结合边界约束网络和分水岭分割算法的建筑物提取
Building detection based on a boundary-regulated network and watershed segmentation
- 2022年26卷第7期 页码:1459-1468
纸质出版日期: 2022-07-07
DOI: 10.11834/jrs.20219335
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-07-07 ,
扫 描 看 全 文
罗壮,李明,张德朝.2022.结合边界约束网络和分水岭分割算法的建筑物提取.遥感学报,26(7): 1459-1468
Luo Z,Li M and Zhang D Z. 2022. Building detection based on a boundary-regulated network and watershed segmentation. National Remote Sensing Bulletin, 26(7):1459-1468
城市作为高密度建筑区域,在较小范围内有大量结构相似的建筑紧密分布。当前从高分辨率图像中准确检测建筑仍然是一个挑战,本文受边缘检测网络启发,提出一种强化边界精度的建筑物提取新方案,根据建筑物及边界特点改进深度网络,结合自下而上分组的分水岭分割提高分类精度和建筑边界的准确度。首先对数据预处理,生成建筑边界和建筑分割线两类辅助标签;改进性能较优的建筑检测框架ICT-Net网络,修改网络结构和损失函数,针对两类辅助标签,强化边界影响,提高网络性能;最后对网络预测结果应用结合分水岭分割和梯度提升回归树的后处理,实现高精度的建筑提取。结果表明,数据预处理、改进深度学习算法可提高建筑检测像素精度IOU(Intersection over Union)约1%。后处理能充分利用网络输出的概率信息,有效优化建筑边界,在网络预测结果的基础上提高建筑实例召回率10.5%。本文方案与原始的ICT-Net网络相比,提高建筑实例召回率22.9%。
High-density urban cities contain numerous similar buildings positioned in close proximity. Building detection from high-spatial-resolution remote sensing imagery in such scenes remains a challenge in computer vision and remote sensing urban applications. The integration of traditional segmentation algorithms and a novel neural network is an effective approach for such challenging settings. Inspired by the recent success of deep-learning-based edge detection
a new building detection method aiming at accurate boundaries is proposed. In accordance with the characteristics of buildings and their border
this study improves the network structure and integrates the network with bottom-up watershed segmentation to improve boundary precision and classification accuracy.
First
two auxiliary labels
namely
the building boundary and parting line
are derived from the original dataset through data preprocessing. Second
the newly proposed building detection frame called ICT-Net is improved by modifying its structure and loss function in accordance with the two auxiliary labels to obtain the probability of three classes. Lastly
a post-process integrating watershed segmentation with gradient-boosted regression trees is employed to achieve high-accuracy building detection. Specifically
a probability feature map is generated by merging the probability of three classes. Watershed segmentation with building marker thresholds is applied to obtain building instances from the probability feature map. Then
the building probability of each building instance predicted by gradient-boosted regression trees is used to select building instances
resulting in building detection results. Parameter selection is also implemented.
The performance of the proposed method is validated on the INRIA dataset
which provides aerial orthorectified color imagery with a spatial resolution of 0.3 m and with corresponding ground truth labels for two semantic classes: building and not building. Experimental results suggest that data preprocessing and the application of boundary loss can obtain an improvement of 1% in terms of the Intersection over Union (IOU) of building detection. The post-process can take full advantage of probability information from the network
thereby effectively optimizing the building boundary. The post-process brings an improvement of 10.5% in terms of building instance recall compared with the results of the neural network. Our study achieves a building instance recall rate that is 22.9% higher than that of the original ICT-Net.
A novel building detection method based on a boundary-regulated network and watershed segmentation is proposed in this study. Experimental results reveal the advantages of the enhanced-boundary-oriented data preprocessing and modified neural network and demonstrate that the proposed method can further improve prediction accuracy on a network basis. However
the excellent performance of the proposed method largely depends on parameter selection
and further improvements should be made in the future.
遥感建筑检测深度网络边界损失分水岭分割实例分割
remote sensingbuilding detectiondeep neural networkboundary losswatershed segmentationinstance segmentation
Bokhovkin A and Burnaev E. 2019. Boundary loss for remote sensing imagery semantic segmentation//Proceedings of the 16th International Symposium on Neural Networks. Moscow, Russia: Springer: 388-401 [DOI: 10.1007/978-3-030-22808-8_38http://dx.doi.org/10.1007/978-3-030-22808-8_38]
Chatterjee B and Poullis C. 2019. On building classification from remote sensor imagery using deep neural networks and the relation between classification and reconstruction accuracy using border localization as proxy//Proceedings of the 16th Conference on Computer and Robot Vision. Kingston, ON, Canada: IEEE: 41-48 [DOI: 10.1109/CRV.2019.00014http://dx.doi.org/10.1109/CRV.2019.00014]
Chollet F. 2015. Keras. https://github.com/fchollet/kerashttps://github.com/fchollet/keras
Demir I, Koperski K, Lindenbaum D, Pang G, Huang J, Basu S, Hughes F, Tuia D and Raska R. 2018. DeepGlobe 2018: a challenge to parse the earth through satellite images//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City, Utah: IEEE: 172-17209 [DOI: 10.1109/CVPRW.2018.00031http://dx.doi.org/10.1109/CVPRW.2018.00031]
Dosovitskiy A, Fischer P, Ilg E, Häusser P, Hazirbas C, Golkov V, Van Der Smagt P, Cremers D and Brox T. 2015. FlowNet: learning optical flow with convolutional networks. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 2758-2766 [DOI: 10.1109/ICCV.2015.316http://dx.doi.org/10.1109/ICCV.2015.316]
Dozat T. 2016. Incorporating nesterov momentum into Adam[EB/OL]. Proceedings of International Conference on Learning Representations Workshop (1): 2013-2016[2019-09-20]. https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZhttps://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
Goldman E, Herzig R, Eisenschtat A, Goldberger J and Hassner T. 2019. Precise detection in densely packed scenes//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE: 5222-5233 [DOI: 10.1109/CVPR.2019.00537http://dx.doi.org/10.1109/CVPR.2019.00537]
He K M, Gkioxari G, Dollár P and Girshick R. 2017. Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2980-2988 [DOI: 10.1109/ICCV.2017.322http://dx.doi.org/10.1109/ICCV.2017.322]
Hosang J, Benenson R, Dollár P and Schiele B. 2016. What makes for effective detection proposals? IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(4): 814-830 [DOI: 10.1109/TPAMI.2015.2465908http://dx.doi.org/10.1109/TPAMI.2015.2465908]
Iglovikov V, Mushinskiy S and Osin V. 2017. Satellite imagery feature detection using deep convolutional neural network: a kaggle competition[J/OL]. arXiv preprint arXiv:1706.06169 [2019-09-20]. https://arxiv.org/pdf/1706.06169.pdfhttps://arxiv.org/pdf/1706.06169.pdf
Jégou S, Drozdzal M, Vazquez D, Romero A and Bengio Y. 2017. The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI, USA: IEEE: 1175-1183 [DOI: 10.1109/CVPRW.2017.156http://dx.doi.org/10.1109/CVPRW.2017.156]
Ke G L, Meng Q, Finley T, Wang T F, Chen W, Ma W D, Ye Q W and Liu T Y. 2017. LightGBM: a highly efficient gradient boosting decision tree[C/OL]. Proceedings of Advances in Neural Information Processing Systems. Long Beach, California, USA. Curran Associates Inc: 3146-3154[2019-09-20]. https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdfhttps://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
Lin T Y, Goyal P, Girshick R, He K M and Dollár P. 2017. Focal loss for dense object detection. Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2999-3007 [DOI: 10.1109/ICCV.2017.324http://dx.doi.org/10.1109/ICCV.2017.324]
Liow Y T and Pavlidis T. 1990. Use of shadows for extracting buildings in aerial images. Computer Vision, Graphics, and Image Processing, 49(2): 242-277 [DOI: 10.1016/0734-189X(90)90139-Mhttp://dx.doi.org/10.1016/0734-189X(90)90139-M]
Liu Z J, Wang J and Liu W P. 2005. Building extraction from high resolution imagery based on multi-scale object oriented classification and probabilistic Hough transform//Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium. Seoul, South Korea: IEEE: 2250-2253 [DOI: 10.1109/IGARSS.2005.1525421http://dx.doi.org/10.1109/IGARSS.2005.1525421]
Lv Z Y, Zhang P L, Benediktsson J A and Shi W Z. 2014. Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12): 4644-4652 [DOI: 10.1109/jstars.2014.2328618http://dx.doi.org/10.1109/jstars.2014.2328618]
Maggiori E, Tarabalka Y, Charpiat G and Alliez P. 2017. Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth, Texas, USA: IEEE: 3226-3229 [DOI: 10.1109/IGARSS.2017.8127684http://dx.doi.org/10.1109/IGARSS.2017.8127684]
Marmanis D, Schindler K, Wegner J D, Galliani S, Datcu M and Stilla U. 2018. Classification with an edge: improving semantic image segmentation with boundary detection. ISPRS Journal of Photogrammetry and Remote Sensing, 135: 158-172 [DOI: 10.1016/j.isprsjprs.2017.11.009http://dx.doi.org/10.1016/j.isprsjprs.2017.11.009]
Ming D P, Luo J C, Shen Z F, Wang M and Sheng H. 2005. Research on information extraction and target recognition from high resolution remote sensing image. Science of Surveying and Mapping, 30(3): 18-20
明冬萍, 骆剑承, 沈占锋, 汪闽, 盛昊. 2005. 高分辨率遥感影像信息提取与目标识别技术研究. 测绘科学, 30(3): 18-20 [DOI: 10.3771/j.issn.1009-2307.2005.03.004http://dx.doi.org/10.3771/j.issn.1009-2307.2005.03.004]
Ronneberger O, Fischer P and Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation//Proceedings of 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer: 234-241 [DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Tan Q L. 2010. Urban building extraction from VHR multi-spectral images using object-based classification. Acta Geodaetica et Cartographica Sinica, 39(6): 618-623
谭衢霖. 2010. 高分辨率多光谱影像城区建筑物提取研究. 测绘学报, 39(6): 618-623
Tian S H, Zhang X F, Tian J and Sun Q. 2016. Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjiang, China. Remote Sensing, 8(11): 954 [DOI: 10.3390/rs8110954http://dx.doi.org/10.3390/rs8110954]
Van Der Walt S, Schönberger J L, Nunez-Iglesias J, Boulogne F, Warner J D, Yager N, Gouillart E, Yu T and the Scikit-Image Contributors. 2014. Scikit-image: image processing in Python. PeerJ, 2: e453 [DOI: 10.7717/peerj.453http://dx.doi.org/10.7717/peerj.453]
Wu H, Cheng Z P, Shi W Z, Miao Z L and Xu C C. 2014. An object-based image analysis for building seismic vulnerability assessment using high-resolution remote sensing imagery. Natural Hazards, 71(1): 151-174 [DOI: 10.1007/s11069-013-0905-6http://dx.doi.org/10.1007/s11069-013-0905-6]
Wu G, Guo Z, Shi X, Chen Q, Xu Y, Shibasaki R, Shao X. 2018. A boundary regulated network for accurate roof segmentation and outline extraction. Remote Sensing, 10(8), 1195 [DOI: 10.3390/rs10081195http://dx.doi.org/10.3390/rs10081195]
相关作者
相关机构