半椭球形树冠对冠层间隙率与聚集度指数的影响研究
Influences of semiellipsoid-shaped crown on gap fraction and clumping index
- 2021年25卷第10期 页码:2103-2115
纸质出版日期: 2021-10-07
DOI: 10.11834/jrs.20219400
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-10-07 ,
扫 描 看 全 文
王少腾,耿君,涂丽丽,尹高飞.2021.半椭球形树冠对冠层间隙率与聚集度指数的影响研究.遥感学报,25(10): 2103-2115
Wang S T,Geng J,Tu L L and Yin G F. 2021. Influences of semiellipsoid-shaped crown on gap fraction and clumping index. National Remote Sensing Bulletin, 25(10):2103-2115
作为森林冠层结构的重要组成部分,树冠形状对冠层间隙率与聚集度指数的计算有重要影响。之前的研究通常将树冠假设为圆锥形、圆柱形、圆锥+圆柱形等形状计算了冠层间隙率与聚集度指数。然而,树冠生长受外部环境以及内部顶端优势等因素的影响,相较于上述理想化的树冠形状,半椭球形更符合树冠自然生长规律。事实上,半椭球形是一种十分常见的树冠形状。本文以树冠在空间呈泊松分布为前提,推导出半椭球形树冠的冠层间隙率与聚集度指数计算公式,并进一步扩展到双半椭球形树冠。同时,以半椭球形树冠为计算基准,对比分析了半椭球形树冠与其他树冠形状冠层间隙率与聚集度指数的相对差异。模拟计算中主要输入参数包括树冠密度、树冠高度、树冠半径以及叶面积指数等。最后通过虚拟场景对结果进行验证。结果表明:(1)半椭球形树冠与其他树冠形状的冠层间隙率有较大差异。随着观测天顶角增加,不同树冠形状与半椭球形树冠的冠层间隙率的相对差异也逐渐增大。当观测天顶角为70°时,圆锥形树冠与半椭球形树冠的冠层间隙率相对差异已接近100%。(2)树冠形状对聚集度指数同样有较明显影响。极端情况下,圆锥形树冠与半椭球形树冠的聚集度指数相对差异达到30%。(3)半椭球形树冠与其他树冠形状的半球空间聚集度指数期望值的差异不容忽视。
The structural characteristics of forest canopy directly affect the radiation interception of forest
which in turn affect the energy exchange between the canopy and the external environment. As an important part of forest canopy structure
crown shape is greatly important for calculating the gap fraction and clumping index. Researchers have calculated gap fraction and clumping index by simulating crown shape as basic geometry
such as cone
cylinder
and cone + cylinder. However
the growth of the crown is influenced by factors
such as external environment and internal apical dominance
resulting in the semiellipsoid shape of the crown. The semiellipsoid is more consistent with the natural growth low of the crowns than these crown shapes. In fact
the semiellipsoid is a very common crown shape
which is significantly different from other crown shapes with an important influence on the calculation of canopy structure parameters
such as the gap fraction of canopies and clumping index. The main objective is to exhibit the influence of the semiellipsoid-shaped crown on the gap fraction and clumping index of forest canopies.
First
assuming that the crown is an opaque geometric entity with the Poisson distribution in space
the gap fraction on crown scale was calculated. Second
considering that gaps exist in an individual crown
the formula for calculating the gap fraction of an individual crown was introduced. Then
crowns with semiellipsoid and double semiellipsoid shapes were applied to the formula of gap fraction of canopies and clumping index. Meanwhile
considering the semiellipsoid-shaped crown as the calculation criterion
we analyzed the relative differences of gap fraction of canopies and clumping index with different crown shapes. The main input parameters included crown density
crown height
crown radius and leaf area index. Finally
the results were verified by virtual scenes.
The results indicated that: (1) the gap fraction of canopies between the semiellipsoid-shaped crown and crowns with other shapes was relatively different. With the increment of view zenith angle
the relative differences of gap fraction between the semiellipsoid-shaped crown and crowns with other shapes increased. When the view zenith angle was 70°
the relative difference of gap fraction between the cone-shaped crown and the semiellipsoid-shaped crown was close to 100%. (2) The crown shape also had a significant influence on the clumping index. In extreme cases
the relative differences of clumping index between the cone-shaped crown and the semiellipsoid-shaped crown reached up to 30%. In addition
different crown densities had an important effect on the clumping index of different crown shapes. With the decrease in crown density
the relative difference in the clumping index of the semiellipsoid-shaped crown and crowns with other shapes showed an increasing trend. (3) When calculating the expectation value of the clumping index in the hemisphere space
the value of the cylinder-shaped crown was approximately 13% higher than the value of the semiellipsoid-shaped crown
and the value of the semiellipsoid-shaped crown was approximately 22% higher than that of cone-shaped crown. The value of the semiellipsoid-shaped crown and double semiellipsoid-shaped crown was close to each other
and the mixture of two crown shapes slightly influenced the results.
Therefore
the semiellipsoid-shaped crown should be considered when studying the structural characteristics of forest canopy
such as gap fraction and clumping index.
遥感树冠形状半椭球形树冠双半椭球形树冠冠层间隙率聚集度指数
remote sensingcrown shapesemi-ellipsoid-shaped crowndouble semi-ellipsoid-shaped crowngap fractionclumping index
Asner G P, Palace M, Keller M, JrPereira R, Silva J N M andZweede J C. 2002. Estimating canopy structure in an Amazon forest from laser range finder and IKONOS satellite observations. Biotropica, 34(4): 483-492 [DOI: 10.1111/j.1744-7429.2002.tb00568.xhttp://dx.doi.org/10.1111/j.1744-7429.2002.tb00568.x]
Baldwin V C Jr and Peterson K D. 1997. Predicting the crown shape of loblolly pine trees. Canadian Journal of Forest Research, 27(1): 102-107 [DOI: 10.1139/x96-100http://dx.doi.org/10.1139/x96-100]
Biging G S and Wensel L C. 1990. Estimation of crown form for six conifer species of northern California. Canadian Journal of Forest Research, 20(8): 1137-1142 [DOI: 10.1139/x90-151http://dx.doi.org/10.1139/x90-151]
Borchert R and Slade N A. 1981. Bifurcation ratios and the adaptive geometry of trees. Botanical Gazette, 142(3): 394-401 [DOI: 10.1086/337238http://dx.doi.org/10.1086/337238]
Campbell G S. 1986. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agricultural and Forest Meteorology, 36(4): 317-321 [DOI: 10.1016/0168-1923(86)90010-9http://dx.doi.org/10.1016/0168-1923(86)90010-9]
Chen J M. 1996. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80(2/4): 135-163 [DOI: 10.1016/0168-1923(95)02291-0http://dx.doi.org/10.1016/0168-1923(95)02291-0]
Chen J M and Black T A. 1992a. Foliage area and architecture of plant canopies from sunfleck size distributions. Agricultural and Forest Meteorology, 60(3/4): 249-266 [DOI: 10.1016/0168-1923(92)90040-Bhttp://dx.doi.org/10.1016/0168-1923(92)90040-B]
Chen J M and Black T A. 1992b. Defining leaf area index for non-flat leaves. Plant, Cell and Environment, 15(4): 421-429 [DOI: 10.1111/j.1365-3040.1992.tb00992.xhttp://dx.doi.org/10.1111/j.1365-3040.1992.tb00992.x]
Chen J M and Cihlar J. 1995. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Applied Optics, 34(27): 6211-6222 [DOI: 10.1364/AO.34.006211http://dx.doi.org/10.1364/AO.34.006211].
Chen J M and Leblanc S G. 1997. A four-scale bidirectional reflectance model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1316-1337 [DOI: 10.1109/36.628798http://dx.doi.org/10.1109/36.628798]
Chen J M, Menges C H and Leblanc S G. 2005. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sensing of Environment, 97(4): 447-457 [DOI: 10.1016/j.rse.2005.05.003http://dx.doi.org/10.1016/j.rse.2005.05.003]
Chen J M, Mo G, Pisek J, Liu J, Deng F, Ishizawa M and Chan D. 2012. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global Biogeochemical Cycles, 26(1):
GB1019 [DOI: 10.1029/2010GB003996http://dx.doi.org/10.1029/2010GB003996]
Deleuze C, Hervé J C, Colin F and Ribeyrolles L. 1996. Modelling crown shape of Piceaabies: spacing effects. Canadian Journal of Forest Research, 26(11): 1957-1966 [DOI: 10.1139/x26-221http://dx.doi.org/10.1139/x26-221]
Ellsworth D S and Reich P B. 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 96(2): 169-178 [DOI: 10.1007/bf00317729http://dx.doi.org/10.1007/bf00317729]
Fan W L, Chen J M, Ju W M and Nesbitt N. 2014a. Hybrid geometric optical-radiative transfer model suitable for forests on slopes. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5579-5586 [DOI: 10.1109/TGRS.2013.2290590http://dx.doi.org/10.1109/TGRS.2013.2290590]
Fan W L, Chen J M, Ju W M and Zhu G L. 2014b. GOST: a geometric-optical model for sloping terrains. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5469-5482 [DOI: 10.1109/TGRS.2013.2289852http://dx.doi.org/10.1109/TGRS.2013.2289852]
Fournier A R and Hall R J. 2017. Hemispherical Photography in Forest Science: Theory, Methods, Applications. Dordrecht, The Netherlands: Springer: 153-177
Gastellu-Etchegorry J P, Grau E and Lauret N. 2012. DART: a 3D model for remote sensing images and radiative budget of earth surfaces//Alexandru C. Modeling and Simulation in Engineering. Rijeka: InTech. [DOI: 10.5772/31315http://dx.doi.org/10.5772/31315]
Geng J, Chen J M, Fan W L, Tu L L, Tian Q J, Yang R R, Yang Y J, Wang L, Lv C G, and Wu S B. 2017. GOFP: a geometric-optical model for forest plantations. IEEE Transactions on Geoscience and Remote Sensing, 55(9): 5230-5241 [DOI: 10.1109/TGRS.2017.2704079http://dx.doi.org/10.1109/TGRS.2017.2704079]
Geng J, Tian Q J, Tu L L, Fan W L and Wang X F. 2016. Influences of crown size on the estimation of gap fraction and clumping index. Journal of Remote Sensing, 20(6): 1319-1327
耿君, 田庆久, 涂丽丽, 范渭亮, 王晓菲. 2016. 树冠尺寸对冠层间隙率和聚集度指数的影响. 遥感学报, 20(6): 1319-1327 [DOI: 10.11834/jrs.20166060http://dx.doi.org/10.11834/jrs.20166060]
Hashimoto R. 1991. Canopy development in young sugi (Cryptomeria japonica) stands in relation to changes with age in crown morphology and structure. Tree Physiology, 8(2): 129-143 [DOI: 10.1093/treephys/8.2.129http://dx.doi.org/10.1093/treephys/8.2.129]
Huang H G, Zhang Z Y, Ni W J, Chai L N, Qin W H, Liu G, Xie D H, Jiang L M and Liu Q H. 2018. Extending RAPID model to simulate forest microwave backscattering. Remote Sensing of Environment, 217: 272-291 [DOI: 10.1016/j.rse.2018.08.011http://dx.doi.org/10.1016/j.rse.2018.08.011]
Jiang Z L and Ye J Z. 1980. A preliminary study on the crown structure of Chinese fir (Cunninghamia lanceolata). Journal of Nanjing Forestry University(Natural Sciences Edition), 23(4): 46-52
姜志林, 叶镜中. 1980. 杉木树冠形态结构的初步研究. 南京林业大学学报(自然科学版), 23(4): 46-52 [DOI: 10.3969/j.jssn.1000-2006.1980.04.006http://dx.doi.org/10.3969/j.jssn.1000-2006.1980.04.006]
Kohyama T. 1980. Growth pattern of Abies mariesii saplings under conditions of open-growth and suppression. The Botanical Magazine=Shokubutsu-Gaku-Zasshi, 93(1): 13-24 [DOI: 10.1007/BF02489483http://dx.doi.org/10.1007/BF02489483]
Kucharik C J, Norman J M and Gower S T. 1999. Characterization of radiation regimes in nonrandom forest canopies: theory, measurements, and a simplified modeling approach. Tree Physiology, 19(11): 695-706 [DOI: 10.1093/treephys/19.11.695http://dx.doi.org/10.1093/treephys/19.11.695]
Lang A R G and Xiang Y Q. 1986. Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agricultural and Forest Meteorology, 37(3): 229-243 [DOI: 10.1016/0168-1923(86)90033-Xhttp://dx.doi.org/10.1016/0168-1923(86)90033-X]
Lefsky M A, Cohen W B, Acker S A, Parker G G, Spies T A and Harding D. 1999. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sensing of Environment, 70(3): 339-361 [DOI: 10.1016/S0034-4257(99)00052-8http://dx.doi.org/10.1016/S0034-4257(99)00052-8]
Li D Z and Zang R G. 2004. The research advances on the structure and function of forest canopy, as well as their temporal and spatial changes. World Forestry Research, 17(3): 12-16
李德志, 臧润国. 2004. 森林冠层结构与功能及其时空变化研究进展. 世界林业研究, 17(3): 12-16 [DOI: 10.3969/j.issn.1001-4241.2004.03.003http://dx.doi.org/10.3969/j.issn.1001-4241.2004.03.003]
Li F R. 2004. Modeling crown profile of Larix olgensistrees. Scientia Silvae Sinicae, 40(5): 16-24 [DOI: 10.3321/j.issn:1001-7488.2004.05.003http://dx.doi.org/10.3321/j.issn:1001-7488.2004.05.003]
Li X W and Strahler A H. 1985. Geometric-Optical modeling of a Conifer forest canopy. IEEE Transactions on Geoscience and Remote Sensing, GE-23(5): 705-721 [DOI: 10.1109/TGRS.1985.289389http://dx.doi.org/10.1109/TGRS.1985.289389]
Li X W and Strahler A H. 1988. Modeling the gap probability of a discontinuous vegetation canopy. IEEE Transactions on Geoscience and Remote Sensing, 26(2): 161-170 [DOI: 10.1109/36.3017http://dx.doi.org/10.1109/36.3017]
Li X W and Strahler A H. 1992. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 276-292 [DOI: 10.1109/36.134078http://dx.doi.org/10.1109/36.134078]
Malenovský Z, Martin E, Homolová L, Gastellu-Etchegorry J P, Zurita-Milla R, Schaepman M E, Pokorný R, Clevers J G P W and Cudlín P. 2008. Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution. Remote Sensing of Environment, 112(1): 1-18 [DOI: 10.1016/j.rse.2006.02.028http://dx.doi.org/10.1016/j.rse.2006.02.028]
Miller J B. 1964. An integral equation from phytology. Journal of the Australian Mathematical Society, 4(4): 397-402 [DOI: 10.1017/S1446788700025210http://dx.doi.org/10.1017/S1446788700025210]
Nilson T. 1971. A theoretical analysis of the frequency of gaps in plant stands. Agricultural Meteorology, 8: 25-38 [DOI: 10.1016/0002-1571(71)90092-6http://dx.doi.org/10.1016/0002-1571(71)90092-6]
Parker G G, Lowman M D and Nadkarni N M. 1995. Structure and microclimate of forest canopies//Lowman M D and Nadkarni N M, eds. Forest Canopies. New York: Academic Press: 73-106
Power H, Lemay V, Berninger F, Sattler D and Kneeshaw D. 2012. Differences in crown characteristics between black (Picea mariana) and white spruce (Picea glauca). Canadian Journal of Forest Research, 42(9): 1733-1743 [DOI: 10.1139/x2012-106http://dx.doi.org/10.1139/x2012-106]
Purves D W, Lichstein J W and Pacala S W. 2007. Crown plasticity and competition for canopy space: a new spatially implicit model parameterized for 250 north American tree species. PLoS One, 2(9): e870 [DOI: 10.1371/journal.pone.0000870http://dx.doi.org/10.1371/journal.pone.0000870]
Ross J. 1981. The Radiation Regime and Architecture of Plant Stands. Netherlands: Springer: 90-116
Xu C Y. 2001. Response of structural plasticity of Tilia amurensis sapling crowns to different light conditions. Chinese Journal of Applied Ecology, 12(3): 339-343
徐程扬. 2001. 不同光环境下紫椴幼树树冠结构的可塑性响应. 应用生态学报, 12(3): 339-343 [DOI: 10.1007/s11769-001-0027-zhttp://dx.doi.org/10.1007/s11769-001-0027-z]
Xu X R. 2005. Remote Sensing Physics. Beijing: Peking University Press: 44-94
徐希孺. 2005. 遥感物理. 北京: 北京大学出版社: 44-94
Yin G F, Liu Q H, Li J, Zeng Y L and Xu B D. 2014. Effect of crown shape on the estimation of gap probability and leaf area index. Journal of Remote Sensing, 18(4): 752-759
尹高飞, 柳钦火, 李静, 曾也鲁, 徐保东. 2014. 树冠形状对孔隙率及叶面积指数估算的影响分析. 遥感学报, 18(4): 752-759 [DOI: 10.11834/jrs.20143205http://dx.doi.org/10.11834/jrs.20143205]
Yu Y, Fan W Y and Yang X G. 2012. Comparisons of three models for vegetation canopy bi-directional reflectance distribution function. Chinese Journal of Plant Ecology, 36(1): 55-62
于颖, 范文义, 杨曦光. 2012. 三种植被冠层二向反射分布函数模型的比较. 植物生态学报, 36(1): 55-62 [DOI: 10.3724/SP.J.1258.2012.00055http://dx.doi.org/10.3724/SP.J.1258.2012.00055]
相关作者
相关机构