机载高光谱热红外数据的地表温度和发射率反演与应用
Land surface temperature and emissivity retrieval from airborne hyperspectral thermal infrared hyperspectral data and application
- 2021年25卷第8期 页码:1661-1670
纸质出版日期: 2021-08-07
DOI: 10.11834/jrs.20219392
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-07 ,
扫 描 看 全 文
聂婧,任华忠,郑逸童,刘洪成,朱金顺.2021.机载高光谱热红外数据的地表温度和发射率反演与应用.遥感学报,25(8): 1661-1670
Nie J,Ren H Z,Zheng Y T,Liu H C and Zhu J S. 2021. Land surface temperature and emissivity retrieval from airborne hyperspectral thermal infrared hyperspectral data and application. National Remote Sensing Bulletin, 25(8):1661-1670
机载高分辨率遥感是高分对地观测的重要部分,其中高分辨率高光谱热红外数据的光谱发射率可以用于矿物识别,是对可见光遥感地物识别的有效补充。机载高光谱热红外传感器TASI(Thermal Airborne Hyperspectral Imager)在8—11.5 μm范围内设置了32个波段,在国内外常被用于地表热辐射信息、矿产资源探测等领域。本文利用2018-10在新疆富蕴县研究区的TASI航空飞行数据,首先基于再分析大气廓线NCEP数据与MODTRAN实现了TASI高光谱热红外数据的大气校正,并在基础上发展了温度与发射率分离方法TES(Temperature and Emissivity Separation method)反演研究区地表温度与发射率,采用多波段热辐射计CE312测量的地面发射率对反演结果进行了有效验证,结果表明波长大于9.6 μm的波段的发射率误差约为0.01。最后,结合反演的TASI发射率光谱曲线,采用光谱角度匹配方法提取了研究区高岭石的空间分布。研究工作涉及的相关算法与应用成果可为星载高分辨率热红外载荷数据的应用提供了相关参考。
The spectral emissivity of high-resolution hyperspectral thermal infrared data can be used for mineral identification
and is regarded as an effective complement to optical remote sensing for land surface object recognition. Thermal Airborne Hyperspectral Imager (TASI) has 32 bands in the wavelength range of 8—11.5 μm
and thus can provide useful information for the retrieval of land surface temperature and emissivity spectrum. Therefore
TASI has been widely used in the fields of land surface thermal emission parameters estimate and mineral identification. On basis of the TASI images collected on October 2018 in Fuyun of Xinjiang province
this paper first performed atmospheric correction on the TASI image using the reanalysis atmospheric profiles from National Centers for Environmental Prediction (NCEP) dataset and the MODTRAN package
and then developed a Temperature and Emissivity Separation (TES) method to synchronously retrieve temperature and spectral emissivity from the surface-leaving radiance after the atmospheric correction. Ground multiple-band emissivity from the radiometer CE312 was applied for the verification of retrieved emissivity result
indicating a high accuracy of the retrieval result from TASI image
with an emissivity error about 0.01 for bands with wavelength larger than 0.96 μm. Finally
the spectral emissivity retrieved from TASI image was used to illustrate the spatial distribution of the kaolinite in the study area. It is thought that the algorithms and application results in this paper can provide an important reference for the airborne hyperspectral thermal infrared sensor in the coming future.
遥感高光谱热红外地表温度TASI光谱发射率矿物识别
remote sensingairborne thermal infrared hyperspectral dataland surface temperatureThermal Airborne Hyperspectral Imager (TASI)emissivity spectrummineral identification
Baldridge A M, Hook S J, Grove C I and Rivera G. 2009. The ASTER spectral library version 2.0. Remote Sensing of Environment, 113(4): 711-715 [DOI: 10.1016/j.rse.2008.11.007http://dx.doi.org/10.1016/j.rse.2008.11.007]
Berk A, Anderson G P, Acharya P K, Bernstein L S, Muratov L, Lee J, Fox M, Adler-Golden S M, Chetwynd J H, Hoke M L, Lockwood R B, Gardner J A, Cooley T B, Borel C C and Lewis P E. 2005. MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update//Proceedings Volume 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Orlando, Florida: SPIE: 662-667 [DOI: 10.1117/12.606026http://dx.doi.org/10.1117/12.606026]
Che Y F and Zhao Y J. 2017. Study on hyperspectral mineral identification based on characteristic spectrum peak-valley correlation coefficient method. Science and Technology Review, 35(4): 90-93
车永飞, 赵英俊. 2017. 矿物光谱特征谱段识别方法与应用. 科技导报, 35(4): 90-93 [DOI: 10.3981/j.issn.1000-7857.2017.04.016http://dx.doi.org/10.3981/j.issn.1000-7857.2017.04.016]
Cui J, Yan B K, Dong X F, Zhang S M, Zhang J F, Tian F and Wang R S. 2015. Temperature and emissivity separation and mineral mapping based on airborne TASI hyperspectral thermal infrared data. International Journal of Applied Earth Observation and Geoinformation, 40: 19-28 [DOI: 10.1016/j.jag.2015.03.014http://dx.doi.org/10.1016/j.jag.2015.03.014]
Dong L X, Hu J Y, Tang S H and Min M. 2013. Field validation of the GLASS land surface broadband emissivity database using pseudo-invariant sand dune sites in northern China. International Journal of Digital Earth, 6(S1): 96-112 [DOI: 10.1080/17538947.2013.822573http://dx.doi.org/10.1080/17538947.2013.822573]
Du C, Ren H Z, Qin Q M, Meng J J and Zhao S H. 2015. A practical split-window algorithm for estimating land surface temperature from landsat 8 data. Remote Sensing, 7(1): 647-665 [DOI: 10.3390/rs70100647http://dx.doi.org/10.3390/rs70100647]
Fan L, Xiao Q, Wen J G, Liu Q, Tang Y, You D Q, Wang H S, Gong Z N and Li X W. 2015. Evaluation of the airborne CASI/TASI Ts-VI Space method for estimating near-surface soil moisture. Remote Sensing, 7(3): 3114-3137 [DOI: 10.3390/rs70303114http://dx.doi.org/10.3390/rs70303114]
Gillespie A, Rokugawa S, Matsunaga T, Cothern J S, Hook S and Kahle A B. 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1113-1126 [DOI: 10.1109/36.700995http://dx.doi.org/10.1109/36.700995]
Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H and Jenne R. 2001. The NCEP-NCAR 50-Year reanalysis: monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82(2): 247-268 [DOI: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2http://dx.doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2]
Li Z L, Tang B H, Wu H, Ren H Z, Yan G J, Wan Z M, Trigo I F and Sobrino J A. 2013. Satellite-derived land surface temperature: current status and perspectives. Remote Sensing of Environment, 131: 14-37 [DOI: 10.1016/j.rse.2012.12.008http://dx.doi.org/10.1016/j.rse.2012.12.008]
Liu D C, Yan B K and Qiu J T. 2016. The application of airborne hyper-spectral remote sensing technology to mineral resources exploration. Acta Geoscientia Sinica, 37(3): 349-358
刘德长, 闫柏琨, 邱骏挺. 2016. 航空高光谱遥感固体矿产预测方法与示范应用. 地球学报, 37(3): 349-358 [DOI: 10.3975/cagsb.2016.03.12http://dx.doi.org/10.3975/cagsb.2016.03.12]
Liu M, Tang R L, Li Z L, Gao M F and Yao Y J. 2021. Progress of data-driven remotely sensed retrieval methods and products on land surface evapotranspiration. National Remote Sensing Bulletin, 25(8): 1517-1537
刘萌, 唐荣林, 李召良, 高懋芳, 姚云军. 2021. 数据驱动的蒸散发遥感反演方法及产品研究进展. 遥感学报, 25(8): 1517-1537 [DOI: 10.11834/jrs.20211310http://dx.doi.org/10.11834/jrs.20211310]
Ma X L, Wan Z M, Moeller C C, Menzel W P and Gumley L E. 2002. Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm. Applied Optics, 41(5): 909-924 [DOI: 10.1364/AO.41.000909http://dx.doi.org/10.1364/AO.41.000909]
Ma X L, Wan Z M, Moeller C C, Menzel W P, Gumley L E and Zhang Y L. 2000. Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm. Applied Optics, 39(20): 3537-3550 [DOI: 10.1364/AO.39.003537http://dx.doi.org/10.1364/AO.39.003537]
Qin Z H, Minghua Z, Karnieli A and Berliner P. 2001. Mono-window algorithm for retrieving land surface temperature from landsat TM6 data. Acta Geographica Sinica, 56(4): 456-466
覃志豪, Minghua Z, Karnieli A and Berliner P. 2001. 用陆地卫星TM6数据演算地表温度的单窗算法. 地理学报, 56(4): 456-466 [DOI: 10.11821/xb200104009http://dx.doi.org/10.11821/xb200104009]
Ren H Z, Ye X, Liu R Y, Dong J J and Qin Q M. 2018. Improving land surface temperature and emissivity retrieval from the Chinese Gaofen-5 satellite using a hybrid algorithm. IEEE Transactions on Geoscience and Remote Sensing, 56(2): 1080-1090 [DOI: 10.1109/TGRS.2017.2758804http://dx.doi.org/10.1109/TGRS.2017.2758804]
Sabol Jr D E, Gillespie A R, Abbott E and Yamada G. 2009. Field validation of the ASTER Temperature–Emissivity Separation algorithm. Remote Sensing of Environment, 113(11): 2328-2344 [DOI: 10.1016/j.rse.2009.06.008http://dx.doi.org/10.1016/j.rse.2009.06.008]
Susskind J, Barnet C D, Blaisdel J M. 2003. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 390-409 [DOI: 10.1109/TGRS.2002.808236http://dx.doi.org/10.1109/TGRS.2002.808236]
Vaughan R G, Calvin W M, Taranik J V. 2003. SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sensing of Environment, 85(1): 48-63 [DOI: 10.1016/s0034-4257(02)00186-4http://dx.doi.org/10.1016/s0034-4257(02)00186-4]
Wang N, Li Z L, Tang B H, Zeng F N and Li C R. 2013. Retrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique. International Journal of Remote Sensing, 34(9/10): 3485-3502 [DOI: 10.1080/01431161.2012.716536http://dx.doi.org/10.1080/01431161.2012.716536]
Wang T X, Yan G J, Ren H Z, Mu X H. 2010. Improved methods for spectral calibration of on-orbit imaging spectrometers. IEEE Transactions on Geoscience and Remote Sensing, 48(11): 3924-3931 [DOI: 10.1109/TGRS.2010.2067220http://dx.doi.org/10.1109/TGRS.2010.2067220]
Wang X H, Qiu S, Jiang X G, Ouyang X Y and Li Z L. 2010. Land surface temperature and emissivity retrieval from hyperspectral thermal infrared data. Arid Land Geography, 33(3): 419-426
王新鸿, 邱实, 姜小光, 欧阳晓莹, 李召良. 2010. 高光谱热红外数据反演地表温度与比辐射率方法研究. 干旱区地理, 33(3): 419-426 [DOI: 10.13826/j.cnki.cn65-1103/x.2010.03.019http://dx.doi.org/10.13826/j.cnki.cn65-1103/x.2010.03.019]
Wu H, Ni L, Wang N, Qian Y G, Tang B H and Li Z L. 2013. Estimation of atmospheric profiles from hyperspectral infrared IASI sensor. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3): 1485-1494 [DOI: 10.1109/JSTARS.2013.2258138http://dx.doi.org/10.1109/JSTARS.2013.2258138]
Wu H, Li X J, Li Z L, Duan S B and Qian Y G. 2021. Hyperspectral thermal infrared remote sensing:current status and perspectives. National Remote Sensing Bulletin, 25(8): 1567-1590
吴骅, 李秀娟, 李召良, 段四波, 钱永刚. 2021. 高光谱热红外遥感: 现状与展望. 遥感学报, 25(8): 1567-1590 [DOI: 10.11834/jrs.20211306http://dx.doi.org/10.11834/jrs.20211306]
Wu Z Q and Tian S F. 2015. Extraction of phyllo-silicate alteration mineral information using TASI data in Liuyuan region of Gansu province. Land and Resources Informatization, (2): 32-37
吴泽群, 田淑芳. 2015. 基于TASI发射率数据的层状硅酸盐蚀变矿物提取识别. 国土资源信息化, (2): 32-37 [DOI: 10.3969/j.issn.1674-3695.2015.02.007]
Yan B K, Wang R S, Gan F P, Liu S W, Yang S M, Chen W T and Tang P K. 2005. Progresses in minerals information extraction using thermal remote sensing. Advances in Earth Science, 20(10): 1116-1126
闫柏琨, 王润生, 甘甫平, 刘圣伟, 杨苏明, 陈伟涛, 唐攀科. 2005. 热红外遥感岩矿信息提取研究进展. 地球科学进展, 20(10): 1116-1126 [DOI: 10.3321/j.issn:1001-8166.2005.10.011http://dx.doi.org/10.3321/j.issn:1001-8166.2005.10.011]
Yang H, Zhang L F, Zhang X W, Fang C H and Tong Q X. 2011. Algorithm of emissivity spectrum and temperature separation based on TASI data. Journal of Remote Sensing, 15(6): 1248-1264
杨杭, 张立福, 张学文, 房丛卉, 童庆禧. 2011. TASI数据的温度与发射率分离算法. 遥感学报, 15(6): 1248-1264 [DOI: 10.11834/jrs.20110380http://dx.doi.org/10.11834/jrs.20110380]
Yang J J, Jiang Q G, Lin N, Li G J, Wang B and Meng X C. 2012. Rapid identification of minerals based on ASTER data: a case study of Samai of Inner Mongolia. Remote Sensing Information, 27(3): 99-104
杨佳佳, 姜琦刚, 林楠, 李根军, 王斌, 孟翔冲. 2012. 基于ASTER遥感数据的矿物快速识别——以内蒙古萨麦地区为例. 遥感信息, 27(3): 99-104 [DOI: 10.3969/j.issn.1000-3177.2012.03.017http://dx.doi.org/10.3969/j.issn.1000-3177.2012.03.017]
Ye X, Ren H Z, Liu R Y, Qin Q M, Liu Y and Dong J J. 2017. Land surface temperature estimate from Chinese Gaofen-5 satellite data using split-window algorithm. IEEE Transactions on Geoscience and Remote Sensing, 55(10): 5877-5888 [DOI: 10.1109/TGRS.2017.2716401http://dx.doi.org/10.1109/TGRS.2017.2716401]
Zhang L F, Zhang X W, Huang Z Q, Yang H and Zhang F Z. 2011. Quantitative estimation of CaO content in surface rocks using hyperspectral thermal infrared emissivity. Spectroscopy and Spectral Analysis, 31(11): 2940-2943
张立福, 张学文, 黄照强, 杨杭, 张飞舟. 2011. 基于高光谱热红外发射率光谱的地表岩石CaO含量定量估计. 光谱学与光谱分析, 31(11): 2940-2943) [DOI: 10.3964/j.Issn.1000-0593(201111-2940-04http://dx.doi.org/10.3964/j.Issn.1000-0593(2011)11-2940-04]
Zhang X L, Zhang S W, Li Y and Liu H J. 2009. Extracting black soil border in heilongjiang province based on spectral angle match method. Spectroscopy and Spectral Analysis, 29(4): 1056-1059
张新乐, 张树文, 李颖, 刘焕军. 2009. 基于光谱角度匹配方法提取黑土边界. 光谱学与光谱分析, 29(4): 1056-1059) [DOI: 10.3964/j.issn.1000-0593(200904-1056-04http://dx.doi.org/10.3964/j.issn.1000-0593(2009)04-1056-04]
相关作者
相关机构