激光测高卫星波形饱和识别与测高误差改正初步研究
Preliminary study on echo saturation identification and altimetry error correction of laser altimetry satellite waveform
- 2022年26卷第8期 页码:1674-1684
纸质出版日期: 2022-08-07
DOI: 10.11834/jrs.20219342
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-08-07 ,
扫 描 看 全 文
郭金权,李国元,裴亮,么嘉棋,聂胜.2022.激光测高卫星波形饱和识别与测高误差改正初步研究.遥感学报,26(8): 1674-1684
Guo J Q,Li G Y,Pei L,Yao J Q and Nie S. 2022. Preliminary study on echo saturation identification and altimetry error correction of laser altimetry satellite waveform. National Remote Sensing Bulletin, 26(8):1674-1684
激光测高仪回波波形饱和现象客观存在,为增加可用激光点数目、提高饱和波形测高精度,本文提出了一种波形饱和识别与测高误差改正方法,首先,利用回波波形峰度系数对饱和波形进行识别,然后,针对饱和现象对波形高斯拟合的影响,计算高斯拟合波形与原始波形相交区域的形心位置,以形心位置差异确定因波形饱和导致的测高误差并改正。最后,采用ICESat/GLAS(Ice,Cloud and land Elevation Satellite/Geo-science Laser Altimeter System)在青海湖、纳木错、色林错采集的波形数据进行实验。结果表明,经本文算法改正后数据误差均值为0.03 m,大型湖泊区域可实现约0.05 m的测高精度,结合峰度的饱和识别方法可以对波形进行有效筛选,可发现GLAS遗漏的饱和波形,饱和改正算法可以有效改正波形饱和引起的测高误差,改正后精度明显优于GLAS提供的饱和改正结果,相关结论对高分七号卫星激光波形处理有一定参考价值。
Laser altimeter rec waveform saturation commonly exists in Polar Regions
lakes and other areas
but studies about it are few. This study summarizes the previous research results and analyzes the causes of waveform saturation and the influence of waveform saturation on measurement accuracy. A method for waveform saturation recognition and height measurement error correction is proposed to increase the number of available laser points and improve the accuracy of saturation waveform measurement.
The waveform saturation recognition algorithm uses a combination of saturation threshold and waveform kurtosis. The minimum saturation threshold is used to remove waveform data whose amplitude is low and unsaturated. Then
the kurtosis of the original waveform data is compared with that of the average distribution data. If the waveform kurtosis is less than the average distribution kurtosis
then it is considered t saturated; otherwise
it is a normal waveform. The saturation correction algorithm uses the centroid position difference to calculate the height measurement error. Gaussian fitting is performed on the original waveform data
the intersection point of the Gaussian fitting curve and the original data is calculated
the intersection point is selected according to the principle of selecting points
the two selected intersection points are connected to form a line segment
and the closed area surrounded by the line segment and the Gaussian fitted waveform is computed. The difference between the centroid position of the Gaussian fitting and that of the closed area is the time deviation of the height measurement caused by the waveform saturation. The time deviation is multiplied by one-half the speed of light to obtain the saturation correction value.
Data collected by Ice
Cloud
and Land Elevation Satellite/Geo-science Laser Altimeter System (ICESat/GLAS) in Qinghai Lake
Nam Co
and Selin Co are used for experiments. Experimental results show that the average error of the data after algorithm correction is 0.03 m
and the large lake area can achieve an accuracy of about 0.05 m. The proposed saturation recognition algorithm is more accurate than that in the previous studies. GLAS uses a fixed threshold to identify missing saturated waveforms. The proposed saturation correction algorithm is easier to implement and has higher accuracy than the algorithm provided by GLAS. This proposed algorithm only relies on the shape characteristics of waveform data for calculation; thus
it has more universal applicability. Different from previous studies
the experiments also found that the waveform saturation does not only cause low conditions on elevation measurement
but also high conditions. The comparison between the corrected elevation and the actual elevation proves that this situation does exist.
The number and accuracy of available laser points can be greatly increased by the effective correction of saturation waveform data. The proposed method can provide some references for saturation processing of echo data of domestic laser altimeter
but it is mainly suitable for effective identification and correction of single waveform saturation data
such as lake
flat land
and polar ice sheet. How to identify and correct multiwaveform overlapping saturation data in complex areas such as forest should be studied.
卫星激光测高波形饱和误差改正ICESat/GLAS高分七号
satellite laser altimetersaturation waveformerror correctionICESat/GLASGF-7 satellite
Baghdadi N, Lemarquand N, Abdallah H and Bailly J S. 2011. The relevance of GLAS/ICESat elevation data for the Monitoring of river networks. Remote Sensing, 3(12): 708-720 [DOI: 10.3390/rs3040708http://dx.doi.org/10.3390/rs3040708]
Fricker H A, Borsa A, Minster B, Carabajal C, Quinn K and Bills B. 2005. Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geophysical Research Letters, 32(21): L21S06 [DOI: 10.1029/2005GL023423http://dx.doi.org/10.1029/2005GL023423]
Kwok R, Cunningham G F, Zwally H J and Yi D. 2006. ICESat over Arctic sea ice: interpretation of altimetric and reflectivity profiles. Journal of Geophysical Research, 111(C6): C06006 [DOI: 10.1029/2005JC003175http://dx.doi.org/10.1029/2005JC003175]
Lan X P, Huang G H, Wang H W and Wu J. 2015. Technology of laser large-footprint multi-objective relative distance information extraction and verification. Acta Optica Sinica, 35(7): 0701001
蓝晓萍, 黄庚华, 王海伟, 吴军. 2015. 激光大足印多目标距离信息提取与验证技术. 光学学报, 35(7): 0701001 [DOI: 10.3788/AOS201535.0701001http://dx.doi.org/10.3788/AOS201535.0701001]
Lefsky M A, Keller M, Pang Y, De Camargo P B and Hunter M O. 2007. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. Journal of Applied Remote Sensing, 1(1): 013537 [DOI: 10.1117/1.2795724http://dx.doi.org/10.1117/1.2795724]
Li G Y. 2018. Earth observing satellite laser altimeter data processing method and engineer practice. Acta Geodaetica et Cartographica Sinica, 47(12): 1691
李国元. 2018. 对地观测卫星激光测高数据处理方法与工程实践. 测绘学报, 47(12): 1691 [DOI: 10.11947/j.AGCS.2018.20170681http://dx.doi.org/10.11947/j.AGCS.2018.20170681]
Li G Y, Tang X M, Zhang C Y, Gao X M and Chen J Y. 2017. Multi-criteria constraint algorithm for selecting ICESat/GLAS data as elevation control points. Journal of Remote Sensing, 21(1): 96-104
李国元, 唐新明, 张重阳, 高小明, 陈继溢. 2017. 多准则约束的ICESat/GLAS高程控制点筛选. 遥感学报, 21(1): 96-104 [DOI: 10.11834/jrs.20175269http://dx.doi.org/10.11834/jrs.20175269]
Li H P, Li G Y, Cai Z J and Wu G H. 2019. Full-waveform LiDAR echo decomposition method. Journal of Remote Sensing, 23(1): 89-98
李洪鹏, 李国元, 蔡志坚, 吴冠豪. 2019. 全波形激光雷达回波分解方法. 遥感学报, 23(1): 89-98 [DOI: 10.11834/jrs.20197518http://dx.doi.org/10.11834/jrs.20197518]
Li S, Zhou H, Shi Y and Guo Y. 2007. Theoretical model for return signal of laser altimeter. Optics and Precision Engineering, 15(1): 33-39
李松, 周辉, 石岩, 郭耀. 2007. 激光测高仪的回波信号理论模型. 光学 精密工程, 15(1): 33-39 [DOI: 10.3321/j.issn:1004-924X.2007.01.006http://dx.doi.org/10.3321/j.issn:1004-924X.2007.01.006]
Li Z Y, Pang Y and Liu Q W. 2015. Techniques and Methods of Forest Parameter Inversion by Laser Radar. Beijing: Science Press
李增元, 庞勇, 刘清旺. 2015. 激光雷达森林参数反演技术与方法. 北京: 科学出版社
Men H T, Li G Y, Chen J Y, Zhao Y M and Xing Y Q. 2019. Refined simulation methods of laser altimetry satellite echo waveform. Chinese Journal of Lasers, 46(1): 0110004
门华涛, 李国元, 陈继溢, 赵严铭, 邢艳秋. 2019. 激光测高卫星回波波形精细化模拟仿真方法研究. 中国激光, 46(1): 0110004 [DOI: 10.3788/CJL201946.0110004http://dx.doi.org/10.3788/CJL201946.0110004]
Shan C M, Sun H Y, Zheng Y H and Zhao Y Z. 2018. Study on the application of skewness and kurtosis in pulse laser echo analysis. Laser and Infrared, 48(2): 153-156
单聪淼, 孙华燕, 郑勇辉, 赵延仲. 2018. 偏度与峰度在脉冲激光回波分析中的应用研究. 激光与红外, 48(2): 153-156 [DOI: 10.3969/j.Issn.1001-5078.2018.02.004http://dx.doi.org/10.3969/j.Issn.1001-5078.2018.02.004]
Sun X L, Abshire J B, Borsa A A, Fricker H A, Yi D H, DiMarzio J P, Paolo F S, Brunt K M, Harding D J and Neumann G A. 2017. ICESAT/GLAS altimetry measurements: received signal dynamic range and saturation correction. IEEE Transactions on Geoscience and Remote Sensing, 55(10): 5440-5454 [DOI: 10.1109/TGRS.2017.2702126http://dx.doi.org/10.1109/TGRS.2017.2702126]
Tang X M and Li G Y. 2017. Development and prospect of laser altimetry satellite. Space International, (11): 13-18
唐新明, 李国元. 2017. 激光测高卫星的发展与展望. 国际太空, (11): 13-18 [DOI: 10.3969/j.issn.1009-2366.2017.11.004http://dx.doi.org/10.3969/j.issn.1009-2366.2017.11.004]
Wang C, Xi X H, Luo S Z and Li G C. 2015. Spaceborne Lidar Data Processing and Application. Beijing: Science Press
王成, 习晓环, 骆社周, 李贵才. 2015. 星载激光雷达数据处理与应用. 北京: 科学出版社
Wang Y, Ni W J, Zhang Z Y, Liu J L, Yu H Y and Zhang D F. 2018. Retrieval of forest canopy heights by using large-footprint waveform data assisted by the LiDAR model over hillsides. Journal of Remote Sensing, 22(3): 466-477
汪垚, 倪文俭, 张志玉, 刘见礼, 于浩洋, 张大凤. 2018. 激光雷达回波模型辅助的坡地森林冠层高度反演. 遥感学报, 22(3): 466-477 [DOI: 10.11834/jrs.20187152http://dx.doi.org/10.11834/jrs.20187152]
Xing Y Q and Wang L H. 2009. ICESat-GLAS full waveform-based study on forest canopy height retrieval in sloped area —A case study of forests in Changbai Mountains, Jilin. Geomatics and Information Science of Wuhan University, 34(6): 696-700
邢艳秋, 王立海. 2009. 基于ICESat-GLAS完整波形的坡地森林冠层高度反演研究——以吉林长白山林区为例. 武汉大学学报(信息科学版), 34(6): 696-700 [DOI: 10.13203/j.whugis2009.06.014http://dx.doi.org/10.13203/j.whugis2009.06.014]
Zhu S X, Zhao Y Q, Ye M, Li J, Xia X Z, Xie S Y and Zhou G Q. 2018. Saturated echo signal algorithm for wide dynamic range lidar. Acta Photonica Sinica, 47(12): 1228003
朱世贤, 赵毅强, 叶茂, 李杰, 夏显召, 谢绍禹, 周国清. 2018. 大动态范围激光雷达回波信号饱和处理算法. 光子学报, 47(12): 1228003 [DOI: 10.3788/gzxb20184712.1228003http://dx.doi.org/10.3788/gzxb20184712.1228003]
相关作者
相关机构