used by the operational MODIS BRDF/albedo products algorithm. With the development of observing equipment and models
multi-angle remote sensing is widely used in many applications. Due to the anisotropic reflection characteristic
land surface albedo can only be retrieved by multi-angle remote sensing with high accuracy. Multi-angle remote sensing shows great potentials in vegetation structural parameters inversion which include the clumping index
LAI
FVC profile and canopy height. It has been found to be superior in vegetation type identification than the traditional vertical observation. Multi-angle remote sensing is also very useful in the cloud and aerosol parameters retrieval
such as the cloud albedo
height and types
as well as the aerosol optical depth and shapes. Large difference of optical scattering between the cloud and ice/snow in different viewing directions makes the identification of these covers easier with multi-angle remote sensing. The sea ice roughness can also be retrieved by multi-angle observations. In the last of this paper
we put forward the prospects of multi-angle optical quantitative remote sensing. As the multi-angle remote sensing observation data based on spaceborne
airborne
and ground platforms become more and more abundant
the main research direction of multi-angle remote sensing in the future should focus on the following aspects: developing multi-angle reflection/radiation models for complex surfaces
enhancing the preprocessing capabilities of multi-angle remote sensing data
and promoting the comprehensive abilities of multi-source data integration in application
etc.
多角度遥感二向性反射率分布函数(BRDF)传感器辐射传输模型几何光学模型
multi-angle remote sensingBidirectional Reflectance Distribution Function (BRDF)sensorradiative transfer modelgeometric optical model
Abdou W A, Conel J E, Pilorz S H, Helmlinger M C, Bruegge C J, Gaitley B J, Ledeboer W C and Martonchik J V. 2001. Vicarious calibration: a reflectance-based experiment with AirMISR. Remote Sensing of Environment, 77(3): 338-353 [DOI: 10.1016/S0034-4257(01)00213-9http://dx.doi.org/10.1016/S0034-4257(01)00213-9]
Abrams M. 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA’s Terra platform. International Journal of Remote Sensing, 21(5): 847-859 [DOI: 10.1080/014311600210326http://dx.doi.org/10.1080/014311600210326]
Barnsley M J, Allison D and Lewis P. 1997. On the information content of multiple view angle (MVA) images. International Journal of Remote Sensing, 18(9): 1937-1960 [DOI: 10.1080/014311 697217963http://dx.doi.org/10.1080/014311697217963]
Barnsley M J, Settle J J, Cutter M A, Lobb D R and Teston F. 2004. The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere. IEEE Transactions on Geoscience and Remote Sensing, 42(7): 1512-1520 [DOI: 10.1109/Tgrs.2004.827260http://dx.doi.org/10.1109/Tgrs.2004.827260]
Bicheron P, Leroy M, Hautecoeur O and Bréon F M. 1997. Enhanced discrimination of boreal forest covers with directional reflectances from the airborne polarization and directionality of Earth reflectances (POLDER) instrument. Journal of Geophysical Research: Atmospheres, 102(D24): 29517-29528 [DOI: 10.1029/97jd01330http://dx.doi.org/10.1029/97jd01330]
Borel C C, Gerstl S A W and Powers B J. 1991. The radiosity method in optical remote sensing of structured 3-D surfaces. Remote Sensing of Environment, 36(1): 13-44 [DOI: 10.1016/0034-4257(91)90028-5http://dx.doi.org/10.1016/0034-4257(91)90028-5]
Buchhorn M, Petereit R and Heim B. 2013. A manual transportable instrument platform for ground-based spectro-directional observations (ManTIS) and the resultant hyperspectral field goniometer system. Sensors, 13(12): 16105-16128 [DOI: 10.3390/S13121 6105http://dx.doi.org/10.3390/S131216105]
Burkart A, Aasen H, Alonso L, Menz G, Bareth G and Rascher U. 2015. Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer. Remote Sensing, 7(1): 725-746 [DOI: 10.3390/rs70100725http://dx.doi.org/10.3390/rs70100725]
Cao B. 2010. Study on Estimation of Forest Leaf Area Index using Multi-Angle Hyperspectral CHRIS Data. Beijing: Chinese Academy of Forestry
曹斌. 2010. 多角度高光谱CHRIS数据森林叶面积指数反演研究. 北京: 中国林业科学研究院
Chen J M and Leblanc S G. 1997. A four-scale bidirectional reflectance model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1316-1337 [DOI: 10.1109/36.628798http://dx.doi.org/10.1109/36.628798]
Chen J M, Liu J, Leblanc S G, Lacaze R and Roujean J L. 2003. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sensing of Environment, 84(4): 516-525 [DOI: 10.1016/S0034-4257(02)00150-5http://dx.doi.org/10.1016/S0034-4257(02)00150-5]
Chen J M, Menges C H and Leblanc S G. 2005. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sensing of Environment, 97(4): 447-457 [DOI: 10.1016/j.rse.2005.05.003http://dx.doi.org/10.1016/j.rse.2005.05.003]
Chen L, Yan G J, Li J, Yu Y J. 2009. Footprint uncertainty analysis for ground-based multiangular measurement of row crops. Advances in Earth Science, 24(7): 793-802
陈玲, 阎广建, 李静, 余莹洁. 2009. 行播作物地面方向性测量的视场不确定性分析. 地球科学进展, 24(7): 793-802 [DOI: 10.3321/j.issn:1001-8166.2009.07.013http://dx.doi.org/10.3321/j.issn:1001-8166.2009.07.013]
Chen L F, Liu Q H, Fan W J, Li X W, Xiao Q, Yan G J and Tian G L. 2002. A bi-directional gap model for simulating the directional thermal radiance of row crops. Science in China Series D: Earth Sciences, 45(12): 1087-1098 [DOI: 10.1360/02yd9106http://dx.doi.org/10.1360/02yd9106]
Chopping M, Su L H, Rango A, Martonchik J V, Peters D P C and Laliberte A. 2008. Remote sensing of woody shrub cover in desert grasslands using MISR with a geometric-optical canopy reflectance model. Remote Sensing of Environment, 112(1): 19-34 [DOI: 10.1016/j.rse.2006.04.023http://dx.doi.org/10.1016/j.rse.2006.04.023]
Coburn C A and Peddle D R. 2006. A low-cost field and laboratory goniometer system for estimating hyperspectral bidirectional reflectance. Canadian Journal of Remote Sensing, 32(3): 244-253 [DOI: 10.5589/M06-021http://dx.doi.org/10.5589/M06-021]
Dawson T P, Curran P J and Plummer S E. 1998. LIBERTY - Modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sensing of Environment, 65(1): 50-60 [DOI: 10.1016/S0034-4257(98)00007-8http://dx.doi.org/10.1016/S0034-4257(98)00007-8]
Deering D W and Leone P. 1986. A sphere-scanning radiometer for rapid directional measurements of sky and ground radiance. Remote Sensing of Environment, 19(1): 1-24 [DOI: 10.1016/0034-4257(86)90038-6http://dx.doi.org/10.1016/0034-4257(86)90038-6]
Deschamps P Y, Bréon F M, Leroy M, Podaire A, Bricaud A, Buriez J C and Seze G. 1994. The POLDER mission: instrument characteristics and scientific objectives. IEEE Transactions on Geoscience and Remote Sensing, 32(3): 598-615 [DOI: 10.1109/36.297978http://dx.doi.org/10.1109/36.297978]
Di Girolamo L and Davies R. 1994. A band-differenced angular signature technique for cirrus cloud detection. IEEE Transactions on Geoscience and Remote Sensing, 32(4): 890-896 [DOI: 10.1109/36.298017http://dx.doi.org/10.1109/36.298017]
Di Girolamo L and Wilson M J. 2003. A first look at band-differenced angular signatures for cloud detection from MISR. IEEE Transactions on Geoscience and Remote Sensing, 41(7): 1730-1734 [DOI: 10.1109/TGRS.2003.815659http://dx.doi.org/10.1109/TGRS.2003.815659]
Diner D J, Asner G P, Davies R, Knyazikhin Y, Muller J P, Nolin A W, Pinty B, Schaaf C B and Stroeve J. 1999. New directions in earth observing: scientific applications of multiangle remote sensing. Bulletin of the American Meteorological Society, 80(11): 2209-2228 [DOI: 10.1175/1520-0477(1999)080<2209:NDIEOS>2.0.CO;2http://dx.doi.org/10.1175/1520-0477(1999)080<2209:NDIEOS>2.0.CO;2]
Diner D J, Beckert J C, Reilly T H, Bruegge C J, Conel J E, Kahn R A, Martonchik J V, Ackerman T P, Davies R, Gerstl S A W, Gordon H R, Muller J, Myneni R B, Sellers P J, Pinty B and Verstraete M M. 1998. Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1072-1087 [DOI: 10.1109/36.700992http://dx.doi.org/10.1109/36.700992]
Diner D J, Braswell B H, Davies R, Gobron N, Hu J N, Jin Y F, Kahn R A, Knyazikhin Y, Loeb N, Muller J P, Nolin A W, Pinty B, Schaaf C B, Seiz G and Stroeve J. 2005. The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sensing of Environment, 97(4): 495-518 [DOI: 10.1016/j.rse.2005.06.006http://dx.doi.org/10.1016/j.rse.2005.06.006]
Disney M I, Lewis P and North P R J. 2000. Monte Carlo ray tracing in optical canopy reflectance modelling. Remote Sensing Reviews, 18(2/4): 163-196 [DOI: 10.1080/02757250009532389http://dx.doi.org/10.1080/02757250009532389]
Engelsen O, Pinty B, Verstraete M M and Martonchik J V. 1996. Parametric bidirectional reflectance factor models: evaluation, improvements and applications. Report EUR (
16426EN, European Commission, Joint Researches Center, Space Application Institute, ISPRA, Italy)
Fan W L, Chen J M, Ju W M and Nesbitt N. 2014b. Hybrid geometric optical-radiative transfer model suitable for forests on slopes. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5579-5586 [DOI: 10.1109/Tgrs.2013.2290590http://dx.doi.org/10.1109/Tgrs.2013.2290590]
Fan W L, Chen J M, Ju W M and Zhu G L. 2014a. GOST: a geometric-optical model for sloping terrains. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5469-5482 [DOI: 10.1109/Tgrs.2013.2289852http://dx.doi.org/10.1109/Tgrs.2013.2289852]
Féret J-B, Gitelson A A, Noble S D and Jacquemoud S. 2017. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sensing of Environment, 193: 204-215 [DOI: 10.1016/j.rse.2017.03.004http://dx.doi.org/10.1016/j.rse.2017.03.004]
Gao F, Schaaf C B, Strahler A H, Jin Y and Li X. 2003. Detecting vegetation structure using a kernel-based BRDF model. Remote Sensing of Environment, 86(2): 198-205 [DOI: 10.1016/S0034-4257(03)00100-7http://dx.doi.org/10.1016/S0034-4257(03)00100-7]
Gao F and Zhu Q J. 1997. The advance in multi-angle remote sensing of vegetation canopy. Scientia Geographica Sinica, 17(4): 346-355
高峰, 朱启疆. 1997. 植被冠层多角度遥感研究进展. 地理科学, 17(4): 346-355
Gastellu-Etchegorry J P, Yin T, Lauret N, Cajgfinger T, Gregoire T, Grau E, Feret J B, Lopes M, Guilleux J, Dedieu G, Malenovský Z, Cook B.D, Morton D, Rubio J, Durrieu S, Cazanave G, Martin E and Ristorcelli T. 2015. Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sensing, 7(2): 1667-1701 [DOI: 10.3390/rs70 201667http://dx.doi.org/10.3390/rs70201667]
Gatebe C K and King M D. 2016. Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications. Remote Sensing of Environment, 179: 131-148 [DOI: 10.1016/j.rse.2016.03.029http://dx.doi.org/10.1016/j.rse.2016.03.029]
Gemmell F. 2000. Testing the utility of multi-angle spectral data for reducing the effects of background spectral variations in forest reflectance model inversion. Remote Sensing of Environment, 72(1): 46-63 [DOI: 10.1016/S0034-4257(99)00091-7http://dx.doi.org/10.1016/S0034-4257(99)00091-7]
Goel N S, Rozehnal I and Thompson R L. 1991. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region. Remote Sensing of Environment, 36(2): 73-104 [DOI: 10.1016/0034-4257(91)90032-2http://dx.doi.org/10.1016/0034-4257(91)90032-2]
Goodenough A A and Brown S D. 2012. DIRSIG 5: core design and implementation//Proceedings Volume 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII. Baltimore, Maryland, United States: SPIE [DOI: 10.1117/12.919321http://dx.doi.org/10.1117/12.919321]
Govaerts Y M and Verstraete M M. 1998. Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Transactions on Geoscience and Remote Sensing, 36(2): 493-505 [DOI: 10.1109/36.662732http://dx.doi.org/10.1109/36.662732]
Grenzdörffer G and Niemeyer F. 2011. UAV-based BRDF-measurements of agricultural surfaces with PFIFFikus//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Zurich, Switzerland: [s.n.]:229-234 [DOI: 10.5194/isprsarchives-XXXVIII-1-C22-229-2011http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-229-2011]
Hao D L, Wen J G, Xiao Q, Wu S B, Lin X W, You D Q and Tang Y. 2018. Modeling anisotropic reflectance over composite sloping terrain. IEEE Transactions on Geoscience and Remote Sensing, 56(7): 3903-3923 [DOI: 10.1109/TGRS.2018.2816015http://dx.doi.org/10.1109/TGRS.2018.2816015]
Hao D L, Wen J G, Xiao Q, You D Q and Tang Y. 2020. An improved topography-coupled kernel-driven model for land surface anisotropic reflectance. IEEE Transactions on Geoscience and Remote Sensing, 58(4): 2833-2847 [DOI: 10.1109/TGRS.2019.2956705http://dx.doi.org/10.1109/TGRS.2019.2956705]
Hapke B. 1981. Bidirectional reflectance spectroscopy: 1. Theory. Journal of Geophysical Research: Solid Earth, 86(B4): 3039-3054 [DOI: 10.1029/Jb086ib04p03039http://dx.doi.org/10.1029/Jb086ib04p03039]
Harrison E F, Minnis P, Barkstrom B B, Ramanathan V, Cess R D and Gibson G G. 1990. Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. Journal of Geophysical Research: Atmospheres, 95(D11): 18687-18703 [DOI: 10.1029/Jd095id11p18687http://dx.doi.org/10.1029/Jd095id11p18687]
He L M, Chen J M, Pisek J, Schaaf C B and Strahler A H. 2012. Global clumping index map derived from the MODIS BRDF product. Remote Sensing of Environment, 119: 118-130 [DOI: 10.1016/j.rse.2011.12.008http://dx.doi.org/10.1016/j.rse.2011.12.008]
He L M, Li X W, Yan G J, Wang H and Wang J D. 2004. Atmospheric correction for AMTIS based on BRDF loop and MODTRAN4.1. Journal of Remote Sensing, 8(5): 389-396
何立明, 李小文, 阎广建, 王华, 王锦地. 2004. AMTIS大气订正算法——基于MODTRAN4.1与BRDF大气订正环. 遥感学报, 8(5): 389-396 [DOI: 10.3321/j.issn:1007-4619.2004.05.002http://dx.doi.org/10.3321/j.issn:1007-4619.2004.05.002]
He L M, Yan G J, Li X W, Wang Q and Wang W J. 2006. Atmospheric correction for AMTIS single-channel multi-angular thermal-infrared imagery. Journal of Infrared and Millimeter Waves, 25(6): 429-433
何立明, 阎广建, 李小文, 王桥, 王文杰. 2006. AMTIS单通道多角度热红外图像的大气订正. 红外与毫米波学报, 25(6): 429-433 [DOI: 10.3321/j.issn:1001-9014.2006.06.008http://dx.doi.org/10.3321/j.issn:1001-9014.2006.06.008]
Heiskanen J. 2006. Tree cover and height estimation in the Fennoscandian tundra-taiga transition zone using multiangular MISR data. Remote Sensing of Environment, 103(1): 97-114 [DOI: 10.1016/j.rse.2006.03.015http://dx.doi.org/10.1016/j.rse.2006.03.015]
Horváth Á and Davies R. 2001. Simultaneous retrieval of cloud motion and height from polar-orbiter multiangle measurements. Geophysical Research Letters, 28(15): 2915-2918 [DOI: 10.1029/2001GL012951http://dx.doi.org/10.1029/2001GL012951]
Hu B X, Li X W, Zhu C G and Strahler A H. 1996. A new method for atmospheric correction: BRDF-atmospheric correction loop. Remote Sensing of Environment China, 11(2): 151-160
胡宝新, 李小文, 朱重光, Strahler A H. 1996. 一种大气订正的方法: BRDF——大气订正环. 环境遥感, 11(2): 151-160
Hu R H, Yan G J, Nerry F, Liu Y S, Jiang Y M, Wang S R, Chen Y M, Mu X H, Zhang W M and Xie D H. 2018. Using airborne laser scanner and path length distribution model to quantify clumping effect and estimate leaf area index. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3196-3209 [DOI: 10.1109/Tgrs.2018.2794504http://dx.doi.org/10.1109/Tgrs.2018.2794504]
Huang J X, Wu B F, Zeng Y and Tian Y C. 2005. Review of tree, shrub, grass cover of horizontal and vertical scale retrieval from remotely sensed data. Advances in Earth Science, 20(8): 871-881
黄健熙, 吴炳方, 曾源, 田亦陈. 2005. 水平和垂直尺度乔、灌、草覆盖度遥感提取研究进展. 地球科学进展, 20(8): 871-881 [DOI: 10.3321/j.issn:1001-8166.2005.08.008http://dx.doi.org/10.3321/j.issn:1001-8166.2005.08.008]
Hyman A H and Barnsley M J. 1997. On the potential for land cover mapping from multiple-view-angle (MVA) remotely-sensed images. International Journal of Remote Sensing, 18(11): 2471-2475 [DOI: 10.1080/014311697217747http://dx.doi.org/10.1080/014311697217747]
Irons J R, Ranson K J, Williams D L, Irish R R and Huegel F G. 1991. An off-nadir-pointing imaging spectroradiometer for terrestrial ecosystem studies. IEEE Transactions on Geoscience and Remote Sensing, 29(1): 66-74 [DOI: 10.1109/36.103294http://dx.doi.org/10.1109/36.103294]
Jacquemoud S and Baret F. 1990. PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 34(2): 75-91 [DOI: 10.1016/0034-4257(90)90100-Zhttp://dx.doi.org/10.1016/0034-4257(90)90100-Z]
Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P J, Asner G P, François C and Ustin S L. 2009. PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sensing of Environment, 113(S1): S56-S66 [DOI: 10.1016/j.rse.2008.01.026http://dx.doi.org/10.1016/j.rse.2008.01.026]
Jiao Z T. 2008. The Use of MODIS BRDF/Albedo Products to Recover Land Surface Properties. Beijing: Beijing Normal University
焦子锑. 2008. 利用MODIS BRDF和反照率产品进行地表特性的研究. 北京: 北京师范大学
Jiao Z T, Ding A X, Kokhanovsky A, Schaaf C, Bréon F M, Dong Y D, Wang Z S, Liu Y, Zhang X N, Yin S Y, Cui L, Mei L L and Chang Y X. 2019. Development of a snow kernel to better model the anisotropic reflectance of pure snow in a kernel-driven BRDF model framework. Remote Sensing of Environment, 221: 198-209 [DOI: 10.1016/j.rse.2018.11.001http://dx.doi.org/10.1016/j.rse.2018.11.001]
Jiao Z T, Dong Y D, Schaaf C B, Chen J M, Román M, Wang Z S, Zhang H, Ding A X, Erb A, Hill M J, Zhang X N and Strahler A. 2018. An algorithm for the retrieval of the clumping index (CI) from the MODIS BRDF product using an adjusted version of the kernel-driven BRDF model. Remote Sensing of Environment, 209: 594-611 [DOI: 10.1016/j.rse.2018.02.041http://dx.doi.org/10.1016/j.rse.2018.02.041]
Jiao Z T, Hill M J, Schaaf C B, Zhang H, Wang Z S and Li X W. 2014. An Anisotropic Flat Index (AFX) to derive BRDF archetypes from MODIS. Remote Sensing of Environment, 141: 168-187 [DOI: 10.1016/j.rse.2013.10.017http://dx.doi.org/10.1016/j.rse.2013.10.017]
Jiao Z T, Schaaf C B, Dong Y D, Román M, Hill M J, Chen J M, Wang Z S, Zhang H, Saenz E, Poudyal R, Gatebe C, Bréon F M, Li X W abd Strahler A. 2016. A method for improving hotspot directional signatures in BRDF models used for MODIS. Remote Sensing of Environment, 186: 135-151 [DOI: 10.1016/j.rse.2016.08.007http://dx.doi.org/10.1016/j.rse.2016.08.007]
Kassianov E I, Ackerman T, Marchand R T and Ovtchinnikov M. 2003. Satellite multiangle cumulus geometry retrieval: case study. Journal of Geophysical Research: Atmospheres, 108(D3): 4117 [DOI: 10.1029/2002jd002350http://dx.doi.org/10.1029/2002jd002350]
Kimes D. 1983. Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques. Remote Sensing of Environment, 13(1): 33-55 [DOI: 10.1016/0034-4257(83)90026-3http://dx.doi.org/10.1016/0034-4257(83)90026-3]
Kimes D S and Sellers P J. 1985. Inferring hemispherical reflectance of the Earth's surface for global energy budgets from remotely sensed nadir or directional radiance values. Remote Sensing of Environment, 18(3): 205-223 [DOI: 10.1016/0034-4257(85)900 58-6http://dx.doi.org/10.1016/0034-4257(85)90058-6]
Kimes D S, Sellers P J and Diner D J. 1987. Extraction of spectral hemispherical reflectance (albedo) of surfaces from nadir and directional reflectance data. International Journal of Remote Sensing, 8(12): 1727-1746 [DOI: 10.1080/01431168708954813http://dx.doi.org/10.1080/01431168708954813]
King M D, Kaufman Y J, Tanré D and Nakajima T. 1999. Remote sensing of tropospheric aerosols from space: past, present, and future. Bulletin of the American Meteorological Society, 80(11): 2229-2259 [DOI: 10.1175/1520-0477(1999)080<2229:Rsotaf>2.0.Co;2http://dx.doi.org/10.1175/1520-0477(1999)080<2229:Rsotaf>2.0.Co;2]
King M D, Strange M G, Leone P and Blaine L R. 1986. Multiwavelength scanning radiometer for airborne measurements of scattered radiation within clouds. Journal of Atmospheric and Oceanic Technology, 3(3): 513-522 [DOI:10.1175/1520-0426(1986)003<0513:Msrfam>2.0.Co;2http://dx.doi.org/10.1175/1520-0426(1986)003<0513:Msrfam>2.0.Co;2]
Kobayashi H and Iwabuchi H. 2008. A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape. Remote Sensing of Environment, 112(1): 173-185 [DOI: 10.1016/j.rse.2007.04.010http://dx.doi.org/10.1016/j.rse.2007.04.010]
Kordecki A, Palus H and Bal A. 2016. Practical vignetting correction method for digital camera with measurement of surface luminance distribution. Signal, Image and Video Processing, 10(8): 1417-1424 [DOI: 10.1007/s11760-016-0941-2http://dx.doi.org/10.1007/s11760-016-0941-2]
Kuusk A. 1995. A fast, invertible canopy reflectance model. Remote Sensing of Environment, 51(3): 342-350 [DOI: 10.1016/0034-4257(94)00059-Vhttp://dx.doi.org/10.1016/0034-4257(94)00059-V]
Kuusk A, Lang M and Nilson T. 2004. Simulation of the reflectance of ground vegetation in sub-boreal forests. Agricultural and Forest Meteorology, 126(1/2): 33-46 [DOI: 10.1016/j.argformet.2004.05.004http://dx.doi.org/10.1016/j.argformet.2004.05.004]
Lacaze R, Chen J M, Roujean J L and Leblanc S G. 2002. Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sensing of Environment, 79(1): 84-95 [DOI: 10.1016/S0034-4257(01)00241-3http://dx.doi.org/10.1016/S0034-4257(01)00241-3]
Leblanc S G, Bicheron P, Chen J M, Leroy M and Cihlar J. 1999. Investigation of directional reflectance in boreal forests with an improved four-scale model and airborne POLDER data. IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1396-1414 [DOI: 10.1109/36.763304http://dx.doi.org/10.1109/36.763304]
Leblanc S G and Chen J M. 2000. A windows graphic user interface (GUI) for the five-scale model for fast BRDF simulations. Remote Sensing Reviews, 19(1/4): 293-305 [DOI: 10.1080/02757250009532423http://dx.doi.org/10.1080/02757250009532423]
Leng S Y. 2016. Thirty Years of Geoscience: from Classics to Frontiers. China: The Commercial Press
冷疏影. 2016. 地理科学三十年: 从经典到前沿. 北京: 商务印书馆
Lewis P. 1999. Three-dimensional plant modelling for remote sensing simulation studies using the Botanical Plant Modelling System. Agronomie, 19(3/4): 185-210 [DOI: 10.1051/agro:1999 0302http://dx.doi.org/10.1051/agro:19990302]
Li L Y, Chen J, Mu X H, Li W H, Yan G J, Xie D H and Zhang W M. 2020. Quantifying understory and overstory vegetation cover using UAV-based RGB imagery in forest plantation. Remote Sensing, 12(2): 298 [DOI: 10.3390/rs12020298http://dx.doi.org/10.3390/rs12020298]
Li X, Li X W, Li Z Y, Wang J, Ma M G, Liu Q, Xiao Q, Hu Z Y, Che T, Wang J M, Liu Q H, Chen E X, Yan G J, Liu S M, Wang W Z, Zhang L X, Wang J D, Niu Z, Jin R, Ran Y H and Wang L X. 2012. Progresses on the watershed allied telemetry experimental research (WATER). Remote Sensing Technology and Application, 27(5): 637-649
李新, 李小文, 李增元, 王建, 马明国, 刘强, 肖青, 胡泽勇, 车涛, 王介民, 柳钦火, 陈尔学, 阎广建, 刘绍民, 王维真, 张立新, 王锦地, 牛铮, 晋锐, 冉有华, 王亮绪. 2012. 黑河综合遥感联合试验研究进展: 概述. 遥感技术与应用, 27(5): 637-649
Li X W, Wang J D and Strahler A H. 1994. A hybrid geometric Optical-Radiative Transfer Approach for Modeling Light Absorption and Albedo of Discontinuous Canopies. Science in China (Scientia Sinica) Series B 38, 807-816
李小文, 王锦地, Strahler A H. 1994. 不连续植被及其下地表面对光辐射的吸收与反照率模型. 中国科学: B 辑, 24(8): 828-836
Li X W and Strahler A H. 1992. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 276-292 [DOI: 10.1109/36.134078http://dx.doi.org/10.1109/36.134078]
Li X W and Wang J D. The vegetation optical remote sensing models and the structures parameters. Beijing: Science Press, 1995. (李小文, 王锦地. 1995. 植被光学遥感模型与植被结构参数化. 北京: 科学出版社)
Li X W, Wang J D, Liu Y, Zhu X Y and Strahler A H. 1993. A hybrid geometric optical and radiative transfer approach for modeling BRDF of discontinuous canopies. Remote Sensing of Environment China, 8(3): 161-172
李小文, 王锦地, 刘毅, 朱晓艳, Strahler A H. 1993. 不连续植被二向性反射的几何光学与辐射传输一体化综合模型初探. 环境遥感, 8(3): 161-172
Li X W, Wang J D and Strahler A H. 2000. Scale effects and scaling-up by geometric-optical model. Science in China Series E: Technological Sciences, 43(1): 17-22
李小文, 王锦地, Strahler A H. 2000. 尺度效应及几何光学模型用于尺度纠正. 中国科学: E 辑, 30(增刊): 12-17 [DOI: 10.1007/BF02916574http://dx.doi.org/10.1007/BF02916574]
Li X W, Wang J F, Wang J D and Liu Q H. 2001. Multi-Angle and Thermal Infrared Remote Sensing. Beijing: Science Press
李小文, 汪骏发, 王锦地, 柳钦火. 2001. 多角度与热红外对地遥感. 北京: 科学出版社
Liang S L, Strahler A H, Barnsley M J, Borel C C, Gerstl S A W, Diner D J, Prata A J and Walthall C L. 2000. Multiangle remote sensing: past, present and future. Remote Sensing Reviews, 18(2/4): 83-102
Liang S L, Li X W, Wang J D, et al. 2013. Quantitative Remote Sening: Theory and Algorithms. Beijing: Science Press
梁顺林, 李小文, 王锦地, 等. 2013. 定量遥感: 理念与算法. 北京: 科学出版社
Lin C, Li C L, Wang L, Bi Y M and Zheng Y Q. 2017. Preflight spectral calibration of hyperspectral carbon dioxide spectrometer of TanSat. Optics and Precision Engineering, 25(8): 2064-2075
蔺超, 李诚良, 王龙, 毕研盟, 郑玉权. 2017. 碳卫星高光谱CO2探测仪发射前光谱定标. 光学精密工程, 25(8): 2064-2075 [DOI: 10.3788/OPE.20172508.2064http://dx.doi.org/10.3788/OPE.20172508.2064]
Liu C Y, Gu W, Li L T and Xu Y J. 2013. The characteristics of a level sea-ice multiangle reflection spectrum in the Bohai sea. Acta Oceanologica Sinica, 35(3): 112-118
刘成玉, 顾卫, 李澜涛, 许映军. 2013. 渤海平整海冰多角度反射光谱特征. 海洋学报, 35(3): 112-118 [DOI: 10.3969/j.issn.0253-4193.2013.03.013http://dx.doi.org/10.3969/j.issn.0253-4193.2013.03.013]
Liu L Y. 2014. Principle and Application of Vegetation Quantitative Remote Sensing. Beijing: Science Press
刘良云. 2014. 植被定量遥感原理与应用. 北京: 科学出版社
Liu Q, Liu Q H, Xiao Q and Tian G L. 2002. Research on the geometric correction method of airborne multi-angle remote sensing image. Science in China (Series D), 32(4): 299-306
刘强, 柳钦火, 肖青, 田国良. 2002. 机载多角度遥感图像的几何校正方法研究. 中国科学: D 辑, 32(4): 299-306 [DOI: 10.3969/j.issn.1674-7240.2002.04.005http://dx.doi.org/10.3969/j.issn.1674-7240.2002.04.005]
Liu S H, Liu Q, Liu Q H, Wen J G and Li X W. 2010. The angular and spectral kernel model for BRDF and albedo retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 241-256 [DOI: 10.1109/Jstars.2010.2048745http://dx.doi.org/10.1109/Jstars.2010.2048745]
Martonchik J V, Bruegge C J and Strahler A H. 2000. A review of reflectance nomenclature used in remote sensing. Remote Sensing Reviews, 19(1/4): 9-20 [DOI: 10.1080/02757250009532407http://dx.doi.org/10.1080/02757250009532407]
Martonchik J V and Diner D J. 1992. Retrieval of aerosol optical properties from multi-angle satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 223-230 [DOI: 10.1109/36.134073http://dx.doi.org/10.1109/36.134073]
Middleton W F K and Mungall A G. 1952. The luminous directional reflectance of snow. Journal of the Optical Society of America, 42(8): 572-579 [DOI: 10.1364/Josa.42.000572http://dx.doi.org/10.1364/Josa.42.000572]
Moroney C, Davies R and Muller J P. 2002. Operational retrieval of cloud-top heights using MISR data. IEEE Transactions on Geoscience and Remote Sensing, 40(7): 1532-1540 [DOI: 10.1109/Tgrs.2002.801150http://dx.doi.org/10.1109/Tgrs.2002.801150]
Morsdorf F, Kötz B, Meier E, Itten K I and Allgöwer B. 2006. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sensing of Environment, 104(1): 50-61 [DOI: 10.1016/j.rse.2006.04.019http://dx.doi.org/10.1016/j.rse.2006.04.019]
Myneni R B, Hoffman S, Knyazikhin Y, Privette J L, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith G R, Lotsch A, Friedl M, Morisette J T, Votava P, Nemani R R and Running S W. 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83(1/2): 214-231 [DOI: 10.1016/S0034-4257(02)00074-3http://dx.doi.org/10.1016/S0034-4257(02)00074-3]
Nicodemus F E, Richmond J C, Hsia J J, Ginsberg I W and Limperis T. 1977. Geometrical considerations and nomenclature for reflectance. Washington D.C.: US Department of Commerce, National Bureau of Standards
Nolin A W, Fetterer F M and Scambos T A. 2002. Surface roughness characterizations of sea ice and ice sheets: case studies with MISR data. IEEE Transactions on Geoscience and Remote Sensing, 40(7): 1605-1615 [DOI: 10.1109/Tgrs.2002.801581http://dx.doi.org/10.1109/Tgrs.2002.801581]
Nolin A W and Payne M C. 2007. Classification of glacier zones in western Greenland using albedo and surface roughness from the Multi-angle Imaging SpectroRadiometer (MISR). Remote Sensing of Environment, 107(1/2): 264-275 [DOI: 10.1016/j.rse.2006.11.004http://dx.doi.org/10.1016/j.rse.2006.11.004]
North P R J. 1996. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 946-956 [DOI: 10.1109/36.508411http://dx.doi.org/10.1109/36.508411]
Peake W H and Oliver T L. 1971. The response of terrestrial surfaces at microwave frequencies. Ohio: Defense Technical Information Center
Pegrum H, Fox N, Chapman M and Milton E. 2006. Design and testing a new instrument to measure the angular reflectance of terrestrial surfaces//2006 IEEE International Symposium on Geoscience and Remote Sensing. Denver, CO, USA: IEEE, 1119-1122 [DOI: 10.1109/IGARSS.2006.289http://dx.doi.org/10.1109/IGARSS.2006.289]
Pinty B, Widlowski J L, Gobron N, Verstraete M M and Diner D J. 2002. Uniqueness of multiangular measurements. I. An indicator of subpixel surface heterogeneity from MISR. IEEE Transactions on Geoscience and Remote Sensing, 40(7): 1560-1573 [DOI: 10.1109/Tgrs.2002.801148http://dx.doi.org/10.1109/Tgrs.2002.801148]
Privette J L, Emery W J and Schimel D S. 1996. Inversion of a vegetation reflectance model with NOAA AVHRR data. Remote Sensing of Environment, 58(2): 187-200 [DOI: 10.1016/S0034-4257(96)00066-1http://dx.doi.org/10.1016/S0034-4257(96)00066-1]
Qi J B, Xie D H, Guo D S and Yan G J. 2017. A large-scale emulation system for realistic three-dimensional (3-D) forest simulation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(11): 4834-4843 [DOI: 10.1109/JSTARS.2017.2714423http://dx.doi.org/10.1109/JSTARS.2017.2714423]
Qi J B, Xie D H, Yin T G, Yan G J, Gastellu-Etchegorry J P, Li L Y, Zhang W M, Mu X H and Norford L K. 2019. LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes. Remote Sensing of Environment, 221: 695-706 [DOI: 10.1016/j.rse.2018.11.036http://dx.doi.org/10.1016/j.rse.2018.11.036]
Qin W H and Gerstl S A W. 2000. 3-D scene modeling of semidesert vegetation cover and its radiation regime. Remote Sensing of Environment, 74(1): 145-162 [DOI: 10.1016/S0034-4257(00)00129-2http://dx.doi.org/10.1016/S0034-4257(00)00129-2]
Ramanathan V, Cess R D, Harrison E F, Minnis P, Barkstrom B R, Ahmad E and Hartmann D. 1989. Cloud-radiative forcing and climate: results from the Earth radiation budget experiment. Science, 243(4887): 57-63 [DOI: 10.1126/science.243.4887.57http://dx.doi.org/10.1126/science.243.4887.57]
Ranson K J, Irons J R and Williams D L. 1994. Multispectral bidirectional reflectance of northern forest canopies with the advanced solid-state array spectroradiometer (ASAS). Remote Sensing of Environment, 47(2): 276-289 [DOI: 10.1016/0034-4257(94)90161-9http://dx.doi.org/10.1016/0034-4257(94)90161-9]
Ren H Z, Yan G J, Liu R Y, Nerry F, Li Z L and Hu R H. 2013. Impact of sensor footprint on measurement of directional brightness temperature of row crop canopies. Remote Sensing of Environment, 134: 135-151 [DOI: 10.1016/j.rse.2013.02.025http://dx.doi.org/10.1016/j.rse.2013.02.025]
Roujean J L, Leroy M and Deschamps P Y. 1992. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data. Journal of Geophysical Research: Atmospheres, 97(D18): 20455-20468 [DOI: 10.1029/92JD01411http://dx.doi.org/10.1029/92JD01411]
Salomonson V V, Barnes W, Xiong J, Kempler S and Masuoka E. 2002. An overview of the Earth Observing System MODIS instrument and associated data systems performance//IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada: IEEE, 1174-1176 [DOI: 10.1109/IGARSS.2002.1025812http://dx.doi.org/10.1109/IGARSS.2002.1025812]
Sandmeier S and Deering D W. 1999. Structure analysis and classification of boreal forests using airborne hyperspectral BRDF data from ASAS. Remote Sensing of Environment, 69(3): 281-295 [DOI: 10.1016/S0034-4257(99)00032-2http://dx.doi.org/10.1016/S0034-4257(99)00032-2]
Sandmeier S, Sandmeier W, Itten K I, Schaepman M E and Kellenberger T W. 1995. Acquisition of bidirectional reflectance data using the Swiss Field-Goniometer System (FIGOS)//Proceedings of EARSeL Symposium. Basel, Switzerland: [s.n.]: 55-61
Sandmeier S, Müller C, Hosgood B and Andreoli G. 1998. Physical mechanisms in hyperspectral BRDF data of grass and watercress. Remote Sensing of Environment, 66(2): 222-233 [DOI: 10.1016/S0034-4257(98)00060-1http://dx.doi.org/10.1016/S0034-4257(98)00060-1]
Schaaf C B, Gao F, Strahler A H, Lucht W, Li X W, Tsang T, Strugnell N C, Zhang X Y, Jin Y F, Muller J P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d'Entremont R P, Hu B X, Liang S L, Privette J L and Roy D. 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote sensing of Environment, 83(1/2): 135-148 [DOI: 10.1016/S0034-4257(02)00091-3http://dx.doi.org/10.1016/S0034-4257(02)00091-3]
Schaaf C B, Li X W and Strahler A H. 1994. Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model. IEEE Transactions on Geoscience and Remote Sensing, 32(6): 1186-1193 [DOI: 10.1109/36.338367http://dx.doi.org/10.1109/36.338367]
Schaepman-Strub G, Schaepman M E, Painter T H, Dangel S and Martonchik J V. 2006. Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sensing of Environment, 103(1): 27-42 [DOI: 10.1016/j.rse.2006.03.002http://dx.doi.org/10.1016/j.rse.2006.03.002]
Schneider F D, Letterer R, Morsdorf F, Gastellu-Etchegorry J P, Lauret N, Pfeifer N and Schaepman M E. 2014. Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data. Remote Sensing of Environment, 152: 235-250 [DOI: 10.1016/j.rse.2014.06.015http://dx.doi.org/10.1016/j.rse.2014.06.015]
Schneider T, Dorigo W, Huber K, Schneider W. 2006. Field goniometer measurements for biophysical parameter retrieval in support of Chris data evaluations//Proceedings of the 4th ESA CHRIS/Proba Workshop. Frascati: [s.n.]
Schueler C F, Lee T F and Miller S D. 2013. VIIRS constant spatial-resolution advantages. International Journal of Remote Sensing, 34(16): 5761-5777 [DOI: 10.1080/01431161.2013.796102http://dx.doi.org/10.1080/01431161.2013.796102]
Shabanov N V, Huang D, Knjazikhin Y, Dickinson R E and Myneni R B. 2007. Stochastic radiative transfer model for mixture of discontinuous vegetation canopies. Journal of Quantitative Spectroscopy and Radiative Transfer, 107(2): 236-262 [DOI: 10.1016/j.jqsrt.2007.01.053http://dx.doi.org/10.1016/j.jqsrt.2007.01.053]
Shabanov N V, Knyazikhin Y, Baret F and Myneni R B. 2000. Stochastic modeling of radiation regime in discontinuous vegetation canopies. Remote Sensing of Environment, 74(1): 125-144 [DOI: 10.1016/S0034-4257(00)00128-0http://dx.doi.org/10.1016/S0034-4257(00)00128-0]
Steiner D and Gutermann T. 1966. Russian data on spectral reflectance of vegetation, soil and rock types. Zurich Univ (Switzerland) Geographisches Institut.
Stricker N C M, Hahne A, Smith D L, Delderfield J, Oliver M B and Edwards T. 1995. ATSR-2: the evolution in its design from ERS-1 to ERS-2. ESA Bulletin, 83: 32-37
Stroeve J C and Nolin A W. 2002. New methods to infer snow albedo from the MISR instrument with applications to the Greenland ice sheet. IEEE Transactions on Geoscience and Remote Sensing, 40(7): 1616-1625 [DOI: 10.1109/TGRS.2002.801144http://dx.doi.org/10.1109/TGRS.2002.801144]
Su W, Guo H, Zhao D L, Liu T and Zhang M Z. 2016. Leaf area index retrivel for maize canopy using optimized leaf angle distribution function of PROSAIL model. Transactions of the Chinese Society for Agricultural Machinery, 47(3): 234-241, 271
苏伟, 郭皓, 赵冬玲, 刘婷, 张明政. 2016. 基于优化PROSAIL叶倾角分布函数的玉米LAI反演方法. 农业机械学报, 47(3): 234-241, 271 [DOI: 10.6041/j.issn.1000-1298.2016.03.033http://dx.doi.org/10.6041/j.issn.1000-1298.2016.03.033]
Suits G H. 1971. The calculation of the directional reflectance of a vegetative canopy. Remote Sensing of Environment, 2: 117-125 [DOI: 10.1016/0034-4257(71)90085-Xhttp://dx.doi.org/10.1016/0034-4257(71)90085-X]
van der Tol C, Vilfan N R, Yang P Q, Bayat B and Verhoef W. 2018. Modeling reflectance, fluorescence and photosynthesis: development of the scope model//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE: 5968-5971
Verhoef W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: the sail model. Remote Sensing of Environment, 16(2): 125-141 [DOI: 10.1016/0034-4257(84)900 57-9http://dx.doi.org/10.1016/0034-4257(84)90057-9]
Verhoef W. 1998. Theory of Radiative Transfer Models Applied in Optical Remote Sensing of Vegetation Canopies. Wageningen, Netherlands: Wageningen Agricultural University
Verhoef W, Bach H. 2003. Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sensing of Environment, 87(1): 23-41 [DOI: 10.1016/S0034-4257(03)00143-3http://dx.doi.org/10.1016/S0034-4257(03)00143-3]
Vilfan N, van der Tol C, Muller O, Rascher U and Verhoef W. 2016. Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra. Remote Sensing of Environment, 186: 596-615 [DOI: 10.1016/j.rse.2016.09.017http://dx.doi.org/10.1016/j.rse.2016.09.017]
Vogt P, Verstraete M M, Pinty B, Menentl M, Caramagno A, Rast M and Lajas D. 2000. The impact of multi-angular measurements on the accuracy of land-surface Albedo retrieval: peliminary results for the proposed ESA LSPIM mission. Remote Sensing Reviews, 19(1/4): 191-204 [DOI: 10.1080/02757250009532418http://dx.doi.org/10.1080/02757250009532418]
Wang B and Ju W M. 2017. Limitations and Improvements of the Leaf Optical Properties Model Leaf Incorporating Biochemistry Exhibiting Reflectance and Transmittance Yields (LIBERTY). Remote Sensing, 9(5): 431 [DOI: 10.3390/Rs9050431http://dx.doi.org/10.3390/Rs9050431]
Wang J F, Gao X P, Chen Z F, Xiao J C and Yang F. 2001. Remote sensing in multi-angle and airborne imaging system. Journal of Infrared and Millimeter Waves, 20(5): 329-334
汪骏发, 高晓萍, 陈志峰, 肖金才, 杨帆. 2001. 多角度遥感及其航空成像仪. 红外与毫米波学报, 20(5): 329-334 [DOI: 10.3321/j.issn:1001-9014.2001.05.003http://dx.doi.org/10.3321/j.issn:1001-9014.2001.05.003]
Wang Q, Adiku S, Tenhunen J and Granier A. 2005. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment, 94(2): 244-255 [DOI: 10.1016/j.rse.2004.10.006http://dx.doi.org/10.1016/j.rse.2004.10.006]
Wen J G. 2008. Remote Sensing Inversion and Scale Effect Study of Surface BRDF/ Albedo in Complex Terrain Conditions. Beijing:
Institute of Remote Sensing Applied Research, Chinese Academy of Sciences 闻建光. 2008. 复杂地形条件下地表BRDF/反照率遥感反演与尺度效应研究. 北京: 中国科学院遥感应用研究所
Wen J G, Liu Q, Liu Q H, Xiao Q and Li X W. 2015. Remote Sensing Modeling and Albedo Inversion of BRDF Characteristics of Land Surface. Beijing: Science Press
闻建光, 刘强, 柳钦火, 肖青, 李小文. 2015. 陆表二向反射特性遥感建模及反照率反演. 北京: 科学出版社
Wen J G, Liu Q, Xiao Q, Liu Q H, You D Q, Hao D L, Wu S B and Lin X W. 2018. Characterizing land surface anisotropic reflectance over rugged terrain: a review of concepts and recent developments. Remote Sensing, 10(3): 370 [DOI: 10.3390/rs100 30370http://dx.doi.org/10.3390/rs10030370]
Wielicki B A, Barkstrom B R, Baum B A, Charlock T P, Green R N, Kratz D P, Lee R B, Minnis P, Smith G L, Wong T, Young D F, Cess R D, Coakley J A, Crommelynck D A H, Donner L, Kandel R, King M D, Miller A J, Ramanathan V, Randall D A, Stowe L L and Welch R M. 1998. Clouds and the Earth's Radiant Energy System (CERES): algorithm overview. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1127-1141 [DOI: 10.1109/36.701020http://dx.doi.org/10.1109/36.701020]
Wing B M, Ritchie M W, Boston K, Cohen W B, Gitelman A and Olsen M J. 2012. Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest. Remote Sensing of Environment, 124: 730-741 [DOI: 10.1016/j.rse.2012.06.024http://dx.doi.org/10.1016/j.rse.2012.06.024]
Xu X R, Chen L F and Zhuang J L. 2001. Genetic inverse algorithm for retrieval of component temperature of mixed pixel by multi-angle thermal infrared remote sensing data. Science in China Series D: Earth Sciences, 44(4): 363-372
徐希孺, 陈良富, 庄家礼. 2001. 基于多角度热红外遥感的混合像元组分温度演化反演方法. 中国科学: D 辑, 31(1): 81-88 [DOI: 10.1007/BF0 2907107http://dx.doi.org/10.1007/BF02907107]
Xu X R, Fan W J, Li J C, Zhao P and Chen G X. 2017. A unified model of bidirectional reflectance distribution function for the vegetation canopy. Science China Earth Sciences, 60(3): 463-477
徐希孺, 范闻捷, 李举材, 赵鹏, 陈高星. 2017. 植被二向性反射统一模型. 中国科学: 地球科学, 47(2): 217-232 [DOI: 10.1360/N072016-00082http://dx.doi.org/10.1360/N072016-00082]
Yan G J, Hu R H, Luo J H, Weiss M, Jiang H L, Mu X H, Xie D H and Zhang W M. 2019. Review of indirect optical measurements of leaf area index: recent advances, challenges, and perspectives. Agricultural and Forest Meteorology, 265: 390-411 [DOI: 10.1016/j.agrformet.2018.11.033http://dx.doi.org/10.1016/j.agrformet.2018.11.033]
Yan G J, Jiang L M, Wang J D, Chen L F and Li X W. 2003. Thermal bidirectional gap probability model for row crop canopies and validation. Science in China Series D: Earth Sciences, 46(12): 1241-1249 [DOI: 10.1007/BF02883250http://dx.doi.org/10.1007/BF02883250]
Yan G J, Li X W, Wang J D and Zhu C G. 2000. Modeling directional effects of thermal emission in wide band measurements. Journal of Remote Sensing, 4(3): 189-193
阎广建, 李小文, 王锦地, 朱重光. 2000. 宽波段热红外方向性辐射建模. 遥感学报, 4(3): 189-193 [DOI: 10.3321/j.issn:1007-4619.2000.03.005http://dx.doi.org/10.3321/j.issn:1007-4619.2000.03.005]
Yan G J, Ren H Z, Hu R H, Yan K and Zhang W M. 2012. A portable multi-angle observation system//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany: IEEE: 6916-6919 [DOI: 10.1109/IGARSS.2012.6352572http://dx.doi.org/10.1109/IGARSS.2012.6352572]
Yan K, Park T, Yan G J, Chen C, Yang B, Liu Z, Nemani R R, Knyazikhin Y and Myneni R B. 2016. Evaluation of MODIS LAI/FPAR product collection 6. Part 1: consistency and improvements. Remote Sensing, 8(5): 359 [DOI: 10.3390/Rs80 50359http://dx.doi.org/10.3390/Rs8050359]
Yang H, Li X W and Gao F. 2002. An algorithm for the retrieval of albedo from space using new GO kernel-driven BRDF model. Journal of Remote Sensing, 6(4): 246-251
杨华, 李小文, 高峰. 2002. 新几何光学核驱动BRDF模型反演地表反照率的算法. 遥感学报, 6(4): 246-251 [DOI: 10.3321/j.issn:1007-4619.2002.04.002http://dx.doi.org/10.3321/j.issn:1007-4619.2002.04.002]
Yu T, Gu X F, Tian G L, Legrand M, Baret F, Hanocq J F, Bosseno R and Zhang Y. 2004. Modeling directional brightness temperature over a maize canopy in row structure. IEEE Transactions on Geoscience and Remote Sensing, 42(10): 2290-2304 [DOI: 10.1109/Tgrs.2004.834196http://dx.doi.org/10.1109/Tgrs.2004.834196]
Yu T Q. 2018. Control Software Design of BRDF Measurement System and Processing and Analyzing Measured Data of Dunhuang Test Site. Hefei: University of Science and Technology of China
余谭其. 2018. BRDF测量系统控制软件设计与敦煌场地实测数据处理及分析. 合肥: 中国科学技术大学
Zhao F, Gu X F, Verhoef W, Wang Q, Yu T, Liu Q, Huang H G, Qin W H, Chen L F and Zhao H J. 2010. A spectral directional reflectance model of row crops. Remote Sensing of Environment, 114(2): 265-285 [DOI: 10.1016/j.rse.2009.09.018http://dx.doi.org/10.1016/j.rse.2009.09.018]
Zhao F, Li Y G, Dai X, Verhoef W, Guo Y Q, Shang H, Gu X F, Huang Y B, Yu T and Huang J X. 2015. Simulated impact of sensor field of view and distance on field measurements of bidirectional reflectance factors for row crops. Remote Sensing of Environment, 156: 129-142 [DOI: 10.1016/j.rse.2014.09.011http://dx.doi.org/10.1016/j.rse.2014.09.011]
Zhao Y S. 2013. Principle and Method of Remote Sensing Application Analysis. 2nd ed. Beijing: Science Press
赵英时. 2013. 遥感应用分析原理与方法. 2版. 北京: 科学出版社
Zong J, Davies R, Muller J P and Diner D J. 2002. Photogrammetric retrieval of cloud advection and top height from the multi-angle imaging spectroradiometer (MISR). Photogrammetric Engineering and Remote Sensing, 68(8): 821-829
相关作者
相关机构