随机介质遮蔽条件下的雷达成像方法效能比较
Comparison of performance of radar imaging under condition of obscured by random media
- 2021年25卷第7期 页码:1503-1516
纸质出版日期: 2021-07-07
DOI: 10.11834/jrs.20219079
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-07-07 ,
扫 描 看 全 文
伊铁延,陈锟山,刘玉.2021.随机介质遮蔽条件下的雷达成像方法效能比较.遥感学报,25(7): 1503-1516
Yi T Y,Chen K S and Liu Y. 2021. Comparison of performance of radar imaging under condition of obscured by random media. National Remote Sensing Bulletin, 25(7):1503-1516
为了综合分析受随机介质遮蔽目标雷达成像方法效能,本文系统比较了随机介质参数(散射厚度与吸收厚度)、天线布局方式(稀疏阵列的天线阵元间距及空间分布)对合成孔径雷达SAR、时间反转TR以及时间反转—多重信号分类TR-MUSIC这3种典型方法成像效能的影响。结果表明TR-MUSIC表现最优,SAR次之,TR较弱。随着光学厚度或单次散射反照率的增大,3种成像方法效能均发生退化,但TR-MUSIC总体而言相对受影响最弱。散射厚度是造成成像效能退化的主要原因,而吸收厚度的影响较为微弱。根据稀疏阵列下成像方法效能比较结果,利用TR-MUSIC可以抑制栅瓣特性的优势,使用特殊布局的天线可以同时降低雷达系统复杂度和减弱杂波信号,进而改善成像结果。本研究可为提高受随机介质遮蔽目标的雷达成像质量提供理论支撑。
Radar imaging of objects obscured by random media is an important issue because of its wide application in the fields of geography
medicine
and the military. However
the echo signals from the observed target(s) may be severely distorted because of the presence of random media (e.g.
vegetation
atmospheric turbulence
biological tissues
or walls)
thereby eventually degrading imaging quality. To obtain higher resolution
imaging technology that works in the millimeter wave or even a higher frequency band is desirable. However
the electromagnetic wave in this frequency band is more heavily affected by random media and is more susceptible to attenuation
which hinders the application of millimeter wave radar remote sensing. This limitation further highlights the urgency of research on the imaging of objects obscured by random media. Therefore
evaluating and improving the imaging performance fully and ultimately are especially important.
Synthetic Aperture Radar (SAR) technology has been widely used in many fields
especially for remote sensing
since its introduction in the 1950s. Scholars have proposed different imaging algorithms and used the obtained data to analyze the dielectric properties and geometric characteristics of the observed target (e.g.
INSAR
POL-SAR
POL-INSAR
and TOMO-SAR). Alternatively
some imaging technology employs the time symmetry of the field (electromagnetic or acoustics) wave equation and the reciprocity of the Green’s function to locate and imaging the targets. In particular
the Time Reversal (TR) method allows us to selectively focus on different targets separately
whereas the Time Reversal-Multiple Signal Classification (TR-MUSIC) method improves the imaging resolution greatly. However
current studies are often limited to a specific field
and research on the comparison of the performance of different methods is relatively rare. Therefore
in this paper
these typical radar imaging methods are selected to evaluate their performance toward imaging the target obscured by random media. Given that the target is obscured by random media
describing the effects caused by random media on the propagation of the electromagnetic wave is necessary. According to the radiation transfer equation
the attenuation of electromagnetic waves caused by random medium is related to optical thickness
which is equal to the sum of the scattering and absorption thickness. The model will be used to describe the interaction of electromagnetic waves with random media. For quantitative evaluation
3 dB beam-width and the geometric location of a point target response are used.
Although the results in the three methods are all degraded by the presence of random media
TR-MUSIC performs the best followed by SAR and TR. The effects of scattering thickness is the main factor that causes imaging degradation
whereas the degradation caused by absorption thickness is very weak. In summary
this phenomenon is due to the clutter enhancement from random media when the scattering thickness increases
while the effects of absorption thickness correspond to the energy of electromagnetic waves being absorbed. Among the three techniques
TR and TR-MUSIC can suppress the grating lobes better than SAR does under a sparse array
and TR-MUSIC delivers the best imaging performance.
Considering the advantages of TR-MUSIC in the performance and the side lobe suppression
we focus on improving its performance further. Based on theoretical analysis
some centrally located array elements are removed to undermine clutters
and better imaging results are obtained for TR-MUSIC.
雷达成像随机介质比较分析合成孔径雷达时间反转成像
radar imagingrandom mediumcomparative analysisSynthetic Aperture Radar (SAR)time reversal imaging
Bamler R and Hartl P. 1998. Synthetic aperture radar interferometry. Inverse Problems, 14(4): R1-R54 [DOI: 10.1088/0266-5611/14/4/001http://dx.doi.org/10.1088/0266-5611/14/4/001]
Chang J M, Jin M, Zeng J Y and Chen K S. 2018. Analysis on time reversal imaging in presence of random media. Journal of University of Chinese Academy of Sciences, 35(1): 59-65
常敬明, 金铭, 曾江源, 陈锟山. 2018. 随机介质场景下的时间反转成像效果分析. 中国科学院大学学报, 35(1): 59-65 [DOI: 10.7523/j.issn.2095-6134.2018.01.008http://dx.doi.org/10.7523/j.issn.2095-6134.2018.01.008]
Chang Y L, Chiang C Y and Chen K S. 2011. SAR image simulation with application to target recognition. Progress in Electromagnetics Research, 119: 35-57 [DOI: 10.2528/PIER11061507http://dx.doi.org/10.2528/PIER11061507]
Chen K S. 2015. Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach. Boca Raton: CRC Press
Cloude S R and Papathanassiou K P. 1998. Polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 36(5): 1551-1565 [DOI: 10.1109/36.718859http://dx.doi.org/10.1109/36.718859]
Cumming I G and Wong F H. 2005. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Norwood: Artech House
Dehmollaian M and Sarabandi K. 2008. Refocusing through building walls using synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 46(6): 1589-1599 [DOI: 10.1109/TGRS.2008.916212http://dx.doi.org/10.1109/TGRS.2008.916212]
Devaney A J. 2005. Time reversal imaging of obscured targets from multistatic data. IEEE Transactions on Antennas and Propagation, 53(5): 1600-1610 [DOI: 10.1109/TAP.2005.846723http://dx.doi.org/10.1109/TAP.2005.846723]
Fouda A E, Lopez-Castellanos V and Teixeira F L. 2014. Experimental demonstration of statistical stability in ultrawideband time-reversal imaging. IEEE Geoscience and Remote Sensing Letters, 11(1): 29-33 [DOI: 10.1109/LGRS.2013.2245097http://dx.doi.org/10.1109/LGRS.2013.2245097]
Goodman J W. 1985. Statistical Optics. New York: John Wiley and Sons
Ishimaru A. 1978. Wave Propagation and Scattering in Random Media. New York: Academic Press
Ishimaru A. 1991. Wave propagation and scattering in random media and rough surfaces. Proceedings of the IEEE, 79(10): 1359-1366 [DOI: 10.1109/5.104210http://dx.doi.org/10.1109/5.104210]
Ishimaru A, Jaruwatanadilok S and Kuga Y. 2004. Multiple scattering effects on the radar cross section (RCS) of objects in a random medium including backscattering enhancement and shower curtain effects. Waves in Random Media, 14(4): 499-511 [DOI: 10.1088/0959-7174/14/4/002http://dx.doi.org/10.1088/0959-7174/14/4/002]
Ishimaru A, Jaruwatanadilok S and Kuga Y. 2007. Imaging of a target through random media using a short-pulse focused beam. IEEE Transactions on Antennas and Propagation, 55(6): 1622-1629 [DOI: 10.1109/TAP.2007.897318http://dx.doi.org/10.1109/TAP.2007.897318]
Ishimaru A, Jaruwatanadilok S and Kuga Y. 2012. Imaging through random multiple scattering media using integration of propagation and array signal processing. Waves in Random and Complex Media, 22(1): 24-39 [DOI: 10.1080/17455030.2010.528065http://dx.doi.org/10.1080/17455030.2010.528065]
Ishimaru A, Zhang C and Kuga Y. 2014. Hard wall imaging of objects hidden by non-penetrating obstacles using modified time reversal technique. IEEE Transactions on Antennas and Propagation, 62(7): 3645-3651 [DOI: 10.1109/TAP.2014.2317479http://dx.doi.org/10.1109/TAP.2014.2317479]
Ishimaru A. 2017. Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications. 2nd ed. Hoboken: Wiley-IEEE Press
Lee J S and Pottier E. 2009. Polarimetric Radar Imaging: From Basics to Applications. Baton Rouge: CRC Press
Lev-Ari H and Devaney A J. 2000. The time-reversal technique re-interpreted: subspace-based signal processing for multi-static target location//Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. Cambridge, MA, USA: IEEE: 509-513 [DOI: 10.1109/SAM.2000.878061http://dx.doi.org/10.1109/SAM.2000.878061]
Li W M, Li Z Y, Chen E X and Feng Q. 2014. Status and development of tomographic SAR for forest vertical structural parameters inversion. Journal of Remote Sensing, 18(4): 741-751
李文梅, 李增元, 陈尔学, 冯琦. 2014. 层析SAR反演森林垂直结构参数现状及发展趋势. 遥感学报, 18(4): 741-751 [DOI: 10.11834/jrs.20143158http://dx.doi.org/10.11834/jrs.20143158]
Li Z, Zhou J M, Tian B S and Guo M. 2009. Research progress on application methods of POLSAR and INSAR. Journal of Remote Sensing, 13(S1): 283-289
李震, 周建民, 田帮森, 郭明. 2009. 极化与干涉合成孔径雷达应用方法研究进展. 遥感学报, 13(S1): 283-289 [DOI: 10.11834/jrs.20090038http://dx.doi.org/10.11834/jrs.20090038]
Ling F L, Li Z Y, Bai L N, Tian X, Chen E X and Yang Y T. 2011. Rice mapping using ALOS PALSAR dual polarization data. Journal of Remote Sensing, 15(6): 1221-1234
凌飞龙, 李增元, 白黎娜, 田昕, 陈尔学, 杨永恬. 2011. ALOS PALSAR双极化数据水稻制图. 遥感学报, 15(6): 1221-1234 [DOI: 10.11834/jrs.20110019http://dx.doi.org/10.11834/jrs.20110019]
Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I and Papathanassiou K P. 2013. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1): 6-43 [DOI: 10.1109/MGRS.2013.2248301http://dx.doi.org/10.1109/MGRS.2013.2248301]
Prada C and Fink M. 1994. Eigenmodes of the time reversal operator: a solution to selective focusing in multiple-target media. Wave Motion, 20(2): 151-163[DOI: 10.1016/0165-2125(94)90039-6http://dx.doi.org/10.1016/0165-2125(94)90039-6]
Reigber A and Moreira A. 2000. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2142-2152 [DOI: 10.1109/36.868873http://dx.doi.org/10.1109/36.868873]
Tsang L, Kong J A and Shin R T. 1985. Theory of Microwave Remote Sensing. New York: Wiley-Interscience Press
Tsang L, Kong J A, Ding K H and Ao C O. 2001. Scattering of Electromagnetic Waves, Volume II: Numerical Simulations. New York: Wiley
Ulaby F T and Long D G. 2014. Microwave Radar and Radiometric Remote Sensing. Ann Arbor: University of Michigan Press
van Zyl J and Kim Y. 2011. Synthetic Aperture Radar Polarimetry. New York: Wiley
Wang C, Zhang H, Tang Y X, Zhang B, Wu F and Wu H A. 2009. Exploration and practice of synthetic aperture radar interferometry (InSAR) research. Journal of Remote Sensing, 13(S1): 226-236
王超, 张红, 汤益先, 张波, 吴樊, 吴宏安. 2009. 合成孔径雷达干涉测量(InSAR)研究的探索与实践. 遥感学报, 13(S1): 226-236 [DOI: 10.11834/jrs.20090030http://dx.doi.org/10.11834/jrs.20090030]
Yavuz M E and Teixeira F L. 2005. A numerical study of time-reversed UWB electromagnetic waves in continuous random media. IEEE Antennas and Wireless Propagation Letters, 4: 43-46 [DOI: 10.1109/LAWP.2005.844117http://dx.doi.org/10.1109/LAWP.2005.844117]
Yavuz M E and Teixeira F L. 2008. Space-frequency ultrawideband time-reversal imaging. IEEE Transactions on Geoscience and Remote Sensing, 46(4): 1115-1124 [DOI: 10.1109/TGRS.2008.915755http://dx.doi.org/10.1109/TGRS.2008.915755]
Yousefnia M, Ebrahimzadeh A, Dehmollaian M and Madannejad A. 2018. A time-reversal imaging system for breast screening: theory and initial phantom results. IEEE Transactions on Biomedical Engineering, 65(11): 2542-2551 [DOI: 10.1109/TBME.2018.2807799http://dx.doi.org/10.1109/TBME.2018.2807799]
Yu L L, Lai T, Zhao Y J and Chen J H. 2013. Joint estimation scheme of spaceborne synthetic aperture radar imaging parameters. Journal of Remote Sensing, 17(5): 1206-1222
于龙龙, 赖涛, 赵拥军, 陈建宏. 2013. 星载SAR成像参数联合估计方法. 遥感学报, 17(5): 1206-1222 [DOI: 10.11834/jrs.20132229http://dx.doi.org/10.11834/jrs.20132229]
相关作者
相关机构