西沙群岛精细植被分布的遥感制图及动态变化
Mapping and dynamic changes of refined vegetation distribution in Xisha Islands
- 2021年25卷第7期 页码:1473-1488
纸质出版日期: 2021-07-07
DOI: 10.11834/jrs.20219102
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-07-07 ,
扫 描 看 全 文
孙晓慧,史建康,李新武,吴文瑾,梁雷,宫晨.2021.西沙群岛精细植被分布的遥感制图及动态变化.遥感学报,25(7): 1473-1488
Sun X H,Shi J K,Li X W,Wu W J,Liang L and Gong C. 2021. Mapping and dynamic changes of refined vegetation distribution in Xisha Islands. National Remote Sensing Bulletin, 25(7):1473-1488
西沙群岛是南海群岛中岛屿最多、面积最大的群岛,自然环境独特、植物区系特殊、岛上植被一直都是植物学家及地理学家重点关注的问题。本文基于光谱分类,于决策层融合支持向量机与光谱信息散度两类分类器进行西沙群岛典型岛屿植被类型识别,形成典型植被分布图。建立西沙群岛典型植被光谱库,分析西沙群岛典型植被实测光谱与其一阶导数的特性,并基于典型岛屿不同时期的植被分布图进行变化分析。结果表明:(1)采用光谱分类的生产精度及用户精度在西沙群岛主要岛屿的平均值为83.49%、85.54%,Kappa系数为0.8728。(2)2002年—2018年,各典型岛屿主要受到人类活动影响,整体上植被种类及植被面积增加,草海桐形成单优植被群落。(3)经相关性分析,各典型岛屿植被种类数量与本岛面积基本成正相关关系,且面积越大,植被种类随时间增加速度越快;相邻岛屿之间的距离与两岛植被相似性呈正相关,两岛距离越近,植被种类相似性越高。
The Paracel Islands is the largest island with the largest number of islands in the South China Sea Islands. They have a unique natural environment and particular natural flora. The vegetation on the islands has always been a key concern of botanists and geographers. In order to quickly obtain the continuous distribution and long-term dynamic changes of vegetation in a large area of the island
the study integrated multi-source high resolution remote sensing data and measured GPS sampling data
spectral data and other auxiliary information. The vegetation types of typical islands in Paracel Islands were identified based on spectral classification
which fusing Support Vector Machine (SVM) and Spectral Information Divergence (SID) two classifiers on decision-making level and generating the typical vegetation distribution maps. A typical vegetation spectrum library of the Paracel Islands was also established using to analyze the characteristics of the measured spectrum and its first derivative of the typical vegetation in the Paracel Islands
enriching the basic information of vegetation in Paracel Islands. The study compared the classification method of SVM+SID and the general Spectral Angle Mapper (SAM) method,then further obtained the accuracy assessment results of each island. Based on the vegetation distribution maps of typical islands in different periods after the accuracy assessment
the statistical change of the area occupied by each vegetation and the correlation analysis of the vegetation diversity of different islands were conducted. The results demonstrating that: (1) The average production accuracy and user accuracy of the spectral classification method (combining SVM and SID classifiers on decision-making level) were 83.49% and 85.54% and Kappa coefficient was 0.8728 of the most whole islands in Paracel Islands. Therefore
the study achieved good performances in identifying different vegetation types on typical islands. (2) From 2002 to 2018
the vegetation types and its areas increased and tended to be stable.
Scaevola
was prone to form single-superior vegetation community in islands and
Sandbank Grass
on sands account for a large area; In recent years
vegetation on many islands such as Yagong Island
West Sand
Tree Island
etc.
had been artificially interfered
and it had been regularly distributed along buildings
roads in spatial
and the diversity of vegetation species had greatly increased. (3) Through correlation analysis
this study found that the number of vegetation types on each typical island was basically positively correlated with the area of the island
that is
the larger the island area
the richer the plant habitat and the greater the number of species. And the larger the area of the island
the faster the vegetation types increase over time. In addition
the distance between adjacent islands was positively correlated with the similarity of vegetation on the two islands
that is
the closer the distance between the two islands
the more conducive to the mutual penetration of flora and the higher the similarity of vegetation types. But on a long-term scale
the dynamic changes of vegetation in Paracel Islands had been affected by human activities more than other natural factors.
西沙群岛光谱分类植被识别与变化草海桐植被种类数量
Paracel Islandsspectral classificationvegetation identification and changeScaevola taccadanumber of vegetation types
Astola J, Haavisto P and Neuvo Y. 1990. Vector median filters. Proceedings of the IEEE, 78(4): 678-689. [DOI: 10.1109/5.54807http://dx.doi.org/10.1109/5.54807]
Aurdal L, Huseby R B, Eikvil L, Solberg R, Vikhamar D and Solberg A. 2005. Use of hidden Markov models and phenology for multitemporal satellite image classification: applications to mountain vegetation classification//Proceedings of 2005 International Workshop on the Analysis of Multi-temporal Remote Sensing Images. Biloxi, MS, USA: IEEE [DOI: 10.1109/AMTRSI.2005.1469877http://dx.doi.org/10.1109/AMTRSI.2005.1469877]
Deng S W, Wang F G, Liu J F and Xing F W. 2017. Revision and supplement to plants from Xisha Islands, China. Biodiversity Science, 25(11): 1246-1250
邓双文, 王发国, 刘俊芳, 邢福武. 2017. 西沙群岛植物的订正与增补. 生物多样性, 25(11): 1246-1250 [DOI: 10.17520/biods.2017066http://dx.doi.org/10.17520/biods.2017066]
Du P J, Xia J S, Xue Z H, Tan K, Su H J and Bao R. 2016. Review of hyperspectral remote sensing image classification. Journal of Remote Sensing, 20(2): 236-256
杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊. 2016. 高光谱遥感影像分类研究进展. 遥感学报, 20(2): 236-256
Hsu C W, Chang C C and Lin C J. 2003. A practical guide to support vector classification. National Taiwan University
Kruse F A, Lefkoff A B, Boardman J W, Heidebrecht K B, Shapiro A T, Barloon P J and Goetz A F H. 1993. The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2/3): 145-163 [DOI: 10.1016/0034-4257(93)90013-Nhttp://dx.doi.org/10.1016/0034-4257(93)90013-N]
Li X K, Wang J N, Zhang L F, Wu T X, Yang H, Liu K and Jiang H L. 2014. A combined object-based segmentation and support vector machines approach for classification of Tiangong-1 hyperspectral image. Journal of Remote Sensing, 18(S1): 107-115
李雪轲, 王晋年, 张立福, 吴太夏, 杨杭, 刘凯, 姜海玲. 2014. 面向对象规则和支持向量机的天宫一号高光谱影像分类. 遥感学报, 18(S1): 107-115 [DOI: 10.11834/jrs.2014z16http://dx.doi.org/10.11834/jrs.2014z16]
Liu W J, Yang X H, Qu H C and Meng Y. 2015. Hyperspectral unmixing algorithm based on spectral information divergence and spectral angle mapping. Journal of Computer Applications, 35(3): 844-848
刘万军, 杨秀红, 曲海成, 孟煜. 2015. 基于光谱信息散度与光谱角匹配的高光谱解混算法. 计算机应用, 35(3): 844-848 [DOI: 10.11772/j.issn.1001-9081.2015.03.844http://dx.doi.org/10.11772/j.issn.1001-9081.2015.03.844]
Liu Y H, Niu Z and Wang C Y. 2005. Research and application of the decision tree classification using MODIS data. Journal of Remote Sensing, 9(4): 405-412
刘勇洪, 牛铮, 王长耀. 2005. 基于MODIS数据的决策树分类方法研究与应用. 遥感学报, 9(4): 405-412
Lu M F. 2012. Research on classification of vegetation from remote sensing imagery. Zhengzhou: The PLA Information Engineering University
卢茂芬. 2012. 遥感影像植被分类技术研究. 郑州: 解放军信息工程大学
Sankey T, Donager J, McVay J and Sankey J B. 2017. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sensing of Environment, 195: 30-43 [DOI: 10.1016/j.rse.2017.04.007http://dx.doi.org/10.1016/j.rse.2017.04.007]
Shrestha R P and Eiumnoh A. 2000. Application of DEM data to landsat image classification: evaluation in a tropical wet-dry landscape of Thailand. Photogrammetric Engineering and Remote Sensing, 66(3): 297-304
Tan K and Du P J. 2008. Hyperspectral remote sensing image classification based on support vector machine. Journal of Infrared and Millimeter Waves, 27(2): 123-128
谭琨, 杜培军. 2008. 基于支持向量机的高光谱遥感图像分类. 红外与毫米波学报, 27(2): 123-128 [DOI: 10.3321/j.issn:1001-9014.2008.02.010http://dx.doi.org/10.3321/j.issn:1001-9014.2008.02.010]
Tong Y, Jian S G, Chen Q, Li Y L and Xing F W. 2013. Vascular plant diversity of the paracel islands, China. Biodiversity Science, 21(3): 364-374
童毅, 简曙光, 陈权, 李玉玲, 邢福武. 2013. 中国西沙群岛植物多样性. 生物多样性, 21(3): 364-374 [DOI: 10.3724/SP.J.1003.2013.11222http://dx.doi.org/10.3724/SP.J.1003.2013.11222]
Wang R, Tang W H, Song Y M and Zhou S C. 2011. Analysis on quality status and characteristics of soil environment in Xisha islands. Journal of Anhui Agricultural Sciences, 39(10): 5837-5840
王瑞, 唐文浩, 宋玉梅, 周石池. 2011. 西沙群岛土壤环境质量状况及特征分析. 安徽农业科学, 39(10): 5837-5840 [DOI: 10.3969/j.issn.0517-6611.2011.10.067http://dx.doi.org/10.3969/j.issn.0517-6611.2011.10.067]
Xing F W, Li Z X, Ye H G, Chen B H and Wu D L. 1993. A study on the floristic plant geography of Xisha Islands, south China. Tropical Geography, 13(3): 250-257
邢福武, 李泽贤, 叶华谷, 陈炳辉, 吴德邻. 1993. 我国西沙群岛植物区系地理的研究. 热带地理, 13(3): 250-257 [DOI: 10.13284/j.cnki.rddl.002233http://dx.doi.org/10.13284/j.cnki.rddl.002233]
Paracel Islands Plant Expedition of Guangdong Institute of Botany. 1977. Plants and vegetation on Xisha Islands of China. Science Press
广东省植物研究所西沙群岛植物调查队. 1977. 我国西沙群岛的植物和植被. 北京: 科学出版社
Yan H. 2012. High resolution climatic and environmental changes in Xisha islands of south China sea during the late holocene. Hefei: University of Science and Technology of China
晏宏. 2012. 南海西沙群岛晚全新世高分辨率气候环境变化. 合肥: 中国科学技术大学
Yang C, Wu G F, Li Q Q, Wang J L, Qu L Q and Ding K. 2018. Research progress on remote sensing classification of vegetation. Geography and Geo-Information Science, 34(4): 24-32
杨超, 邬国锋, 李清泉, 王金亮, 渠立权, 丁凯. 2018. 植被遥感分类方法研究进展. 地理与地理信息科学, 34(4): 24-32 [DOI: 10.3969/j.issn.1672-0504.2018.04.005http://dx.doi.org/10.3969/j.issn.1672-0504.2018.04.005]
Zhang H D. 1974. The vegetation of the HSI-SHA Islands. Acta Botanica Sinica, 16(3): 183-192
张宏达. 1974. 西沙群岛的植被. 植物学报, 16(3): 183-190
Zhang L, Liu Z W and Jiang D Q. 2011. Ecological investigation of the vegetation in the paracel islands. Chinese Agricultural Science Bulletin, 27(14): 181-186
张浪, 刘振文, 姜殿强. 2011. 西沙群岛植被生态调查. 中国农学通报, 27(14): 181-186
Zhao H T, Song C J, Yu K F and Yuan J Y. 1994. Nature and development of Yongxing island and Shi island of Xisha islands. Marine Science Bulletin, 13(5): 44-56
赵焕庭, 宋朝景, 余克服, 袁家义. 1994. 西沙群岛永兴岛和石岛的自然与开发. 海洋通报, 13(5): 44-56