季节偏差纠正下的遥感AOD产品降尺度BGIM算法
Seasonal deviation correction enhanced BGIM downscaling algorithm for remote sensing AOD products
- 2022年26卷第8期 页码:1602-1613
纸质出版日期: 2022-08-07
DOI: 10.11834/jrs.20219351
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-08-07 ,
扫 描 看 全 文
梁玉,邹滨,冯徽徽,刘宁.2022.季节偏差纠正下的遥感AOD产品降尺度BGIM算法.遥感学报,26(8): 1602-1613
Liang Y, Zou B,Feng H H and Liu N. 2022. Seasonal deviation correction enhanced BGIM downscaling algorithm for remote sensing AOD products. National Remote Sensing Bulletin, 26(8):1602-1613
MODIS 3 km DT(Dark Target)卫星气溶胶光学厚度AOD(Aerosol Optical Depth)数据产品已广泛应用于大气污染监测,但受反演方法限制,该数据产品像元缺失严重、时空覆盖度低、精度偏低。相比,MODIS 10 km DT_DB_Combined AOD数据产品因融合DT和DB(Deep Blue)两种反演算法,一定程度上可弥补MODIS 3 km DT AOD数据产品在时空覆盖度与精度方面的缺陷,但分辨率偏低。此外,受气溶胶组分来源的季节变化与地表反射率估算的季节性误差影响,MODIS AOD数据产品精度同时也存在季节性特征。本文由此以京津冀为试验区,顾及AOD季节变化特性,开展MODIS 10 km DT_DB_Combined AOD数据产品偏差纠正下的地统计反演模拟BGIM(Bias-corrected Geostatistical Inverse Model)降尺度算法研究。试验同时引入AERONET地基观测数据和MODIS 3 km DT AOD数据产品作为降尺度结果的绝对与相对验证标准。结果表明:季节偏差系数纠正下生成的MODIS 3 km DT_DB_Combined AOD与10 km DT_DB_Combined AOD、3 km DT AOD数据产品的绝对精度相当,验证
R
2
分别为0.79、0.70、0.71;且相比MODIS 3 km DT AOD数据产品,季节偏差系数纠正下的MODIS 3 km DT_DB_Combined AOD数据与其相关系数可达0.93;在时间覆盖度和空间覆盖度方面可分别提升11.21%和11.44%,其中春、冬两季空间覆盖度提升效果尤为显著。研究结果证实BGIM降尺度算法可有效估算MODIS 3 km DT_DB_Combined AOD数据,提高MODIS 3 km AOD产品的时空覆盖度,并同时抑制原有MODIS 10 km DT_DB_Combined AOD数据产品的季节性高估现象。
Satellite MODIS Aerosol Optical Depth (AOD) products based on Dark Target (DT) retrieval algorithm at 3 km resolution have been widely used in the ground air pollution monitoring. However
due to the limitations of DT retrieval algorithm
these products missed a large number of pixels with low spatiotemporal coverage and limited accuracy. By contrast
MODIS 10 km DT_DB_Combined AOD products integrate products based on DT and Deep Blue (DB) retrieval algorithms. However
to some extent
DT_DB_Combined AOD products can make up for the coverage and accuracy shortcomings of MODIS 3 km DT AOD data products
the resolution of which is low. Moreover
affected by the seasonal variation of aerosol component sources and the seasonal error of surface reflectance estimation
the accuracy of MODIS AOD data products also exhibits seasonal variation. This study takes Beijing‐Tianjin‐Hebei region as the experimental area and uses MODIS 10 km DT_DB_Combined AOD products as the material. Geostatistical Inverse Model (GIM) downscaling method
which considers the spatial covariance function differences of AOD data products at different scales
is introduced. At the same time
to consider the seasonal variation characteristics of AOD
the seasonal bias correction model for the MODIS 10 km DT_DB_Combined AOD products using accurate AERONET monitoring data is developed. On this basis
the Bias-corrected GIM (BGIM) downscaling algorithm coupled with seasonal bias correction model is further proposed. The AERONET ground observation data and MODIS 3 km DT AOD products are employed as the absolute and relative evaluation reference for the BGIM downscaling results. Results show that the absolute evaluated accuracies of the downscaled MODIS 3 km DT_DB_Combined AOD data
10 km DT_DB_Combined AOD
and 3 km DT AOD data products are relatively close; the corresponding
R
2
values are 0.79
0.70
and 0.71
respectively. Compared with MODIS 3 km DT AOD products
the relative evaluated
R
result of the seasonal corrected MODIS 3 km DT_DB_Combined AOD data is higher than 0.93. In addition
the temporal coverage and spatial coverage are increased by 11.21% and 11.44%
respectively. The spatial coverage in spring and winter is relatively higher among four seasons. The results confirm that the BGIM downscaling algorithm can not only effectively improve the resolution and accuracy of MODIS 10 km DT_DB_Combined AOD products
but also promote the spatiotemporal coverage compared with MODIS 3 km AOD products.
遥感AOD降尺度BGIM时空统计京津冀
remote sensingAODdownscalingBGIMspatial-temporal statisticsBeijing‐Tianjin‐Hebei
Byrd R H, Hribar M E and Nocedal J. 1999. An interior point algorithm for large-scale nonlinear programming. SIAM Journal on Optimization, 9(4): 877-900 [DOI: 10.1137/S1052623497325107http://dx.doi.org/10.1137/S1052623497325107]
Che H Z, Yang L K, Liu C, Xia X G, Wang Y Q, Wang H, Wang H, Lu X F and Zhang X Y. 2019. Long-term validation of MODIS C6 and C6.1 Dark Target aerosol products over China using CARSNET and AERONET. Chemosphere, 236: 124268 [DOI: 10.1016/j.chemosphere.2019.06.238http://dx.doi.org/10.1016/j.chemosphere.2019.06.238]
Chu D A, Kaufman Y J, Ichoku C, Remer L A, Tanré D and Holben B N. 2002. Validation of MODIS aerosol optical depth retrieval over land. Geophysical Research Letters, 29(12): MOD2-1—MOD2-4 [DOI: 10.1029/2001GL013205http://dx.doi.org/10.1029/2001GL013205]
De Leeuw G, Sogacheva L, Rodriguez E, Kourtidis K, Georgoulias A K, Alexandri G, Amiridis V, Proestakis E, Marinou E, Xue Y and Van Der Ronald A. 2018. Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: data set evaluation and large-scale patterns. Atmospheric Chemistry and Physics, 18(3): 1573-1592 [DOI: 10.5194/acp-18-1573-2018http://dx.doi.org/10.5194/acp-18-1573-2018]
Duan L M, Fan K K, Li W and Liu T X. 2019. Spatial downscaling algorithm of TRMM precipitation based on multiple high-resolution satellite data for Inner Mongolia, China. Theoretical and Applied Climatology, 135(1/2): 45-59 [DOI: 10.1007/s00704-017-2347-7http://dx.doi.org/10.1007/s00704-017-2347-7]
Guang J, Xue Y, Li X W, Bai L Y, Wang Y, Li Y J, Wan W and Guo J P. 2008. Multi-spatial scale aerosol optical thickness mapping for Beijing using remote sensing technique. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B8): 485-490
Hsu N C, Tsay S C, King M D and Herman J R. 2004. Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3): 557-569 [DOI: 10.1109/TGRS.2004.824067http://dx.doi.org/10.1109/TGRS.2004.824067]
Huth R. 2002. Statistical downscaling of daily temperature in central Europe. Journal of Climate, 15(13): 1731-1742 [DOI: 10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2http://dx.doi.org/10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2]
Ichoku C, Chu D A, Mattoo S, Kaufman Y J, Remer L A, Tanré D, Slutsker I and Holben B N. 2002. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophysical Research Letters, 29(12): MOD1-1—MOD1-4 [DOI: 10.1029/2001GL013206http://dx.doi.org/10.1029/2001GL013206]
Jing Y, Sun Y L, Fu H C, Ma H, Teng Q Y and Cui Y M. 2018. Temporal and spatial variation of aerosol optical depth and analysis of influencing factors in Beijing‐Tianjin‐Hebei region from 2010 to 2016. Environmental Science & Technology, 41(8) :104-113
景悦, 孙艳玲, 付宏臣, 马含, 滕庆仪, 崔月明. 2018. 2010‐2016年京津冀AOD时空变化及其影响因子分析. 环境科学与技术, 41(8) :104-113 [DOI: 10.19672/j.cnki.1003-6504.2018.08.016http://dx.doi.org/10.19672/j.cnki.1003-6504.2018.08.016]
Kaufman Y J, Tanré D, Remer L A, Vermote E F, Chu A and Holben B N. 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres, 102(D14): 17051-17067 [DOI: 10.1029/96jd03988http://dx.doi.org/10.1029/96jd03988]
Kitanidis P K. 1995. Quasi-linear geostatistical theory for inversing. Water Resources Research, 31(10): 2411-2419 [DOI: 10.1029/95wr01945http://dx.doi.org/10.1029/95wr01945]
Levy R C, Mattoo S, Munchak L A, Remer L A, Sayer A M, Patadia F and Hsu N C. 2013. The collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11): 2989-3034 [DOI: 10.5194/amt-6-2989-2013http://dx.doi.org/10.5194/amt-6-2989-2013]
Li B G, Yuan H S, Feng N and Tao S. 2009. Comparing MODIS and AERONET aerosol optical depth over China. International Journal of Remote Sensing, 30(24): 6519-6529[DOI: 10.1080/01431160903111069http://dx.doi.org/10.1080/01431160903111069]
Li S S, Chen L F, Xiong X Z, Tao J H, Su L, Han D and Liu Y. 2013. Retrieval of the haze optical thickness in North China Plain using MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 51(5): 2528-2540[DOI: 10.1109/TGRS.2012.2214038http://dx.doi.org/10.1109/TGRS.2012.2214038]
Li Z B, Wang N, Zhang Z L, Wang T T, Tao J H, Wang P, Ma S L, Xu B B and Fan M. 2020. Validation and analyzation of MODIS aerosol optical depth products over China. China Environmental Science, 40(10):4190-4204
李忠宾, 王楠, 张自力, 王甜甜, 陶金花, 王萍, 马双良, 徐奔奔, 范萌. 2020. 中国地区MODIS气溶胶光学厚度产品综合验证及分析. 中国环境科学, 40(10) :4190-4204 [DOI: 10.19674/j.cnki.issn1000-6923.2020.0466http://dx.doi.org/10.19674/j.cnki.issn1000-6923.2020.0466]
Liang L W, Wang Z B, Fang C L and Sun Z. 2019. Spatiotemporal differentiation and coordinated development pattern of urbanization and the ecological environment of the Beijing-Tianjin-Hebei urban agglomeration. Acta Ecologica Sinica, 39(4): 1212-1225
梁龙武, 王振波, 方创琳, 孙湛. 2019. 京津冀城市群城市化与生态环境时空分异及协同发展格局. 生态学报, 39(4): 1212-1225 [DOI: 10.5846/stxb201809162015http://dx.doi.org/10.5846/stxb201809162015]
Liang Y Z, Ge Y and Wang J H. 2015. Review of geostatistical-based downscaling. Remote Sensing Technology and Application, 30(1): 1-7
梁永忠, 葛咏, 王江浩. 2015. 基于地统计学的尺度下推方法综述. 遥感技术与应用, 30(1): 1-7 [DOI: 10.11873/j.issn.1004-0323.2015.1.0001http://dx.doi.org/10.11873/j.issn.1004-0323.2015.1.0001]
Liu H, Gao X M, Xie Z Y, Li T T and Zhang W J. 2015. Spatio-temporal characteristics of aerosol optical depth over Beijing-Tianjin-Hebei-Shanxi-Shandong region during 2000-2013. Acta Scientiae Circumstantiae, 35(5): 1506-1511
刘浩, 高小明, 谢志英, 李腾腾, 张文君. 2015. 京津冀晋鲁区域气溶胶光学厚度的时空特征. 环境科学学报, 35(5): 1506-1511 [DOI: 10.13671/j.hjkxxb.2014.0949http://dx.doi.org/10.13671/j.hjkxxb.2014.0949]
Liu N, Zou B, Feng H H, Wang W, Tang Y Q and Liang Y. 2019. Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China. Atmospheric Chemistry and Physics, 19(12): 8243-8268 [DOI: 10.5194/acp-19-8243-2019http://dx.doi.org/10.5194/acp-19-8243-2019]
Lyapustin A, Wang Y J, Korkin S and Huang D. 2018. MODIS Collection 6 MAIAC algorithm. Atmospheric Measurement Techniques, 11(10): 5741-5765[DOI: 10.5194/amt-11-5741-2018http://dx.doi.org/10.5194/amt-11-5741-2018]
Malakar N K, Lary D J, Moore A, Gencaga D, Roscoe B, Albayrak A and Wei J. 2012. Estimation and bias correction of aerosol abundance using data-driven machine learning and remote sensing//2012 Conference on Intelligent Data Understanding. Boulder, CO, USA: IEEE: 24-30 [DOI: 10.1109/CIDU.2012.6382197http://dx.doi.org/10.1109/CIDU.2012.6382197]
Michalak A M, Bruhwiler L and Tans P P. 2004. A geostatistical approach to surface flux estimation of atmospheric trace gases. Journal of Geophysical Research: Atmospheres, 109(D14): D14109 [DOI: 10.1029/2003JD004422http://dx.doi.org/10.1029/2003JD004422]
Munchak L A, Levy R C, Mattoo S, Remer L A, Holben B N, Schafer J S, Hostetler C A and Ferrare R A. 2013. MODIS 3 km aerosol product: applications over land in an urban/suburban region. Atmospheric Measurement Techniques, 6(7): 1747-1759 [DOI: 10.5194/amt-6-1747-2013http://dx.doi.org/10.5194/amt-6-1747-2013]
Niu F, Li C C and Mao J T. 2006. A synergic application of TERRA and AQUA on retrieving aerosol optical depth over Land. Journal of Remote Sensing, 10(4): 456-462
牛峰, 李成才, 毛节泰. 2006. 利用TERRA和AQUA共同反演陆地上空的气溶胶光学厚度. 遥感学报, 10(4): 456-462 [DOI: 10.11834/jrs.20060468http://dx.doi.org/10.11834/jrs.20060468]
Schaap M, Timmermans R M A, Koelemeijer R B A, De Leeuw G and Builtjes P J H. 2008. Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations. Atmospheric Environment, 42(9): 2187-2197 [DOI: 10.1016/j.atmosenv.2007.11.044http://dx.doi.org/10.1016/j.atmosenv.2007.11.044]
Stathopoulou M and Cartalis C. 2009. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sensing of Environment, 113(12): 2592-2605 [DOI: 10.1016/j.rse.2009.07.017http://dx.doi.org/10.1016/j.rse.2009.07.017]
Sun L, Yu H Y, Fu Q Y, Wang J, Tian X P and Mi X T. 2016. Aerosol optical depth retrieval and atmospheric correction application for GF-1 PMS supported by land surface reflectance data. Journal of Remote Sensing, 20(2): 216-228
孙林, 于会泳, 傅俏燕, 王健, 田信鹏, 米雪婷. 2016. 地表反射率产品支持的GF-1 PMS气溶胶光学厚度反演及大气校正. 遥感学报, 20(2): 216-228 [DOI: 10.11834/jrs.20165052http://dx.doi.org/10.11834/jrs.20165052]
Wang H L, Liu Q, Chen Y H, Sun R, Li X, Zhang H, Wei G, Hu J and Liu T Q. 2019. Applicability of MODIS C006 aerosol products in a typical environmental area of the Beijing-Tianjin-Hebei region. Environmental Science, 40(1): 44-54
王海林, 刘琼, 陈勇航, 孙冉, 李霞, 张华, 魏刚, 胡俊, 刘统强. 2019. MODIS C006气溶胶光学厚度产品在京津冀典型环境背景下的适用性. 环境科学, 40(1): 44-54 [DOI: 10.13227/j.hjkx.201804155http://dx.doi.org/10.13227/j.hjkx.201804155]
Wang J, Brown D G and Hammerling D. 2013. Geostatistical inverse modeling for super-resolution mapping of continuous spatial processes. Remote Sensing of Environment, 139: 205-215 [DOI: 10.1016/j.rse.2013.08.007http://dx.doi.org/10.1016/j.rse.2013.08.007]
Wang K, Sun X J, Zhou Y B and Zhang C L. 2017. Validation of MODIS-Aqua aerosol products C051 and C006 over the Beijing-Tianjin-Hebei region. Atmosphere, 8(9): 172 [DOI: 10.3390/atmos8090172http://dx.doi.org/10.3390/atmos8090172]
Wang X Y, Xin J Y, Wang L L and Wang Y S. 2012. Aerosol optical depth observed by Chinese sun hazemeter network and comparison with MODIS products in three typical cities in China. Climatic and Environmental Research, 17(1): 37-45
王晓元, 辛金元, 王莉莉, 王跃思. 2012. 中国3个典型城市气溶胶光学厚度地基观测及其MODIS气溶胶产品精度分析. 气候与环境研究, 17(1): 37-45 [DOI: 10.3878/j.issn.1006-9585.2011.10034http://dx.doi.org/10.3878/j.issn.1006-9585.2011.10034]
Wei J, Peng Y R, Guo J P and Sun L. 2019. Performance of MODIS Collection 6.1 Level 3 aerosol products in spatial-temporal variations over land. Atmospheric Environment, 206: 30-44 [DOI: 10.1016/j.atmosenv.2019.03.001http://dx.doi.org/10.1016/j.atmosenv.2019.03.001]
Xie Y Y, Wang Y X, Zhang K, Dong W H, Lv B L and Bai Y Q. 2015. Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD. Environmental Science and Technology, 49(20): 12280-12288 [DOI: 10.1021/acs.est.5b01413http://dx.doi.org/10.1021/acs.est.5b01413]
Yan L B, Liu X D. 2009. Seasonal variation of atmospheric aerosol and its relation to cloud faction over Beijing-Tianjin-Hebei region. Research of Environmental Sciences, 22(8): 924-931
晏利斌, 刘晓东. 2009. 京津冀地区气溶胶季节变化及与云量的关系. 环境科学研究, 22(8): 924-931 [DOI: 10.13198/J.res.2009.08.52.yanlb.019http://dx.doi.org/10.13198/J.res.2009.08.52.yanlb.019]
Yang Y K, Sun L, Wei J, Tian X P and Jia C. 2016. Verification of MODIS C5 and C6 and their regional adaptability evaluation. Journal of Shandong University of Science and Technology (Natural Science), 35(5): 17-27
杨以坤, 孙林, 韦晶, 田信鹏, 贾臣. 2016. MODIS C5、C6气溶胶产品验证及区域适应性评价. 山东科技大学学报(自然科学版), 35(5): 17-27 [DOI: 10.16452/j.cnki.sdkjzk.2016.05.002http://dx.doi.org/10.16452/j.cnki.sdkjzk.2016.05.002]
Yi N N, Zhang L, Liu W P, Tian P F and Dong Z L. 2017. Optical characteristics and radiative effects of atmospheric aerosol over Northwest China. Chinese Journal of Atmospheric Sciences, 41(2): 409-420
衣娜娜, 张镭, 刘卫平, 田鹏飞, 董祝雷. 2017. 西北地区气溶胶光学特性及辐射影响. 大气科学, 41(2): 409-420 [DOI: 10.3878/j.issn.1006-9895.1606.15272http://dx.doi.org/10.3878/j.issn.1006-9895.1606.15272]
Zhang J. 2018. Assessment, mergence of satellite aerosol products, and their applications in estimating regional PM2.5 concentrations. Lanzhou: Lanzhou University
张婕. 2018. 卫星气溶胶产品评估与融合改进及其在区域PM2.5浓度估算中的应用. 兰州: 兰州大学
Zhang J, Liu H Y, Xin J Y, Zhang W Y, Xiao G J, Feng X Y and Wang L L. 2016. The comparison of MODIS and MERSI aerosol products in Shenyang. Journal of Remote Sensing, 20(4): 549-560
张婕, 刘昊野, 辛金元, 张文煜, 肖国杰, 冯鑫媛, 王莉莉. 2016. 沈阳地区MODIS与MERSI气溶胶产品对比研究. 遥感学报, 20(4): 549-560 [DOI: 10.11834/jrs.20165250http://dx.doi.org/10.11834/jrs.20165250]
Zhao C, Liu Z R, Wang Q, Ban J, Chen N X and Li T T. 2019. High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region. Atmospheric Environment, 203: 70-78 [DOI: 10.1016/j.atmosenv.2019.01.045http://dx.doi.org/10.1016/j.atmosenv.2019.01.045]
Zheng M, Yan C Q, Li X Y, Wang X S and Zhang Y H. 2014. A review of methods for quantifying secondary organic aerosol. China Environmental Science, 34(3): 555-564
郑玫, 闫才青, 李小滢, 王雪松, 张远航. 2014. 二次有机气溶胶估算方法研究进展. 中国环境科学, 34(3): 555-564
Zou B, Chen J W, Zhai L, Fang X and Zheng Z. 2017. Satellite based mapping of ground PM2.5 concentration using generalized additive modeling. Remote Sensing, 9(1): 1 [DOI: 10.3390/rs9010001http://dx.doi.org/10.3390/rs9010001]
相关作者
相关机构