塞罕坝地区高空间分辨率叶面积指数时序估算与变化检测
Time series high-resolution leaf area index estimation and change monitoring in the Saihanba area
- 2021年25卷第4期 页码:1000-1012
纸质出版日期: 2021-04-07
DOI: 10.11834/jrs.20219447
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-04-07 ,
扫 描 看 全 文
周红敏,张国东,王昶景,王锦地,程顺,薛华柱,万华伟,张磊.2021.塞罕坝地区高空间分辨率叶面积指数时序估算与变化检测.遥感学报,25(4): 1000-1012
Zhou H M,Zhang G D,Wang C J,Wang J D,Cheng S,Xue H Z,Wan H W and Zhang L. 2021. Time series high-resolution leaf area index estimation and change monitoring in the Saihanba area. National Remote Sensing Bulletin, 25(4):1000-1012
叶面积指数LAI(Leaf Area Index)是调节植被冠层生理过程的最重要的生物物理变量之一,高空间分辨率时间序列LAI对于植被生长检测、地表过程模拟与区域和全球变化研究至关重要,但是由于数据缺失和反演方法限制,目前还没有时空连续的高分辨率LAI数据产品。本研究提出了一种生成时间连续的高空间分辨率LAI数据的算法,首先对MODIS LAI产品滤波平滑,生成时间序列LAI的上包络曲线,根据上包络曲线提供的变化信息构建LAI动态模型。然后利用地面实测的LAI数据与Landsat反射率数据构建LAI反演的BP (Back Propagation)神经网络模型。将反演得到的高分辨率LAI数据作为LAI观测数据,利用集合卡尔曼滤波EnKF(Ensemble Kalman Filter)方法实时更新动态模型,生成时间连续的30 m空间分辨率LAI数据集。基于该算法生成了塞罕坝地区2000年—2018年长时间序列LAI数据集,利用Prophet深度学习模型进行模拟和预测,根据预测和原始LAI差异,利用支持向量机SVM(Support Vector Machine)方法检测植被干扰状况。结果表明:EnKF算法能够生成时空连续的高空间分辨率LAI数据,估算结果与地面测量值一致性较高,
R
2
为0.9498,RMSE为0.1577,在区域尺度上与Landsat LAI参考值较为吻合,
R
2
高于0.87,RMSE低于0.61。Prophet与SVM模型检测到研究区2009年,2010年,2013年,2014年, 2015年植被受干扰较为严重,主要由于年降水量偏少和林区作业砍伐造成,检测结果与当地降水量与砍伐数据吻合。本文提出的算法可用于大范围高时空LAI数据反演和植被变化检测,对塞罕坝乃至全国林区规划管理具有重要的参考价值。
A 30 m-spatial-resolution LAI time series estimation method was proposed on the basis of the ensemble Kalman filter (EnKF). Time series LAI of 2000—2018 was produced in the Saihanba area
and vegetation change monitoring was applied. The detected disturbance was consistent with climate condition and field management.
Time series LAI is critical for vegetation growth monitoring
surface process simulation
and global change research. Saihanba is an important ecological environment protection area in China
and long-term monitoring of this area is significant for forest management and development.
In this study
MODIS LAI products and Landsat surface reflectance data were used to generate time series high-resolution LAI datasets from 2004 to 2018 in Saihanba by using EnKF. Vegetation changes were then monitored on the basis of the generated LAI time series with the Prophet model. First
the multistep Savitzky-Golay filtering algorithm was used to smooth the MODIS LAI data
and the upper envelope of time series LAI was generated. A dynamic model was constructed in accordance with the trend of LAI upper envelope to provide a short-range forecast of LAI. Then
the ground measured LAI data and the corresponding Landsat reflectance data were used to train a Back Propagation (BP) neural network. The high-resolution LAI data from the BP model were used to update the dynamic model in real time to generate high-resolution time series LAI data based on the EnKF method. Lastly
the time series LAI data were used as the input of the Prophet deep learning model to obtain the LAI time series prediction values of a certain year. The correlation coefficient and root-mean-square error distribution maps could be obtained from the comparison of the prediction results with the LAI of the current year. A Support Vector Machine (SVM) method was used to classify the disturbed and normal pixels.
The EnKF algorithm can generate continuous high-resolution LAI data
and the estimation results are consistent with the field LAI values with
R
2
of 0.9498 and RMSE of 0.1577. At the regional scale
the estimation LAI maps have high consistency with the Landsat reference LAI maps
the
R
2
is higher than 0.87
and the RMSE is less than 0.61. The Prophet and SVM models detected that the vegetation in Saihanba was severely disturbed in 2009
2010
2013
2014
and 2015
mainly due to the low annual rainfall and deforestation. The detection results are consistent with the local precipitation and logging data.
The algorithm proposed in this paper can be used for time series high-spatial-resolution LAI data inversion on a large scale
and the inversion results can be used for vegetation change detection. This work has important reference significance for the planning and management of Saihanba and even the national forest area.
叶面积指数高时空分辨率集合卡尔曼滤波深度学习变化检测
leaf area indextime series high resolutionthe Ensemble Kalman Filter algorithmdeep learning methodchange detection
Baret F, Hagolle O, Geiger B, Bicheron P, Miras B, Huc M, Berthelot B, Niño F, Weiss M, Samain O, Roujean J L and Leroy M. 2007. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: principles of the algorithm. Remote Sensing of Environment, 110(3): 275-286 [DOI: 10.1016/j.rse.2007.02.018http://dx.doi.org/10.1016/j.rse.2007.02.018]
Chander G, Helder D L, Markham B L, Dewald J D, Kaita E, Thome K J, Micijevic E and Ruggles T A. 2004. Landsat-5 TM reflective-band absolute radiometric calibration. IEEE Transactions on Geoscience and Remote Sensing, 42(12): 2747-2760 [DOI: 10.1109/TGRS.2004.836388http://dx.doi.org/10.1109/TGRS.2004.836388]
Chapelle O, Vapnik V, Bousquet O and Mukherjee S. 2002. Choosing multiple parameters for support vector machines. Machine Learning, 46(1): 131-159 [DOI: 10.1023/a:1012450327387http://dx.doi.org/10.1023/a:1012450327387]
Chen J M and Black T A. 1992. Defining leaf area index for non‐flat leaves. Plant, Cell and Environment, 15(4): 421-429 [DOI: 10.1111/j.1365-3040.1992.tb00992.xhttp://dx.doi.org/10.1111/j.1365-3040.1992.tb00992.x]
Cohen W B, Yang Z Q, Stehman S V, Schroeder T A, Bell D M, Masek J G, Huang C Q and Meigs G W. 2016. Forest disturbance across the conterminous United States from 1985-2012: the emerging dominance of forest decline. Forest Ecology and Management, 360: 242-252 [DOI: 10.1016/j.foreco.2015.10.042http://dx.doi.org/10.1016/j.foreco.2015.10.042]
Delegido J, Verrelst J, Alonso L and Moreno J. 2011. Evaluation of sentinel-2 red-edge bands for empirical estimation of Green LAI and chlorophyll content. Sensors, 11(7): 7063-7081 [DOI: 10.3390/s110707063http://dx.doi.org/10.3390/s110707063]
Evensen G. 2003. The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4): 343-367 [DOI: 10.1007/s10236-003-0036-9http://dx.doi.org/10.1007/s10236-003-0036-9]
Fang H L, Liang S L, Townshend J R and Dickinson R E. 2008. Spatially and temporally continuous LAI data sets based on an integrated filtering method: examples from North America. Remote Sensing of Environment, 112(1): 75-93 [DOI: 10.1016/j.rse.2006.07.026http://dx.doi.org/10.1016/j.rse.2006.07.026]
Fu L Z, Qu Y H and Wang J D. 2017. Bias analysis and validation method of the MODIS LAI product. Journal of Remote Sensing, 21(2):206-217
付立哲,屈永华,王锦地. 2017. MODIS LAI 产品真实性检验与偏差分析. 遥感学报, 21(2): 206-217 [DOI: CNKI:SUN:YGXB.0.2017-02-004http://dx.doi.org/CNKI:SUN:YGXB.0.2017-02-004]
He T, Liang S L, Wang D D, Cao Y F, Gao F, Yu Y Y, and Feng M. 2018. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM+, and OLI data based on the unified direct estimation approach. Remote Sensing of Environment, 204, 181-196. [DOI: 10.1016/j.rse.2017.10.031http://dx.doi.org/10.1016/j.rse.2017.10.031]
Huang C B, Dian Y Y, Zhou Z X, Wang D and Chen R D. 2015. Forest change detection based on time series images with statistical properties. Journal of Remote Sensing, 19(4): 657-668
黄春波,佃袁勇,周志翔,王娣,陈瑞冬. 2015. 基于时间序列统计特性的森林变化监测. 遥感学报, 19(4): 657-668 [DOI: 10.11834/jrs.20154104http://dx.doi.org/10.11834/jrs.20154104]
Huang C Q, Goward S N, Masek J G, Thomas N, Zhu Z L and Vogelmann J E. 2010. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment, 114(1): 183-198 [DOI: 10.1016/j.rse.2009.08.017http://dx.doi.org/10.1016/j.rse.2009.08.017]
Jiang B, Liang S L, Wang J D and Xiao Z Q. 2010. Modeling MODIS LAI time series using three statistical methods. Remote Sensing of Environment, 114(7): 1432-1444[DOI: 10.1016/j.rse.2010.01.026http://dx.doi.org/10.1016/j.rse.2010.01.026]
Jonsson P and Eklundh L. 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1824-1832 [DOI: 10.1109/TGRS.2002.802519http://dx.doi.org/10.1109/TGRS.2002.802519]
Kalman R E. 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1): 35-45[DOI: 10.1115/1.3662552http://dx.doi.org/10.1115/1.3662552]
Kalman R E and Bucy R S. 1961. New results in linear filtering and prediction theory. Journal of Basic Engineering, 83(1): 95-108[DOI: 10.1115/1.3658902http://dx.doi.org/10.1115/1.3658902]
Liang L, Di L P, Zhang L P, Deng M X, Qin Z H, Zhao S H and Lin H. 2015. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 165: 123-134 [DOI: 10.1016/j.rse.2015.04.032http://dx.doi.org/10.1016/j.rse.2015.04.032]
Liu J G, Pattey E and Jégo G. 2012. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123: 347-358 [DOI: 10.1016/j.rse.2012.04.002http://dx.doi.org/10.1016/j.rse.2012.04.002]
Melgani F and Bruzzone L. 2002. Support vector machines for classification of hyperspectral remote-sensing images//IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada: IEEE: 506-508 [DOI: 10.1109/IGARSS.2002.1025088http://dx.doi.org/10.1109/IGARSS.2002.1025088]
Myneni R B, Hoffman S, Knyazikhin Y, Privette J, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith G R, Lotsch A, Friedl M, Morisette J T, Votava P, Nemani R R and Running S W. 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83(1/2): 214-231 [DOI: 10.1016/s0034-4257(02)00074-3http://dx.doi.org/10.1016/s0034-4257(02)00074-3]
Mu X H, Yan G J, Zhou H M, Pang Y, Qiu F, Zhang Q, Zhang Y G, Xie D H, Zhou Y J, Zhao T J, Zhong B, Song J L, Sun R, Jiang L M, Yin S Y, Li F, Jiao Z T, Qu Y H, Zhang W M, Cheng S and Cui T X. 2021. Airborne comprehensive remote sensing experiment of forest and grass resources in Xiaoluan River Basin. National Remote Sensing Bulletin, 25(4): 888-903
穆西晗, 阎广建, 周红敏, 庞勇, 邱凤, 张乾, 张永光, 谢东辉, 周盈吉, 赵天杰, 仲波, 宋金玲, 孙睿, 蒋玲梅, 尹思阳, 李凡, 焦子锑, 屈永华, 张吴明, 程顺, 崔同祥. 2021. 小滦河流域复杂地表碳循环遥感综合试验. 遥感学报, 25(4): 888-903 [DOI:10.11834/jrs.20210305http://dx.doi.org/10.11834/jrs.20210305]
Privette J L, Myneni R B, Knyazikhin Y, Mukelabai M, Roberts G, Tian Y, Wang Y and Leblanc S G. 2002. Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari. Remote Sensing of Environment, 83(1/2): 232-243[DOI: 10.1016/s0034-4257(02)00075-5http://dx.doi.org/10.1016/s0034-4257(02)00075-5]
Sellers P J, Meeson B W, Hall F G, Asrar G, Murphy R E, Schiffer R A, Bretherton F P, Dickinson R E, Ellingson R G, Field C B, Huemmrich K F, Justice C O, Melack J M, Roulet N T, Schimel D S and Try P D. 1995. Remote sensing of the land surface for studies of global change: models—algorithms—experiments. Remote Sensing of Environment, 51(1): 3-26 [DOI: 10.1016/0034-4257(94)00061-Qhttp://dx.doi.org/10.1016/0034-4257(94)00061-Q]
Shi L L, Gu J C, Yu J J, Li W W and Liu T. 2008. Soil types distribution and evolution of Saihanba National Nature Reserve. Journal of Anhui Agricultural Sciences, 36(10): 4185-4186
石丽丽,谷建才,于景金,李伟伟,刘涛. 2008. 塞罕坝国家级自然保护区土壤类型分布与演变. 安徽农业科学, 36(10): 4185-4186 [DOI: 10.13989/j.cnki.0517-6611.2008.10.044http://dx.doi.org/10.13989/j.cnki.0517-6611.2008.10.044]
Taylor S J and Letham B. 2018. Forecasting at scale. The American Statistician, 72(1): 37-45 [DOI: 10.1080/00031305.2017.1380080http://dx.doi.org/10.1080/00031305.2017.1380080]
Tian X M, Yan H X, Yuan Y, Ge Z X, Huang X R and Zhang Z D. 2016. Response of species richness to the fragmentation of vegetation landscape and its spatial variation scales in Saihanba Nature Reserve. Scientia Silvae Sinicae, 52(12): 13-21
田晓敏, 闫海霞, 袁业, 葛兆轩, 黄选瑞, 张志东. 2016. 罕坝自然保护区物种丰富度对植被景观破碎化的响应及其空间尺度差异. 林业科学, 52(12): 13-21 [DOI: 10.11707/j.1001-7488.20161202http://dx.doi.org/10.11707/j.1001-7488.20161202]
Wang J, Wang J D, Shi Y C, Zhou H M and Liao L M. 2019. A recursive update model for estimating high-resolution LAI based on the NARX neural network and MODIS times series. Remote Sensing, 11(3): 219 [DOI: 10.3390/rs11030219http://dx.doi.org/10.3390/rs11030219]
Wang Z T, Xin J Y, Jia S L, Li Q, Chen L F and Zhao S H. 2015. Retrieval of AOD from GF-1 16 m camera via DDV algorithm. Journal of Remote Sensing, 19(3): 530-538
王中挺,辛金元,贾松林,厉青,陈良富,赵少华. 2015. 利用暗目标法从高分一号卫星16 m相机数据反演气溶胶光学厚度. 遥感学报, 19(3): 530-538 [DOI: 10.11834/jrs.20154110http://dx.doi.org/10.11834/jrs.20154110]
Wei S K, Fan S X, Zhang Y Z, Huang X R and Zhang Z D. 2018. Dynamics and driving forces of main vegetation types in the Saihanba Nature Reserve, Hebei Province, China. Chinese Journal of Applied Ecology, 29(4): 1170-1178
魏士凯,范顺祥,张玉珍,黄选瑞,张志东. 2018. 塞罕坝自然保护区主要植被类型动态及其驱动力. 应用生态学报, 29(4): 1170-1178 [DOI: 10.13287/j.1001-9332.201804.008http://dx.doi.org/10.13287/j.1001-9332.201804.008]
Wu M Q, Wu C Y, Huang W J, Niu Z and Wang C Y. 2015. High-resolution Leaf Area Index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model. Computers and Electronics in Agriculture, 115: 1-11 [DOI: 10.1016/j.compag.2015.05.003http://dx.doi.org/10.1016/j.compag.2015.05.003]
Xiao Z Q, Liang S L, Wang J D, Jiang B and Li X J. 2011. Real-time retrieval of Leaf Area Index from MODIS time series data. Remote Sensing of Environment, 115(1): 97-106 [DOI: 10.1016/j.rse.2010.08.009http://dx.doi.org/10.1016/j.rse.2010.08.009]
Xiao Z Q, Wang J D and Wang Z S. 2008. Improvement of MODIS LAI Product in China. Journal of Remote Sensing, 12(6): 993-1000
肖志强,王锦地,王鐯森. 2008. 中国区域MODIS LAI产品及其改进. 遥感学报, 12(6): 993-1000 [DOI: 10.3321/j.issn:1007-4619.2008.06.024http://dx.doi.org/10.3321/j.issn:1007-4619.2008.06.024]
Xing J, Zheng C Y, Feng C Y and Zeng F X. 2017. Change of growth characters and carbon stocks in plantations of Pinus sylvestris var. mongolica in Saihanba, Hebei, China. Chinese Journal of Plant Ecology, 41(8): 840-849
邢娟,郑成洋,冯婵莹,曾发旭. 2017. 河北塞罕坝樟子松人工林生长及碳储量的变化. 植物生态学报, 41(8): 840-849 [DOI: 10.17521/cjpe.2017.0060http://dx.doi.org/10.17521/cjpe.2017.0060]
Xue H Z, Wang C J, Zhou H M, Wang J D and Wang H W. 2020. BP neural network based on simulated annealing algorithm for high resolution LAI retrieval. Remote Sensing Technology and Application, 35(5): 1057-1069.
薛华柱, 王昶景, 周红敏, 王锦地, 万华伟. 2020. 基于模拟退火算法的BP神经网络模型估算高分辨率叶面积指数. 遥感技术与应用, 35(5): 1057-1069 [DOI: 10.11873/j.issn.1004-0323.2020.5.1057http://dx.doi.org/10.11873/j.issn.1004-0323.2020.5.1057]
Yan G J, Zhao T J, Mu X H, Wen J G, Pang Y, Jia L, Zhang Y G, Chen D Q, Yao C B, Cao Z Y, Lei Y H, Ji D B, Chen L F, Liu Q H, Lyu L Q, Chen J M and Shi J C. 2021. Comprehensive Remote Sensing Experiment of Carbon Cycle, Water Cycle and Energy Balance in Luan River Basin. National Remote Sensing Bulletin, 25(4): 856-870
阎广建, 赵天杰, 穆西晗, 闻建光, 庞勇, 贾立, 张永光, 陈德清, 姚崇斌, 曹志宇, 雷永荟, 姬大彬, 陈良富, 柳钦火, 吕利清, 陈镜明, 施建成. 2021. 滦河流域碳、水循环和能量平衡遥感综合试验总体设计. 遥感学报, 25(4): 856-870) [DOI: 10.11834/jrs.20210341http://dx.doi.org/10.11834/jrs.20210341]
Zhan X C, Xiao Z Q, Jiang J Y and Shi H Y. 2019. A data assimilation method for simultaneously estimating the multiscale leaf area index from time-series multi-resolution satellite observations. IEEE Transactions on Geoscience and Remote Sensing, 57(11): 9344-9361 [DOI: 10.1109/TGRS.2019.2926392http://dx.doi.org/10.1109/TGRS.2019.2926392]
Zhang G D, Zhou H M, Wang C J, Xue H Z, Wang J D and Wan H W. 2019. Time series high-resolution land surface albedo estimation based on the ensemble Kalman filter algorithm. Remote Sensing, 11(7): 753 [DOI: 10.3390/rs11070753http://dx.doi.org/10.3390/rs11070753]
Zhang H K, Chen J M, Huang B, Song H H and Li Y R. 2014. Reconstructing seasonal variation of Landsat vegetation index related to leaf area index by fusing with MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(3): 950-960 [DOI: 10.1109/jstars.2013.2284528http://dx.doi.org/10.1109/jstars.2013.2284528]
Zhao Y X, Chen S N and Shen S H. 2013. Assimilating remote sensing information with crop model using Ensemble Kalman Filter for improving LAI monitoring and yield estimation. Ecological Modelling, 270: 30-42 [DOI: 10.1016/j.ecolmodel.2013.08.016http://dx.doi.org/10.1016/j.ecolmodel.2013.08.016]
Zhou H M, Wang J D, Liang S L and Xiao Z Q. 2017. Extended data-based mechanistic method for improving leaf area index time series estimation with satellite data. Remote Sensing, 9(6): 533 [DOI: 10.3390/rs9060533http://dx.doi.org/10.3390/rs9060533]
Zhou H M. 2018. High resolution Land surface albedo estimation and remote sensing product validation research. (周红敏. 2018. 地表反照率的高空间分辨率遥感估算与产品验证方法研究. 北京师范大学)
Zhu X L, Gao F, Liu D S and Chen J. 2012. A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images. IEEE Transactions on Geoscience and Remote Sensing, 9(3):521-525. [DOI: 10.1109/LGRS.2011.2173290http://dx.doi.org/10.1109/LGRS.2011.2173290]
相关作者
相关机构