闪电河流域农牧交错带微波遥感土壤水分产品评价
Evaluation of microwave remote sensing soil moisture products in farming-pastoral area of Shandian river basin
- 2021年25卷第4期 页码:974-989
纸质出版日期: 2021-04-07
DOI: 10.11834/jrs.20219491
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-04-07 ,
扫 描 看 全 文
谢秋霞,贾立,陈琪婷,尹燕旻,Menenti Massimo.2021.闪电河流域农牧交错带微波遥感土壤水分产品评价.遥感学报,25(4): 974-989
Xie Q X,Jia L,Chen Q T, Yin Y M and Massimo M. 2021. Evaluation of microwave remote sensing soil moisture products in farming-pastoral area of Shandian river basin. National Remote Sensing Bulletin, 25(4):974-989
空间网格分辨率为9 km的SMAP(Soil Moisture Active and Passive)、0.1D(Degree)的ASCAT(The Advanced Scatterometer)、 25 km的FY-3B以及25 km ESA-CCI(European Space Agency -Climate Change Initiative)是较为广泛应用的卫星遥感土壤水分产品,对数据质量的评价是进一步应用于旱情监测、蒸散发估算等研究的前提。本研究基于2018年9月在闪电河流域内蒙古农牧交错带区域开展的碳、水循环与能量平衡遥感综合试验,采用近似同步的两种尺度观测数据即点尺度地面实测土壤水分数据以及面尺度(1 km×1 km)机载土壤水分数据,利用RMSE(Root Mean Square Error), MAE(Mean Absolute Error),
R
(Correlation Coefficient),Bias以及ubRMSE(unbiased Root Mean Square Error)等评价指标分别对SMAP, ASCAT, FY-3B, ESA-CCI土壤水分卫星遥感产品进行了评价。本研究利用机载土壤水分数据作为桥梁,实现了从点尺度地面实测土壤水分数据、至面尺度(1 km×1 km)机载土壤水分数据、再至粗格网面尺度(9 km×9 km、0.1 D×0.1 D、25 km×25 km)卫星遥感土壤水分产品的对比分析过程。利用地面观测值对机载观测土壤水分开展评价分析,发现在裸土区域,机载土壤水分数据与地面实测数据较为一致,RMSE, MAE, Bias, ubRMSE
以及
R
值分别为0.033 cm
3
/cm
3
, 0.030 cm
3
/cm
3
, -0.004 cm
3
/cm
3
, 0.033 cm
3
/cm
3
, 0.474。对卫星土壤水分产品的评价结果显示,SMAP的9 km土壤水分卫星产品与地面观测更为一致,其RMSE,MAE,Bias,ubRMSE以及
R
值分别为0.037 cm
3
/cm
3
,0.032 cm
3
/cm
3
,-0.008 cm
3
/cm
3
, 0.036 cm
3
/cm
3
, 0.507。SMAP, ASCAT, FY-3B以及ESA-CCI与机载土壤水分数据有更高的相关性,
R
值分别为0.735, 0.558, 0.558, 0.575。综上,闪电河流域实验区内的4种卫星遥感土壤水分产品中,SMAP产品与地面土壤水分、机载土壤水分数据均较为一致,其次是FY-3B与ESA-CCI。
SMAP (Soil Moisture Active and Passive) with a grid resolution of 9 km
ASCAT (Advanced Scatterometer) with a grid resolution of 0.1D (Degree)
FY-3B and ESA-CCI (European Space Agency-Climate Change Initiative) with a grid resolution of 25 km
these satellite soil moisture (SM) products were widely used in drought monitoring
evapotranspiration estimation etc. applications. It is very important to evaluate these satellite SM products before using them. In this study
the approximate synchronous in-situ SM measurements (point-scale) and airborne observation-based soil moisture data (area-scale airborne SM with a grid resolution of 1 km) from the Comprehensive Remote Sensing Experiment of Water Cycle and Energy Balance in the Shandian river basin of Inner Mongolia in September
2018 were used to evaluate the SMAP
ASCAT
FY-3B
ESA-CCI satellite SM products using RMSE (Mean Square Root Error)
R
(Correlation Coefficient)
MAE (Mean Absolute Error)
Bias and ubRMSE (unbiased Mean Square Root Error) etc. evaluation indexes. This study achieved the evaluation process from the point-scale in-situ SM measurements to the area-scale (1 km×1 km) airborne SM data to the area-scale (9 km×9 km
0.1 D×0.1 D
25 km×25 km) satellite SM products using airborne SM as the bridge between in-situ SM measurements and satellite SM products. The results dedicated that in bare soil area the airborne SM was more consistent with the in-situ SM measurements
the RMSE
MAE
Bias and ubRMSE and
R
values were 0.033 cm
3
/cm
3
0.030 cm
3
/cm
3
-0.004 cm
3
/cm
3
0.033 cm
3
/cm
3
and 0.474 respectively. Comparing with ASCAT
FY-3B and ESA-CCI satellite SM products
the SMAP satellite SM product were more consistent with in-situ SM measurements
RMSE
MAE
Bias
ubRMSE and
R
values were 0.037 cm
3
/cm
3
0.032 cm
3
/cm
3
-0.008 cm
3
/cm
3
0.036 cm
3
/cm
3
and 0.507 respectively. In addition
the
R
values between the satellite SM products (SMAP
ASCAT
FY-3B and ESA-CCI) and airborne SM data were higher
0.735
0.558
0.558 and 0.575 respectively. Overall
the SMAP satellite SM product was more consistent with in-situ SM measurements and airborne SM in Shandian river basin area
then FY-3B and ESA-CCI SM products.
土壤水分SMAP(Soil Moisture Active and Passive)ASCAT(The Advanced Scatterometer)FY-3BESA-CCI(European Space Agency-Climate Change Initiative)
soil moistureSMAP (Soil Moisture Active and Passive)ASCAT (Advanced Scatterometer)FY-3BESA-CCI
Bartalis Z, Wagner W, Naeimi V, Hasenauer S, Scipal K, Bonekamp H,Figa J and Anderson C. 2007. Initial soil moisture retrieval from the METOP-A Advanced Scatterometer. Geophysical Research Letters, 34(20):L20401 [DOI: 10.1029/2007gl031088http://dx.doi.org/10.1029/2007gl031088]
Brocca L, Hasenauer S, Lacava T, Melone F, Moramarco T, Wagner W, Dorigo W, Matgen P, Martínez-Fernández J, Llorens P, Latron J, Martin C and Bittelli M. 2011. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe[J].Remote Sensing of Environment, 115(12):3390-3408 [DOI: 10.1016/j.rse.2011.08.003http://dx.doi.org/10.1016/j.rse.2011.08.003]
Cai X T, Pan M, Chaney N W, Colliander A, Misra S, Cosh M H, Crow W T, Jackson T J and Wood E F. 2017. Validation of SMAP soil moisture for the smapvex15 field campaign using a hyper-resolution model. Water Resources Research, 53(4): 3013-3028 [DOI: 10.1002/2016WR019967http://dx.doi.org/10.1002/2016WR019967]
Chan S K, Bindlish R, O'Neill P, Jackson T, Njoku E, Dunbar S, Chaubell J, Piepmeier J, Yueh S, Entekhabi D, Colliander A, Chen F, Cosh M H, Caldwell T, Walker J, Berg A, McNairn H, Thibeault M, Martínez-Fernández J, Uldall F, Seyfried M, Bosch D, Starks P, Holifield Collins C, Prueger J, van der Velde R, Asanuma J, Palecki M, Small E E, Zreda M, Calvet J, Crow W T and Kerr Y. 2018. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sensing of Environment, 204: 931-941 [DOI: 10.1016/j.rse.2017.08.025http://dx.doi.org/10.1016/j.rse.2017.08.025]
Colliander A, Cosh M H, Misra S, Jackson T J, Crow W T, Chan S, Bindlish R, Chae C, Holifield Collins C and Yueh S H. 2017. Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (smapvex15). Remote Sensing of Environment, 196: 101-112 [DOI: 10.1016/j.rse.2017.04.022http://dx.doi.org/10.1016/j.rse.2017.04.022]
Cui C Y, Xu J, Zeng J Y, Chen K S, Bai X J, Lu H, Chen Q and Zhao T J. 2018. Soil moisture mapping from satellites: an intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sensing, 10(1): 33 [DOI: 10.3390/rs10010033http://dx.doi.org/10.3390/rs10010033]
Dorigo W, Wagner W, Albergel C, Albrecht F, Balsamo G, Brocca L, Chung D, Ertl M, Forkel M, Gruber A, Haas E, Hamer P D, Hirschi M, Ikonen J, de Jeu R, Kidd R, Lahoz W, Liu Y Y, Miralles D, Mistelbauer T, Nicolai-Shaw N, Parinussa R, Pratola C, Reimer C, van der Schalie R, Seneviratne S I, Smolander T and Lecomte P. 2017. ESA CCI soil moisture for improved earth system understanding: state-of-the art and future directions. Remote Sensing of Environment, 203: 185-215 [DOI: 10.1016/j.rse.2017.07.001http://dx.doi.org/10.1016/j.rse.2017.07.001]
Dorigo W A, Gruber A, De Jeu R A M, Wagner W, Stacke T, Loew A, Albergel C, Brocca L, Chung D, Parinussa R M and Kidd R. 2015. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sensing of Environment, 162: 380-395 [DOI: 10.1016/j.rse.2014.07.023http://dx.doi.org/10.1016/j.rse.2014.07.023]
Entekhabi D, Njoku E, O'Neill P, Spencer M, Jackson T, Entin J, Im E and Kellogg K. 2008. The soil moisture active/passive mission (SMAP)//Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, USA: IEEE [DOI: 10.1109/IGARSS.2008.4779267http://dx.doi.org/10.1109/IGARSS.2008.4779267]
Fan T X. 2002. Characteristics and functions of FengYun-3 meteorological satellite. Meteorological Science and Technology, 30(6): 321-327
范天锡. 2002. 风云三号气象卫星的特点和作用. 气象科技, 30(6): 321-327 [DOI: 10.3969/j.issn.1671-6345.2002.06.001http://dx.doi.org/10.3969/j.issn.1671-6345.2002.06.001]
Gong P, Liu H, Zhang M N, Li C C, Wang J, Huang H B, Clinton N, Ji L Y, Li W Y, Bai Y Q, Chen B, Xu B, Zhu Z L, Yuan C, Suen H P, Guo J, Xu N, Li W J, Zhao Y, Yang J, Yu C, Wang X, Fu H, Yu L, Dronova I, Hui F, Cheng X, Shi X L, Xiao F J, Liu Q F and Song L C. 2019. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6): 370-373 [DOI: 10.1016/j.scib.2019.03.002http://dx.doi.org/10.1016/j.scib.2019.03.002]
Jackson T J. 1993. III. Measuring surface soil moisture using passive microwave remote sensing. Hydrological Processes, 7(2): 139-152 [DOI: 10.1002/hyp.3360070205http://dx.doi.org/10.1002/hyp.3360070205]
Jackson T J, Bindlish R, Cosh M H, Zhao T J, Starks P J, Bosch D D D, Seyfried M, Moran M S, Goodrich D C, Kerr Y H and Leroux D. 2012. Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1530-1543 [DOI: 10.1109/TGRS.2011.2168533http://dx.doi.org/10.1109/TGRS.2011.2168533]
Karthikeyan L, Pan M, Wanders N, Kumar D N and Wood E F. 2017. Four decades of microwave satellite soil moisture observations: part 2. Product validation and inter-satellite comparisons. Advances in Water Resources, 109: 236-252 [DOI: 10.1016/j.advwatres.2017.09.010http://dx.doi.org/10.1016/j.advwatres.2017.09.010]
Kawanishi T. 2003. The advanced microwave scanning radiometer for the earth observing system (AMSR-E), NASDA'S contribution to the EOS for global energy and water cycle studies. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 184-194 [DOI: 10.1109/TGRS.2002.808331http://dx.doi.org/10.1109/TGRS.2002.808331]
Kerr Y, Font J, Waldteufel P, Camps A, Bara J, Corbella I, Torres F, Duffo N, Vallilossera M and Caudal G. 2000. New radiometers: SMOS-A dual pol l-band 2D aperture synthesis radiometer//Proceedings of 2000 IEEE Aerospace Conference. Big Sky, USA: IEEE: 119-128 [DOI: 10.1109/AERO.2000.878481http://dx.doi.org/10.1109/AERO.2000.878481]
Kim H, Parinussa R, Konings A G, Wagner W, Cosh M H, Lakshmi V, Zohaib M and Choi M. 2018. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 204: 260-275 [DOI: 10.1016/j.rse.2017.10.026http://dx.doi.org/10.1016/j.rse.2017.10.026]
Liu J, Chai L N, Lu Z, Liu S M, Qu Y Q, Geng D Y, Song Y Z, Guan Y B, Guo Z X, Wang J and Zhu Z L. 2019. Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM soil moisture products over the Qinghai-Tibet plateau and its surrounding areas. Remote Sensing, 11(7): 792 [DOI: 10.3390/rs11070792http://dx.doi.org/10.3390/rs11070792]
Liu Y Y, Dorigo W A, Parinussa R M, de Jeu R A M, Wagner W, McCabe M F, Evans J P and van Dijk A I J M. 2012. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sensing of Environment, 123: 280-297 [DOI: 10.1016/j.rse.2012.03.014http://dx.doi.org/10.1016/j.rse.2012.03.014]
Mohanty B P, Cosh M H, Lakshmi V and Montzka C. 2017. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone Journal, 16(1) [DOI: 10.2136/vzj2016.10.0105]
Shi J, Jiang L, Zhang L, Chen K S, Wigneron J P, Chanzy A and Jackson T J. 2006. Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3145-3153 [DOI: 10.1109/TGRS.2006.876706http://dx.doi.org/10.1109/TGRS.2006.876706]
Spencer M, Chan S, Veilleux L and Wheeler K. 2009. The soil moisture active/passive (SMAP) mission radar: a novel conically scanning SAR//Proceedings of 2009 IEEE Radar Conference. Pasadena, USA: IEEE: 1-4 [DOI: 10.1109/RADAR.2009.4977042http://dx.doi.org/10.1109/RADAR.2009.4977042]
Sun Y L,Zhao T J,Li E C,Luan Y H,Wan G Y,Xu H X,Zhao F,Yao C B,Lu L Q,Hu L and Geng D Y. 2021. Radiometer calibration of airborne L-band active and passive microwave detector. National Remote Sensing Bulletin, 25(4):918-928
孙彦龙,赵天杰,李恩晨,栾英宏,万国愚,徐红新,赵锋,姚崇斌,吕利清,胡路,耿德源.2021.机载L波段主被动一体化微波探测仪辐射计定标.遥感学报,25(4): 918-928 [DOI:10.11834/jrs.20210358http://dx.doi.org/10.11834/jrs.20210358]
The GLACE Team, Koster R D, Dirmeyer P A, Guo Z C, Bonan G, Chan E, Cox P, Gordon C T, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu C H, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman1 A, Sud Y C, Taylor C M, Verseghy D, Vasic R, Xue Y K and Yamada T. 2004. Regions of strong coupling between soil moisture and precipitation. Science, 305(5687): 1138-1140 [DOI: 10.1126/science.1100217http://dx.doi.org/10.1126/science.1100217]
Wagner W, Dorigo W, De Jeu R, Fernandez D, Benveniste J, Haas E and Ertl M. 2012. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture.ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-7: 315-321 [DOI: 10.5194/isprsannals-I-7-315-2012http://dx.doi.org/10.5194/isprsannals-I-7-315-2012]
Wagner W, Lemoine G and Rott H. 1999. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 70(2): 191-207 [DOI: 10.1016/S0034-4257(99)00036-Xhttp://dx.doi.org/10.1016/S0034-4257(99)00036-X]
William B R. 2016. LANDMET Ancillary Soil Moisture data L3 V1, (Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC).)
Xie Q X, Menenti M and Jia L. 2019. Improving the AMSR-E/NASA Soil Moisture Data Product Using In-Situ Measurements from the Tibetan Platea. Remote Sensing, 11(23): 2748 [DOI: 10.3390/rs11232748http://dx.doi.org/10.3390/rs11232748]
Zhao T J. 2018. Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects. Progress in Geography, 37(2): 198-213
赵天杰. 2018. 被动微波反演土壤水分的L波段新发展及未来展望. 地理科学进展, 37(2): 198-213 [DOI: 10.18306/dlkxjz.2018.02.003http://dx.doi.org/10.18306/dlkxjz.2018.02.003]
Zhao T J, Shi J C, Bindlish R, Jackson T, Cosh M, Jiang L M, Zhang Z J and Lan H M. 2015. Parametric exponentially correlated surface emission model for l-band passive microwave soil moisture retrieval. Physics and Chemistry of the Earth, Parts A/B/C, 83-84: 65-74 [DOI: 10.1016/j.pce.2015.04.001http://dx.doi.org/10.1016/j.pce.2015.04.001]
Zhao T J, Shi J C, Lv L Q, Xu H X, Chen D Q, Cui Q, Jackson T J, Yan G J, Jia L, Chen L F, Zhao K, Zheng X M, Zhao L M, Zheng C L, Ji D B, Xiong C, Wang T X, Li R, Pan J M, Wen J G, Yu C, Zheng Y M, Jiang L M, Chai L N, Lu H, Yao P P, Ma J W, Lv H S, Wu J J, Zhao W, Yang N, Guo P, Li Y X, Hu L, Geng D Y and Zhang Z Q. 2020. Soil moisture experiment in the Luan river supporting new satellite mission opportunities. Remote Sensing of Environment, 240: 111680 [DOI: 10.1016/j.rse.2020.111680http://dx.doi.org/10.1016/j.rse.2020.111680]
Zhao T J, Shi J C, Xu H X, Sun Y L, Chen D Q, Cui Q, Jia L, Huang S, Niu S D, Li X W, Yan G J, Chen L F, Liu Q H, Zhao K, Zheng X M, Zhao L M, Zheng C L, Ji D B, Xiong C, Wang T X, Li R, Pan J M, Wen J G, Mu X H, Yu C, Zheng Y M, Jiang L M, Chai L N, Lu H, Yao P P, Ma J W, Lv H S, Wu J J, Zhao W, Yang N, Guo P, Li Y X, Hu L, Geng D Y, Zhang Z Q, Hu J F and Du A P. 2021. Comprehensive remote sensing experiment of water cycle and energy balance in the Shandian river basin. National Remote Sensing Bulletin, 25(4): 871-887
赵天杰, 施建成, 徐红新, 孙彦龙, 陈德清, 崔倩, 贾立, 黄硕, 牛升达, 李秀伟, 阎广建, 陈良富, 柳钦火, 赵凯, 郑兴明, 赵利民, 郑超磊, 姬大彬, 熊川, 王天星, 李睿, 潘金梅, 闻建光, 穆西晗, 余超, 郑姚闽, 蒋玲梅, 柴琳娜, 卢麾, 姚盼盼, 马建威, 吕海深, 武建军, 赵伟, 杨娜, 郭鹏, 李玉霞, 胡路, 耿德源, 张子谦, 胡建峰, 杜爱萍. 2021. 闪电河流域水循环和能量平衡遥感综合试验. 遥感学报, 25(4): 871-887 [DOI:10.11834/jrs.20219401http://dx.doi.org/10.11834/jrs.20219401]
相关作者
相关机构