高分一号山地冰川运动速度提取与分析
Extraction and analysis of mountain glacier movement from GF-1 satellite data
- 2021年25卷第2期 页码:530-538
纸质出版日期: 2021-02-07
DOI: 10.11834/jrs.20219080
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-02-07 ,
扫 描 看 全 文
周建民,张鑫,刘志平,李震.2021.高分一号山地冰川运动速度提取与分析.遥感学报,25(2): 530-538
Zhou J M,Zhang X,Liu Z P and Li Z. 2021. Extraction and analysis of mountain glacier movement from GF-1 satellite data. National Remote Sensing Bulletin, 25(2):530-538
近年来国产遥感卫星数据增多,但在山地冰川运动速度监测研究中,国产卫星遥感数据的使用却很少。基于此现状,本研究利用 “高分一号”卫星数据(GF-1)对藏东南雅弄冰川运动速度进行了提取。通过与同分辨率、同时段的Landsat 8数据进行对比,以及利用非冰川稳定区域的残余位移和冰川主冰流线剖面运动速度两方面,评估了GF-1数据提取的冰川运动速度的精度。结果表明:GF-1数据在非冰川稳定区域的平均偏移量为7.48
<math id="M1"><mi mathvariant="normal">m</mi><mo>·</mo><mi mathvariant="normal">a</mi><mmultiscripts><mrow/><mprescripts/><mrow/><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></mmultiscripts></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20210602&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20210600&type=
9.22866726
3.55599999
,虽较Landsat 8数据的高(平均偏移量 4.58
<math id="M2"><mi mathvariant="normal">m</mi><mo>·</mo><mi mathvariant="normal">a</mi><mmultiscripts><mrow/><mprescripts/><mrow/><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></mmultiscripts></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20210608&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20210605&type=
9.22866726
3.55599999
),但小于冰川平均运动速度的5% ;GF-1数据与Landsat 8数据在2015年—2016年时段内的冰川主冰流线运动速度变化趋势一致,两者的偏差均方根为7.41 m,小于冰川平均运动速度的5%。研究结果证明了国产高分一号卫星遥感数据在青藏高原山地冰川运动速度监测应用中的可行性。
With ongoing and accelerating global climate change
temperate glaciers are very sensitive to variations in the temperature and precipitation
and thus are in fact regarded as natural indicators of climate change. Glacier velocity
which is a combination of ice deformation
bed deformation
and glacier sliding
is an important parameter to better study the dynamics of glaciers and their interplay with climate changes in the region. In situ observations serve as one of the most accurate methods for measuring glacier velocity
but the remote areas where glaciers develop have prevented frequent visitation by people. Remote sensing is more effective in glacier monitoring and has been applied to study glacier velocity in many regions of the Tibetan Plateau
such as in Karakoram
Himalaya
West Kunlun
and other areas. In recent years
the Chinese high-resolution optical remote sensing images has gradually increased
but there was not much use of Chinese produced satellite remote sensing images for monitoring glacier flow parameters in mountain regions. In view of this situation
this study tried to apply the domestic “GaoFen-1” satellite images (GF-1) to the extraction of Yanong Glacier flow in southeast Tibet. By preprocessing and applying feature tracking on all available pairs within a defined period to derive the velocity
the reliable glacier velocities can be obtained by selecting stable ground control points from the ice-free areas to register these GF-1 data and the offset can be computed. The accuracy of the glacier flow velocity derived from GF-1 data was assessed by the residual displacements in non-glacial stable regions and glacier flow velocity along the longitudinal profile of the Yanong Glacier compared to that of Landsat-8 data in the same resolution and at the same Periods. The evaluation results showed that: The average deviation of GF-1 data in non-glacial stable regions was 7.48
<math id="M3"><mi mathvariant="normal">m</mi><mo>·</mo><mi mathvariant="normal">a</mi><mmultiscripts><mrow/><mprescripts/><mrow/><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></mmultiscripts></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20210616&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20210612&type=
7.02733326
2.87866688
which was higher than that of landsat 8 (the average deviation was 4.58
<math id="M4"><mi mathvariant="normal">m</mi><mo>·</mo><mi mathvariant="normal">a</mi><mmultiscripts><mrow/><mprescripts/><mrow/><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></mmultiscripts></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20210622&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20210618&type=
7.02733326
2.87866688
)
but less than 5% of the average velocity of glacier; The GF-1 data was consistent with Landsat 8 data in the change trend of glacier flow velocity along the longitudinal profile in the period from 2015 to 2016
and the mean square root of the deviation between them was 7.41 m
which was also less than 5% of the average glacier flow velocity. The results proved the feasibility of the application and the unique advantages of GF-1 satellite remote sensing data in monitoring of the mountain glacier velocity on the Qinghai-Tibet Plateau.
高分一号卫星国产卫星数据山地冰川雅弄冰川运动速度归一化互相关
GF-1domestic satellite datamountain glacierYanong Glacierglacier velocitynormalized cross correlation
Ayoub F, Leprince S and Keene L. 2009. User's guide to COSI-CORR co-registration of optically sensed images and correlation
Bai Z G. 2013. Technical characteristics of gaofen-1 satellite. Aerospace China, (8): 5-9 (白照广. 2013. 高分一号卫星的技术特点. 中国航天, (8): 5-9)
Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J G, Frey H, Kargel J S, Fujita K, Scheel M, Bajracharya S and Stoffel M. 2012. The state and fate of himalayan glaciers. Science, 336(6079): 310-314 [DOI: 10.1126/science.1215828http://dx.doi.org/10.1126/science.1215828]
Bolch T, Pieczonka T and Benn D I. 2011. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2): 349-358 [DOI: 10.5194/tc-5-349-2011http://dx.doi.org/10.5194/tc-5-349-2011]
Dehecq A, Gourmelen N and Trouve E. 2015. Deriving large-scale glacier velocities from a complete satellite archive: application to the Pamir-Karakoram-Himalaya. Remote Sensing of Environment, 162: 55-66 [DOI: 10.1016/j.rse.2015.01.031http://dx.doi.org/10.1016/j.rse.2015.01.031]
Ding G X, Chen C P, Xie C W and Wang J. 2014. Study of the ice tongue ablation features of a large glacier in the south slopes of the Mt. Tuomuer in the Tianshan Mountains. Journal of Glaciology and Geocryology, 36(1): 20-29
丁光熙, 陈彩萍, 谢昌卫, 王建. 2014. 西天山托木尔峰南麓大型山谷冰川冰舌区消融特征分析. 冰川冻土, 36(1): 20-29 [DOI: 10.7522/j.issn.1000-0240.2014.0003http://dx.doi.org/10.7522/j.issn.1000-0240.2014.0003]
Heid T and Kääb A. 2012. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. The Cryosphere, 6(2): 467-478 [DOI: 10.5194/tc-6-467-2012http://dx.doi.org/10.5194/tc-6-467-2012]
Huang L and Li Z. 2009. Mountain glacier flow velocities analyzed from satellite optical images. Journal of Glaciology and Geocryology, 31(5): 935-940
黄磊, 李震. 2009. 光学遥感影像的山地冰川运动速度分析方法. 冰川冻土, 31(5): 935-940
Jiang Z L, Liu S Y, Peters J, Lin J, Long S C, Han Y S and Wang X. 2012. Analyzing Yengisogat Glacier surface velocities with ALOS PALSAR data feature tracking, Karakoram, China. Environmental Earth Sciences, 67(4): 1033-1043 [DOI: 10.1007/s12665-012-1563-9http://dx.doi.org/10.1007/s12665-012-1563-9]
Jin H L, Yang G W, Liu J, Zang W Q and Zhou K. 2017. Block ortho-rectification for GF-1 satellite images based on SIFT algorithm. Journal of Henan Polytechnic University (Natural Science), 36(1): 58-62
靳海亮, 杨贯伟, 刘军, 藏文乾, 周珂. 2017. 基于SIFT算法的GF-1卫星影像区域正射纠正. 河南理工大学学报(自然科学版), 36(1): 58-62 [DOI: 10.16186/j.cnki.1673-9787.2017.01.010http://dx.doi.org/10.16186/j.cnki.1673-9787.2017.01.010]
Jing Z F, Ye B S, Jiao K Q and Yang H A. 2002. Surface velocity on the glacier No. 51 at Haxilegen of the Kuytun River, Tianshan Mountains. Journal of Glaciology and Geocryology, 24(5): 563-566
井哲帆, 叶柏生, 焦克勤, 杨惠安. 2002. 天山奎屯河哈希勒根51号冰川表面运动特征分析. 冰川冻土, 24(5): 563-566 [DOI: 10.3969/j.issn.1000-0240.2002.05.015http://dx.doi.org/10.3969/j.issn.1000-0240.2002.05.015]
Kääb A, Winsvold S H, Altena B, Nuth C, Nagler T and Wuite J. 2016. Glacier remote sensing using sentinel-2. Part I: Radiometric and geometric performance, and application to ice velocity. Remote Sensing, 8(7): 598 [DOI: 10.3390/rs8070598http://dx.doi.org/10.3390/rs8070598]
Koblet T, Gärtner-Roer I, Zemp M, Jansson P, Thee P, Haeberli W and Holmlund P. 2010. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959-99)-Part 1: Determination of length, area, and volume changes. The Cryosphere, 4(3): 333-343 [DOI: 10.5194/tc-4-333-2010http://dx.doi.org/10.5194/tc-4-333-2010]
Kong F S, Qiao G and Wang W A. 2016. Comparison and analysis of Gacier velocity measurement software based on optical image. China Science and Technology Papers Online Quality Papers, 9(12): 1240-1252
孔繁司, 乔刚, 王卫安. 2016. 基于光学影像的冰流速测量软件比较与分析. 中国科技论文在线精品论文, 9(12): 1240-1252
Leprince S, Barbot S, Ayoub F and Avouac J P. 2007. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1529-1558 [DOI: 10.1109/tgrs.2006.888937http://dx.doi.org/10.1109/tgrs.2006.888937]
Li C X, Yang T B and Tian H Z. 2013. Variation of West Kunlun Mountains glacier during 1990-2011. Progress in Geography, 32(4): 548-559
李成秀, 杨太保, 田洪阵. 2013. 1990-2011年西昆仑峰区冰川变化的遥感监测. 地理科学进展, 32(4): 548-559 [DOI: 10.11820/dlkxjz.2013.04.007http://dx.doi.org/10.11820/dlkxjz.2013.04.007]
Liu S Y, Shangguan D H, Ding Y J, Han H D, Zhang Y, Wang J, Xie C W, Ding L F and Li G. 2005. Glacier variations since the early 20th century in the Gangrigabu Range, Southeast Tibetan Plateau. Journal of Glaciology and Geocryology, 27(1): 55-63
刘时银, 上官冬辉, 丁永建, 韩海东, 张勇, 王建, 谢昌卫, 丁良福, 李刚. 2005. 20世纪初以来青藏高原东南部岗日嘎布山的冰川变化. 冰川冻土, 27(1): 55-63 [DOI: 10.3969/j.issn.1000-0240.2005.01.008http://dx.doi.org/10.3969/j.issn.1000-0240.2005.01.008]
Mayr E, Juen M, Mayer C, Usubaliev R and Hagg W. 2014. Modeling Runoff from the Inylchek glaciers and Filling of Ice-Dammed Lake Merzbacher, Central Tian Shan. Geografiska Annaler, 96(4): 609-625 [DOI: 10.1111/geoa.12061http://dx.doi.org/10.1111/geoa.12061]
Meng S L, Pang Y, Zhang Z J and Li Z Y. 2019. Self-adaptive cloud detection approach for GaoFen-1 optical remote sensing data. Journal of Infrared and Millimeter Waves, 38(1): 103-114
蒙诗栎, 庞勇, 张钟军, 李增元. 2019. 高分一号光学遥感数据自适应云区识别. 红外与毫米波学报, 38(1): 103-114 [DOI: 10.11972/j.issn.1001-9014.2019.01.017http://dx.doi.org/10.11972/j.issn.1001-9014.2019.01.017]
Rolstad C, Amlien J, Hagen J O and Lundén B. 1997. Visible and near-infrared digital images for determination of ice velocities and surface elevation during a surge on Osbornebreen, a tidewater glacier in Svalbard. Annals of Glaciology, 24: 255-261 [DOI: 10.1017/s0 26030550001226xhttp://dx.doi.org/10.1017/s026030550001226x]
Rosenau R, Scheinert M and Dietrich R. 2015. A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery. Remote Sensing of Environment, 169: 1-19 [DOI: 10.1016/j.rse.2015.07.012http://dx.doi.org/10.1016/j.rse.2015.07.012]
Scambos T A, Dutkiewicz M J, Wilson J C and Bindschadler R A. 1992. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sensing of Environment, 42(3): 177-186 [DOI: 10.1016/0034-4257(92)90101-ohttp://dx.doi.org/10.1016/0034-4257(92)90101-o]
Scherler D, Leprince S and Strecker M R. 2008. Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sensing of Environment, 112(10): 3806-3819 [DOI: 10.1016/j.rse.2008.05.018http://dx.doi.org/10.1016/j.rse.2008.05.018]
Sun Y L, Jiang L M, Liu L, Sun Y F and Wang H S. 2016. Surface flow velocity of mountain glaciers derived from Landsat-7 ETM+ SLC-OFF images: extraction and quantitative evaluation: a case study of the Siachen Glacier in the Karakoram. Journal of Glaciology and Geocryology, 38(3): 596-603
孙永玲, 江利明, 柳林, 孙亚飞, 汪汉胜. 2016. 基于Landsat-7 ETM+SLC-OFF影像的山地冰川流速提取与评估——以Karakoram锡亚琴冰川为例. 冰川冻土, 38(3): 596-603 [DOI: 10.7522/j.issn.1000-0240.2016.0066http://dx.doi.org/10.7522/j.issn.1000-0240.2016.0066]
Wang K, Jing Z F, Wu Y W and Deng Y W. 2014. Latest survey and study of surface flow features of the Qiyi Glacier in the Qilian Mountains. Journal of Glaciology and Geocryology, 36(3): 537-545
王坤, 井哲帆, 吴玉伟, 邓玉伟. 2014. 祁连山七一冰川表面运动特征最新观测研究. 冰川冻土, 36(3): 537-545 [DOI: 10.7522/j.issn.1000-0240.2014.0064http://dx.doi.org/10.7522/j.issn.1000-0240.2014.0064]
Wang Z T, Xin J Y, Jia S L, Li Q, Chen L F and Zhao S H. 2015. Retrieval of AOD from GF-1 16 m camera via DDV algorithm. Journal of Remote Sensing, 19(3): 530-538
王中挺, 辛金元, 贾松林, 厉青, 陈良富, 赵少华. 2015. 利用暗目标法从高分一号卫星16 m相机数据反演气溶胶光学厚度. 遥感学报, 19(3): 530-538 [DOI: 10.11834/jrs.20154110http://dx.doi.org/10.11834/jrs.20154110]
Whillans I M, Jackson M and Tseng Y H. 1993. Velocity pattern in a transect across Ice Stream B, Antarctica. Journal of Glaciology, 39(133): 562-572 [DOI: 10.1017/s0022143000016452http://dx.doi.org/10.1017/s0022143000016452]
Xu J L, Zhang S Q, Han H D, Liu S and Zhang Y. 2011. Change of the surface velocity of Koxkar Baxi glacier interpreted from remote sensing data, Tianshan Mountains. Journal of Glaciology and Geocryology, 33(2): 268-275
许君利, 张世强, 韩海东, 刘时银, 张盈松. 2011. 天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析. 冰川冻土, 33(2): 268-275
Yao T D, Thompson L, Yang W, Yu W S, Gao Y, Guo X J, Yang X X, Duan K Q, Zhao H B, Xu B Q, Pu J C, Lu A X, Xiang Y, Kattel D B and Joswiak D. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667 [DOI: 10.1038/nclimate1580http://dx.doi.org/10.1038/nclimate1580]
Ye Q H, Chen F, Yao T D, Wang J H, Liu Q, Zhang X Q and Kang S C. 2007. Tupu of glacier variations in the Mt. Naimona'nyi region, western Himalayas, in the last three decades. Journal of Remote Sensing, 11(4): 511-520
叶庆华, 陈锋, 姚檀栋, 王景华, 刘强, 张雪芹, 康世昌. 2007. 近30年来喜马拉雅山脉西段纳木那尼峰地区冰川变化的遥感监测研究. 遥感学报, 11(4): 511-520 [ DOI: 10.11834/jrs.20070471http://dx.doi.org/10.11834/jrs.20070471]
Zhang X B, Zhao X S, Ge D Q, Liu B, Zhang L, Li M and Wang Y. 2018. Monitoring displacement of Laohugou glacier No. 12 based on Landsat 8 and TerraSAR-X images. Journal of Remote Sensing, 22(1): 153-160
张晓博, 赵学胜, 葛大庆, 刘斌, 张玲, 李曼, 王艳. 2018. 利用Landsat 8和TerraSAR-X影像研究老虎沟12号冰川运动特征. 遥感学报, 22(1): 153-160 [DOI: 10.11834/jrs.20186313http://dx.doi.org/10.11834/jrs.20186313]
Zheng Q, Sun J B and Zhang Y. 2016. Fast and uniformly slipping Western-Kunlun Glaciers from time-series deformation analysis using periodically captured Landsat-8 imagery. Journal of Geodesy and Geodynamics, 36(7): 604-608
郑茜, 孙建宝, 张永. 2016. 基于Landsat-8时间序列影像分析西昆仑山地区冰川滑移特征. 大地测量与地球动力学, 36(7):604-608 [DOI: 10.14075/j.jgg.2016.07.010http://dx.doi.org/10.14075/j.jgg.2016.07.010]
Zhou J M, Li Z and Guo W Q. 2014a. Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data. Environmental Earth Sciences, 71(8): 3581-3592 [DOI: 10.1007/s12665-013-2749-5http://dx.doi.org/10.1007/s12665-013-2749-5]
Zhou J M, Li Z, He X B, Tian B S, Huang L, Chen Q and Xing Q. 2014b. Glacier thickness change mapping using InSAR methodology. IEEE Geoscience and Remote Sensing Letters, 11(1): 44-48 [DOI: 10.1109/lgrs.2013.2245854http://dx.doi.org/10.1109/lgrs.2013.2245854]
Zhou J M, Li Z and Li X W. 2009. Research on rules of the valley glacier motion in western China based on ALOS/PALSAR interferometry. Acta Geodaetica et Cartographica Sinica, 38(4): 341-347
周建民, 李震, 李新武. 2009. 基于ALOS/PALSAR雷达干涉数据的中国西部山谷冰川冰流运动规律研究. 测绘学报, 38(4): 341-347 [DOI: 10.3321/j.issn:1001-1595.2009.04.010http://dx.doi.org/10.3321/j.issn:1001-1595.2009.04.010]
Zhou J M, Li Z, Li X W, Liu S Y, Chen Q, Xie C and Tian B S. 2011. Movement estimate of the Dongkemadi Glacier on the Qinghai-Tibetan Plateau using L-band and C-band spaceborne SAR data. International Journal of Remote Sensing, 32(22): 6911-6928 [DOI: 10.1080/01431161.2010.517225http://dx.doi.org/10.1080/01431161.2010.517225]
相关文章
相关作者
相关机构